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A simple and convenient approximation is obtained for the multiphoton energy-transfer processes
which accompany the scattering of a charged particle by a scattering potential, in the presence of a
strong external electromagnetic field, It is expressed in terms of the differential elastic-scattering cross
section combined with known functions, and is valid when the scattering potential is weak or when the
wave frequency is small. A detailed form of the classical &lrmt is obtained.

I. INIODUerrON AND SUMMmv

When a charged particle, to be referred to
hencefox'th as an electron, scatters in the presence
of an electromagnetic wave, it may exchange ener-
gy with the electromagnetic field. Because, on
the average, energy-absorbing encounters domi-
nate enexgy-emitting encounters, the px ocess
is of central importance in the study of plasma
heating by electx'omagnetic waves and in the study
of gas breakdown. It has been extensively dis-
cussed both classicaQy' and quantum mechanical-
ly, ' the latter in the context of inverse brems-
strahlung and stimulated bremsstrahlung of single
photons. When the electromagnetic field is strong,
however (or when the frequency is low enough),
many photons can be emitted or absorbed in a
single scattering process. It is the purpose of
this note to analyze these multiphoton pxocesses
and to relate them to the classical description.

The electromagnetic field will be approximated
by a classical spatially homogeneous electric fieM
throughout. The distinction between the classical
and quantum tx eatment resides in the description
of the asymptotic states of the electron before and
after the collision. In the classical description,
the electron follows a classical orbit, with oscil-
lating velocity. Scattering processes are charac-
terized by an instantaneous incident velocity deter-
mined by the phase (henceforth referred to as the
scattering phase a) oi the electric field at the
scattering instant. While the scattering itself
is assumed to be instantaneous and elastic, change
in time-averaged electx on enex gy occurs as the
result of the change in electron direction. For a
given scattering angle (referred to the time-aver-
aged directions) the energy change is determined
by the scattering phase n. In the quantum case,
initial and final electron states are described by
solutions of the Schrodinger equation. Energy
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q'(v)/2m =q', /2m —vnco; (1.2)

da, ~/dA is the differential elastic scattering cross
section for scattering in the absence of the electro-
magnetic field, evaluated at momentum transfer

Q=-q(v) -qo (1.3)

2
~q 8 qo 2 m

+ vS(al
g

+(veld)
2( g)o

~ (1.4)

The electric field direction is denoted by a. Z„(x)
denotes the Bessel function of order p.

The magnitude of multiyhoton cross sections
is determined by the parameter ~, which for a
vector potential of amplitude a is given by

x= -ea 4/mcus(u. (1.5)

In terms of incident radiation flux p in MW/cm'
and wavelength A. in pm,

g= -0.352k. P~ a Q/mc. (1.6)

Equation (1.1) holds whenever the Born approxi-
mation provides an adequate description of the
elastic process, in which case the elastic cross
section depends upon the momentum transfer only.
When the Born approximation is inadequate, Eq.

changes are determined by the number of yhotons
emitted or absorbed. A correspondence between
the photon number and scattering phase is estab-
lished. It proves to be useful in the discussion of
the classical limit and in the establishment of a
relation between multiyhoton processes and elastic
scattering cross sections.

The classical theory is summarized in See. II.
Section III is devoted to the development of a
convenient fox'malism for the quantum case.
Section IV consists of the application of the
formalism when the elastic scattering process
is adequately described by the Born approximation.
Section V is devoted to a low-frequency approxi-
mation for those cases in which the Born approxi-
mation to the elastic scattering is inadequate. The
classical and strong-field limits are the same for
both of our approximations. Concluding comments
are made in Sec. VI.

Oux' principal result may be summarized by the
following formula:

dc, (q(v), q, ) q(v)&. , do„(e, 0)
qo

where do„(q(v), q, )/dQ is the differential cross
section for scattering from (time-averaged) initial
momentum qo to final momentum q(v) with the
emission (v &0) or absorption (v &0) of v photons
of angular frequency &u, so that

(1.1) holds only at low frequencies, and Eq. (1.4)
is reliable only for

vs mc v
6' 8 X

This latter condition is equivalent to the require-
ment that ply, the energy transfer, be no larger
than that which is allowed classically and avoids
the apparant singularity of Eq. (1.4) at a / =0.
This condition need not be imposed when the Born
approximation is adequate, but it is to be noted
that the Bessel function becomes small when it
is violated.

II. SUMMARY OF CLASSICAL THEORY

p =q —(e/c)~, (2.1}

where q is a constant vector which represents
the time ave-raged value of p and X may be con-
veniently taken to have the form a cos~t. An
electron with time-averaged momentum qp wQ1

arrive at a scattering center at some instant g

and hence with incident momentum pp determined
by (2.1). Scattering is assumed to take place
instantaneously (i.e., in a time short compared
to I/~) and elastically from an incident p, to a
final p. Thus, cosset has the same value imme-
diately after the collision as it had immediately
before, and the time-averaged final moment q
is determined by (2.1}. We have, therefore,

q -qo =p -po =
and, since p' ppy

q'-q'=2(e/c)a icos(ut.

(2.2)

(2.3)

In a typical scattering process q and q, are to
be regarded as the observables. Equation (2.3)
then determines the value of cost% (let oot= a
=-"scattering phase" henceforth} at which the
scattering took place, and Eq. (2.1) then deter
mines the values p and p (and hence the energy)
involved in the interaction with the scattex'er.

The scattering rate yer electron per unit scat-
terer density into solid angle dQ~, in the phase
interval do. is given by

p~ da(P„P) da
m ~ ~ n

(2.4)

(Since a appears only via cosa we may take
0 &a & v.) To define a cross section we use the
time-averaged electron-flux at incident momentum

Thus,

do = (m/q, ) dR. (2.5)

The instantaneous kinetic momentum p = mv of
an electron in the spatially uniform vector potential
X is given by
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5[q -q, -2(e/c)a /cosa]2dpq da

~~d )*igl 1
P ' (2(e/c}a Qslna i

'

yielding, finkk»y,

iL dc(pl Q()) igly df
qo igl i2s(e/c)i /sinai '

(2.5)

(2.7}

BI. FORMALISM FOR INDUCED MULTIS(NlQN
PROCESSES IN ELECTRON SCA n a;RING

The Schr5dinger equation for an electron moving
in a vector poten&kk& X and scattering potential
Vis

1 (0» e
i
-. v --X q + Vq) ~ i(qp .2' I i c (3 1)

In strong fields, stimulated processes dominate
spontaneous processes by an enormous factor.
Hence it is appropriate to treat X as a c number.
In addition we take (as before) X to be spatially
independent. Consequently, the A' term can be
eliminated from Eq. (3.1}. Let

e'
+~exp -- i —,A'Ck' qt .

2mgi (3.2)

Then

(3.3}

por y 0, Eq. (3.3) has the plane-wave solutions
(we use g in place of qk for V ~0 solutions)

iS I I(, 2eg-~e'"'' exp — Ik'- —R A dt' (3.4)

corresponding to the classical solutions with time-
averaged momentum q = N%. One may construct
the retarded Green's function, G(r - r', t, t'),
defined by the differential equation

(
ieS . 8-—V'+ X V —it —G=d(r r')6(t ——t')

2N! mc et
(3.5)

and the requirement that G vanish for negative
(t - t'). Por positive (t - t') one finds

Por comparison with the quantum theory it is
convenient to express dAida in terms of ill, d(q').

igloo da ~ dad(P* -p*,)
2.

The solution q)„- to Eq. (3.3}corresponding to an

incoming plane wave of momentum q, = tk, plus
outgoing waves satisfies the integral equation

t((ki, ,=Xi-„—fdr' f dt' GV(r')q)„;(r', t') . (3.7)

To determine a scattering cross section, we
need the asymptotic form of y„- at large y. It is
convenient at this point to specialize to X= a cosset.
Then

G
i +&i)( (r -r ')

t(2v)'

-ik, 2ex exp k't — k ~ a sine t)2m Scu

TiS, , 2e
xexp —' k t -'')i aslant )'2m Sc~ (3.8)

x q) „- (r', t') (3.9)

is periodic in t' with period 2w/cu, we expand it
in a Fourier series as follows:

Si Pkti @ (rt}hp, k ]tp, g, v
P+ a

(3.10}

The second term of Eq. (3.7} may be written
Q„s„- „(r,t), where

(r t}— ~ (dk dr)&i)t '(r r')-
t(2v)' 0

n'exy k't — % ~ a stntst)
-iS, 2e
2m Scu

&t

x dt'exp t —(k' —k', )+ v(k) t'
J() 2M

(3.11}

Using the familiar methods of scattering one finds
that at large r, in the direction R(v),

gpss
e!%(&)P

S„„(r,t)=-

iS 2exexp ——k'( )t — k( ) asl t)2m wmS

dr' e '" " ' V r' 4a 8„)„r', 3.12

where

Making use of the fact that 4„- „- defined by

iS , , 2e(r', t )-=exp —-'k t — 'k' as)stet)'2m ' Scca

[kk(v)]' = (kk, )' —vacua . (3.13)

& elk'(r -t ') gk (3.5)
Equation (3.13}tells us that S„- „ is associated
with the stimulated bremsstrahlung of v photons
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for p positive and the inverse bremsstrahlung
of

~ v~ photons for v negative.
Making use of (3.9), (3.10), and (3.13) we see

that the final factor of Eq. (3.12) may be reex-
px essed in accordance with

drr e
- (k (rr) ' r '

V(r )4r (r r }
2 7f/t0

dt[Xk(.) Vek, l=(Xk(.) Vmk )

In Eq. (8.14) the term in square brackets is an

inner product in the usual sense of integration
over r and the term in angular brackets is de-
fined as the indicated time average.

The probability current associated with the
incident wave X„- is (q, /m) —eX/me, which is
just the classical instantaneous velocity. For
defining an incident flux we take the time-averaged
value. The probability current associated with the
spherical wave solutions in 5& „ is, at large y,

1 q(v} eX
m me

Again we take the time average to define a. cross
section. The total outgoing wave probability cur-
rent contains cross terms between terms of dif-
ferent p. These cross tex ms do not vanish on

time averaging but do vanish when an average
is taken over a macroscopically small range of

They should, therefoxe, be omitted in deter-
mining the cross sections. Finally, we obtain

do(q(v), q, ) m 'q(v)
~~ )~, ( )

The subscript B refers to first Born appx'oxima-
tion for the elastic scattering cross sections. It
is apparent from Eqs. (4.3) and (1.5) that the
strong-field limit, low-frequency limit, and

classical limit are aQ governed by large values
of the single parameter x aypeax'ing in the argu-
ment of the Bessel function J,. To investigate
this limit we recall the Debye asymptotic formu-
las'

2cos'[(x' —v')~' —
~
vcos '(v/x)

~

——,'v]
Z„(x)- (~,)v,

1 —
i v/xi & e (4.4a)

2 exp[-2fo" cosh-'(v'/ j x j) dv']

cosa = v/x. (4.5)

The Eq. (4.4b) form is thus seen to correspond
to an energy transfer lax ger than is classically
allowed. As one would expect, it vanishes expo-
nentially as ~x ~

- ~. Equation (4.4a) can be used
to deduce the classical limit. In this limit, the
number of photons transferred is typically large,
The cos' factor indicates large fluctuations as the
photon number changes by unity. For a mean
behavior, however, we take cos' equal to one-
half to obtain

Iv/xt -»e (4 4b)

Identifying q in Eq. (2.3) with q(v) and using Eq.
(3.13},we see that the classical scattering phase
0. is related to the quantum parameters via

Equation (3.15) is a straightforward genera1iza-
tion of the well-known expressions for scattering
in a static potential. '

IV. %PEAK-POTENTIAL APPROXIMATION

When the scattering potential V is weak, one can
approximate (pk- by X-„ in (3.15). Then using (8.4),
(1.5), and (3.13}we have

[Xk(», VX„- j =eXp(iX Sin(r)t -iV(dt)

x [e-rk(r) 'r Veiko'r ] (4.1)

which yields

do(q(v), q,) (f(v)Z. „dc (4) (4.3)

and, from (3.14), we have
2 'II/4J

(X- VX- ) =— exp(ix sin()t —i vr(r) t}dt
jt(&) & ko

x [e (k(r/) r Verko'r ]

(x) (e (k(rr) 'r Verko r) '(4 2)

This is seen to be identical with the classical
formula equation (2.7) when we set dq'= 2m@'a&.

It is apparent on inspection of g that the classical
limit obtains when the classical oscillation ampli-
tude ea/me(r) is large compared to the interference
fringe separation (cos~(r} ~ v modulation factor)
between the incident and scattered wave along the
direction of oscillation.

V. LO%-FREQUENCY APPROXIMATION

In this section we shall show that in the low-
frequency limit [Eq. (4.3)] holds to all orders in
the scattering potential provided that the Born
apyroximation for the elastic scattering is re-
placed by the exact expression for the elastic
scattering evaluated at the enexgy g given by
Eq. (1.4).

It is useful to redefine the scattering state
4')„- so that it becomes time independent in the
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low-frequency limit. Furthermore, to go beyond
the first Born approximation it is more convenient
to work in momentum space. Accordingly, we let

q&k;(k, t)=4K (K), (5.12)

(k t) —= err)(ko i) e ik r y (r t)(2x)' ko

e
r)(k, t) = t — k ~ asin(r)t.2' lpga QQ3

(5.1)

(5.2)

K, = k, —(e/Ic)a cos(r)t, K = k —(e/hc) acoset.

(5.13)

TO COmpute the SCattering' We require [Xk(„),y(hark ].
Using Eqs. (3.4} and (5.1), we find

Substituting into Eqs. (3.4}, (3.6), and (3.V), we
find

q- (k t) =5@—k ) —(t/a)e-'"k "'"
Xf i

dtr ~r ei a(k. k O. r')

[X- y(tr- ]=e ' "o """"f dk' y(R(v) —R')y- $' t)

—e-(I&ok(v),.r)f dKry(K(v) Kr)4r (Kr)

(5.14)

)r y(R -k')r7)k (k', t'),

where

tk(k, k„ t) =))(k, t}-))(k„t)

y(k kr) —fe i(k-k-')'r y(r) d r

A formal solution to Eq. (5.3) is provided by

,„(g+r) ( t/g) eiA( k. kot) fi'
k J~ oo

(5.3)

(5.4)

(5.5)

(5.6)

(5.V)

The last integral is just the familiar T matrix
for elastic scattering, whose arguments we shall
take to be momenta rather than wave numbers.
Thus, we write

f dR y{K(v) —K') C K, (K') = T(p(v}, p, ), (5.15)

where the p vectors are related to the q = ~ vec-
tors via Eq. (2.1}. We note that p'(v) ep2O except
at the classical values of cos&g =—cosa determined

by Eq. (2.3), so that (5.15) refers to the T matrix
off the energy shell. %e shall write T,&

for the on-
shell T matrix which yields the elastic scattering
and express it in terms of the momentum trans-
fer and energy.

Finally, we consider [see Eq. (3.14)]

y+ } (&/2v) f '"~~
dt e (rXkok-(rr) r)T, Q(v. ) p )

&&e(6(k.ko. t') y(k kr)~b)(kr tr)

In the low-frequency limit,

g@(n)
~Q 0{) ~Q

bt

(5.8)

(5.9)

e'~(k ko. t')rt)~~)(Qr, t')
ie6(,k kot')y (rr()krtr)

et' tt'k(k k t )
(5.10)

Using the approximation (5.10) in (5.8)„we obtain

(5.16)
For sufficiently small u, the exponential factor
will oscillate many times as I; ranges over the
integration interval. The principal contribution
wiD come from those values of g for which ~
vanishes. Thus, we approximate (5.16}by re-
moving T from under the integral sign and evalu-
ating it at the stationary phase points, that is at
values of I; such that X =0. This condition is
immediately seen to be the same as the energy-
shell condition with energy determined by Eq.
(1.4). Thus, we obtain

(5.11)

Xk(.) yak„}=~., (e, 4)(~/2(()f,
'"

dte '~

= T„(~,Q)Z. (x) (5.1V)

%'e note that all time-dependent quantities in Eq.
(5.11) refer to the same instant. Consequently,
the time may now be regarded as a parameter,
and the problem has been reduced to the solution
of the elastic scattering problem. Let Ck (k) be
the solution of Eq. (5.3), with the vector potential
a set equal to zero. Comparison with Eqs. (5.2),
(5.4), (5.6), (5.V), and (5.8) shows that, for low

frequency m,

and hence the final result

d(((q(v), q.) V(v) &. „do.((e, 4) (5.18)

In applying Eq. (5.18}, cos~t is given by Eqs.
(2.3) and (4.5). For v&x, the cosine is greater
than 1, and the stationary-phase condition can-
not be satisfied. The integral in Eq. (5.16) is then
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expected to be small, and while the approximation
in Eq. (5.17) is no longer justified; it also gives a
small result.

It is of interest to note that the weak-field limit
of Etl. (5.17) for single-photon processes is valid
not only to lowest order in u& (-&u ' for this pro-
cess) but also to the next higher order (-uP). To
see that this is the case we recall that a form
valid to this order has been given by Low. As
shown by Brown and Goble, ' the form given by
Low may (again to order uP) be written (specialized
here to the nonrelativistic limit with spatially
constant electromagnetic field)

2m~~~
'

o 'i 2

2-a.q(1)T., (&
',4, (5.19)

while (5.17) in the weak-field limit yields

(X () &y,)=2 g
a (9o-0(1)) T„(e,'Q)

(5.20)

Using Eq. (1.4) for e one sees that the two formulas
are equal to order u'.

VI. CONCLUDING REMARKS

The principal result of this paper is Eq. (5.18).
It provides a simple and reasonable approxima-
tion to multiphoton energy transfers when the

frequency of the electromagnetic wave is small

or when the scattering potential is weak. From
a practical point of view our results suggest that
whenever multiphoton effects appear to be signifi-
cant in electron heating processes, that quantum
corrections to a classical discussion are small.

We briefly discuss our results in the context
of the gas-breakdown problem. To specify a
reasonable power level we recall that the classical
low-frequency low-pressure breakdown power P~
for air is determined by ~'P~ = 3.16 x10'. This
yields ~xe~ =200Xa Q/mc. A typical value for
~Q~/mc might be 5x10 ', growing by a factor of
3 or so as the electrons are heated. We conclude
that multiphoton energy transfers are improbable
for say Nd and ruby-laser pulses. On the other
hand such processes are important for CO, pulses
and become dominant as A. is further increased.
For a given direction of Q, the energy transfers
peak at s

~ xe ~
Ihu = 248a .Q/mc eV. Thus, the

fluctuations in energy transfer tend to be large
compared to the mean energy transfer per col-
lision (about 0.06 eV). On the other hand, the

peaking is smoothed by averaging the direction of

g with respect to a. The fluctuations due to
quantum effects are, of course, not smoothed. In
Ref. 2 it was found that quantum effects on elec-
tron heating for the case of air are of negligible
importance for photons below 0.5 e7. It there-
fore appears that the neglect of multiphoton pro-
cesses (or classical energy transfer fluctuations)
in the theory of electron heating is of little
importance in the theory of gas breakdown.

«Work supported in part by the United Stated Atomic Energy
Commission.

~Work supported in part by the Air Force Once of Scientific

Research, Office of Aerospace Research, U.S. Air Force,
under Contract No. F 44620-70-C-0028.

'An excellent review of this topic has been given by S. C.
Brown, in Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. XXII.

Norman Kroll and Kenneth M. Watson, Phys. Rev. A
5, 1883 (1972). This paper contains references to numerous

earlier works.
'Similar extensions of classical scattering theory appropriate to

external electromagnetic wave problems have been given by a
number of authors [see, for example, H. R. Reiss, Phys. Rev.
A 1, 803 (1970)]. Because the situation is especially

transparent for electron scattering problems, it was felt that a
concise derivation of the form we use would be helpful.

See, for example, W. Magnus and F. Oberhettinger, Formulas
and Theorems for the Functions of Mathematical Physics

(Chelsea, New York, 1954), p. 23.
'The approximation of Eq. (5.12) is adequate for the evaluation

of the scattering via Eq. (5.14). The scattering can, in

principle, also be obtained from the residues of ~(k,t) at
0

its poles. The approximation Eq. (5.12) is not adequate for
this purpose. An adequate approximation can be obtained by
using Eq. (5.12) for the right-hand side of Eq. (5.3) and carry-

ing out the indicated time integration exactly.
'F. E. Low, Phys. Rev. 110, 974 (1958).
'L. S. Brown and R. L. Goble, Phys. Rev. 173, 1505 (1968).


