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The method of "comparison equations" for obtaining approximate solutions to the one-dimensional

Schrodinger equation is discussed. In this method, one Schrodinger equation, f (x) + k (x)IIf(x) = 0, is

transformed into another, e (z}+ E'(z)e(z) = 0, by a simultaneous change of independent and dependent

variables, x —z, Q -e. Then Q(x) and e(z) are related by Q(x} = v(z)(d z/d x) "2) whenever k2(x)
and E'(z) satisfy the relation E'(z) (dz/d x) = k'(x) —(1/2) &z; x & . Here & z; x) = z"'/z'
—(3/2)(z "/z')' is the Schwarzian derivative of z with respect to x and the prime indicates d/d x.
A set of "best" criteria for the transformed potential E'(z) is obtained, where by "best" is

meant that we can completely neglect ( z; x ) in first approximation and yet not have the turning-point

problems that plague the &KB method (which is a special case of the comparison-equation method). The
%KB method sets E'(x):—1 and neglects (z; x &; the result is that the transformation x -z, Q —v is

singular at the turning points, where k (x) = 0. %e choose E'(z) to have the proper asymptotic behavior

far from the turning points, so that z' —1; hence ( z; x )
—0 in these regions, and we match the zeroes of

k'(x) and E'(z) in order to keep the transformation regular. This method is applied to various potentials
with one and two turning points. Transmission and reflection coefficients T and 8 and transmitted and

reflected phase shifts p, and v are calculated for potentials with one turning point and potential barriers, and

expressed in terms of the energy E and the quantity S)' = g;'-k d x~, where x „are the possibly complex

turning points, k (x, ,) = 0. Quantization rules, in terms of the classical action, are derived for various

types of potential wells.

I. INTRODUCTION (z')'K'(z) = ks(x) --,' (z; x), (4)

In the last decade there has been a great revival
of interest in semiclassical methods of obtaining
approximate solutions to the Schrodinger equation
(see Ref. 1 for a comprehensive survey). A good
deal of this attention has been directed at so-called
"extensions" of the WKB method, which aim at
finding uniform approximations by the method of
comparison equations. "The phrase "so-called"
is used because these "extensions" are really
special cases of a powerful general technique
available for a long time, 4' as is the %KB method.

This technique relies on an equivalence between
any two second-order linear differential equations.
Any such equation may by a simple substitution be
brought into the form of the one-dimensional
Schrodi. nger equation, so we consider only the
Schrodinger equation. Writing dsg(x)/dxs =g"(x),
d't)(z)/dz'=t)"(z), and dz/dx=z', a little algebra
shows that any two one-dimensional Schrodinger
equations6

P"(x)+h'(x)g(x)=0,

t) "(z)+K'(z) t)(z) =0

(1)

(2)

are equivalent, in the sense that the solutions g
and tj to (1) and (2) are related by

c(.)= ( )/(")"' (2)

whenever z(x) satisfies the relation

( )
s" s (z")'

is the Sehwarzian derivative' of z with respect to
X e

[Note that a graph of hs(x} = (2m/gs) [E- V(x)] or
K'(z) looks upside down, being essentially the
negative of V(x) (shifted up or down, depending on
the sign of E). Thus, for instance, a concave-
upward K' is really a potential barrier, even
though it looks like a well. This can be confusing,
but it is done as a matter of universal convention
and enables us to write S(x}= j h dx in classical
regions and J[kj dx in nonclassical regions, instead
of vice versa. )

Thus, if we know the solutions to any one-dimen-
sional Schrodinger equation, say (2), then we may
obtain the solutions to any other, say (1), by solv-
ing (4) for z(x) and using (2). Of course, (4) is a
nonlinear third-order equation and hence not gen-
erally solvable in closed form. But (4) is readily
solved if (z; x) is zero. Then integration yields
the implicit equation

j'K(z)dz = f* h(x)dx (s)

for z(x), where z, =-z(x,). If (z; x) is not zero, but
small, then (6) is the first step in some iterative
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scheme for solving (4) for z(x).
There are two such schemes available to us. The

first, due to Hecht and Mayer, ' consists of choos-
ing IP(z) =1, so that the solutions v (z) of (2) are
particularly simple, namely, sinz and cosz. They
then develop an iteration scheme for solving (4}
for z(x}. For certain potentials and under certain
conditions, they are able by this method to cal-
culate z(x), and hence P(x), to any desired degree
of RCCul RCy.

This method has certain disadvantages, though.
First, it needs considerable modification to apply
it to potentials with more than one turning yoint,
and it breaks down if [k'(x)]' = -(2m/IE'} V'(x)
equals zero. Second, in order to obtain quantities
of interest such as the transmission and reflection
coefficients and phase shifts (T, It, y, v, defined
at the end of this section), one must calculate
integrals of the type

j[um(x) --'(z a&]"mdx

where one or both of the limits of integration are
the classical turning points, k'(x}=0. In this
scheme there is no handle on how small (z; x) is;
hence we cannot neglect it, particularly near the
turning points. These integrals are therefore very
difficult to perform.

The second method, developed by Froman and
Froman, ' consists in setting z'(x} equal to some
convenient function q(x), usually but not always
chosen to be k(x). Then from (4) we have

It is then assumed that the last two terms on the
right-hand side of this equation are small com-
pared to 1, (2) is converted to an integral equa-
tion, and an iteration scheme based on the solu-
tions e'" of (2}with IP =1 is developed. This is a
rigorous WKB method and suffers from the same
difficulties that the more prosaic %KB approach
suffers. That is, the turning points k (x}=0 mani-
fest themselves in the unpleasant fashion of essen-
tial singularities in the %KB wave function, so
that the Stokes phenomenon makes the problem of
connection formulas very difficult. 'o It proves to
be impossible using this method to calculate the
phase shifts p, and v in lowest order.

Both of these methods suffer from essentially
the same difficulty: one chooses IP(z) [or z(x)]
to be simple; the intent is to make (2) [or (4)]
elementary in order to facilitate an iteration
scheme. However, what we should really do to
make the iteration scheme easier is to make
(z; x& small, so that we can justify taking the
iteration scheme to lowest order only, i.e., justify
ignoring (z; x& altogether.

I $e
ljg~l 5

J~ e

FIG. 1. A potential barrier with V(~) =V(-) = 0. %Ve

typically seek a wave function which has the asymptotic
behavior of an incommg wave and a scattered wave,
exp [iS{x)j+ B~/~exp[ —i v —iS{x)l„y(~),~
&exp[i@, + iS(x)j . Phases are measured from the left and
right turning points for E~V~ and from xo such that
V(&o) =Vm~ for E~V~.

We want to be able to pick IP(z) so that (a)
v" +Nb =0 is a known equation with known solu-
tions; (b) K'(z} admits a solution z(x) to (4) which
is ayproximately linear in x, z' = constant; hence
(z; x& is small and we ignore it; and (c) z' is finite
(nonzero and noninfinite) everywhere; hence there
are no Stokes phenomenon and connection-formula
problems. Then z and x are (approximately) re-
lated by (6) and P and u by (3).

Condition (c}means that we demand that if z(x)
is calculated by (6), and xo is a root (or singular-
ity) of h'(x), then zo=z(x, ) is a root (or singular-
ity} of IP(z) and vice versa. That is, P" +0'g =0
and v" +K% =0 have corresyonding turning points
and singularities. This may be done trivially for
one turning point —lt is )ust R matter of IlRvlng Ule

origin of z in the proper place. For more than one
turning point, as will be illustrated later, IP(z)
must also be a function of one or more parameters
a, K'=K'(z; a), which must then be adjusted gen-
erally as a function of enexgy to ensure that the
tul ning points xo Rnd zo of the orlglnR1 Rnd trans-
formed equations correspond [zo=z(xo)] for all
energies. In addition, for potential wells with a
finite number of bound states, an extra parameter
is necessary to ensure that the transformed equa-
tion has the same number of bound states as the
original one. These e will, in general, then de-
pend on the energy E and hence the transforma-
tion x-z, g-v will be energy dependent. The
result is that z', the Jacobian of the transforma-
tion z -x, is finite; the transformation z -x is
regular; and P(x) is regular through the turning
points.

The obvious question to be asked is: Can we
always, for an arbitrary k'(x), find a K'(z) which
meets the requirements (a)-(c) with the Schwarzian
derivative (z; x& small enough so that the approxi-
mation of ignoring it is good everywhere'P The
answer is not known, but is probably yes for any
case of interest. For instance (Fig. 1), suppose
the potential V(x} in k' = (2m/fI') [E —V(x)] is a
barrier of height Vo and V(a~}=0. Then we pick
a K'(z) of similar shape as k (x), K'(z) = (2m!I')
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x(E-V sech2) z), with y a, parameter to be deter-
mined. Then for large lxl, Eq. (4}becomes

(2mz/a')(z')' =(2~/g2)Z --,'{z;x},
which manifestly has a solution z' =constant for
large lxl . Hence conditions (a) and (c) are met,
and (b) is met for large lxl. We may not so safely
be able to ignore (z; x}for f1l/ x, but at least g(x)
obtained by doing so is regular. This removes the
most troublesome features of the %KB methods.
Furthermore, the calculations of Miller and Good'
on two turning points show that in this case the
approximate wave function is very accurate
throughout the entire range of x.

The procedure then is the following. Pick a
K'(z) so that (i) v" +K'v =0 is a known equation
with known solutions, (ii) Eq. (4) admits a solu-
tion z(x) which is linear in x in asymptotic re-
gions (e.g. , lxl»1 for a potential barrier), (lll) the
turning points in K'(z) and k'(x) may be matched.
(iv) Calculate z(x) from Eq. (6):

f'K(z) d. = f"k(x) dx.

(v}Obtain fl)(x) fl'0111 Eq. (3):

g(x) =v(z)/Wz'.

Because this ayproximate wave function is valid
through the turning points, the difficulties with the
connection formulas and the Stokes phenomenon
do not arise, and expressions for the reQection
and transmission coefficients R and T and the
reflected and transmitted phase shifts v and p, are
easily obtained. By choosing E' to have nearly the
same functional dependence on z as k2 has on x,
we make z' be nearly constant; hence (z; x}, which
contains higher derivatives of z in every term, is
made small. This j.s in stark contrast to the WEB
method, which chooses E' constant instead of z"
small, that is, the approximate P simple instead
of RceurRte.

In asymptotic regions, e.g. lxl»1 for a potential
barrier, we define the transmission and reflection
coefficients T and R and the phase shifts p, and v

of the transmitted and reflected waves by speci-
fying the boundary conditions to be that, for x-~,
the wave function shall be a transmitted wave
traveling to the right (see Fig. 1):

y(x} ~ T"2 exp(i fl}exp{+if 'kdx), (Ta)~+ f)o xa

where x, is the right-hand turning point. For
x- -~, )l consists of an incoming (from -~) wave
of coefficient I and a reflected, outgoing wave
(Fig. 1):

g(x) ~ exp(+i f'kdx)
~ ~elf)o 1

+It"'exp(-i v}exp(-i f '0 dx), (7b)

where x, is the left-hand turning point.
We shall focus our attention on finding expres-

sions for Ty g, P, y Rnd v ln terms of E Rnd the
potential V(x) for scattering problems and quan-
tization rules for potential wells. In Secs. II-IV
we deal with problems with one and two turning
points.

Unless otherwise stated, all special functions we
use are given in the notation of Abramowitz and
Stegun (AS)."

II. ONE TURNING POINT

By one turning yoint w'e mean that, for each
value of E, there is at most one value of x, called
the turning point and denoted by x, , for which
k'=(2)21/k2)[E-V(xf)]=0. Above some E there
may be no turning point. Hence V(x) and k'{x) are
monotonic functions of x. For definiteness we
suppose that V(x) is monotonic decreasing, hence
k' monotonic increasing, for x increasing. The
region of the x axis x-x„where u'-0, is the
nonclassical region; the region x«x, , where
k'«0, is the classical region. The corresponding
regions of the z axis are z «z, , K2«0, the non-
classical region and z «z, , K'«0, the classical
region.

We define

SNc(x) = f.", lkl dx= f:, IKl dz-o

in the nonelassieal region and

Scl, (x) = f kdx= j Kdz~0
x,

in the classical region. In both regions,

S'(x) = S(x}= lk(x}l =z' lK(z)l-o.dx

We seek an approximate solution to the Schro-
dinger equation which has the form of an incoming
wave (from x =+ ~, hence traveling to the left)
with coefficient unity and a reflected outgoing wave
with coefficients"'e '" for x»1. Hence we seek
a P such that

y(X) ~ e fSCI (2) +ft112@ f P &+iSCI (2)

Here 8 is the reflection coefficient and v is the
phase shift of the reflected wave.

P(x) must also satisfy appropriate boundary
conditions at the left end of its domain of defini-
tion. If V(x) is bounded, we demand that for
&&~ma. ,

y(x) ~ Tl/2 sf)f e-f scl {x)

where T is the transmission coefficient and p. is
the phase shift of the transmitted wave. If V(x)
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-~ as x- —~, we demand that g be zero at minus
infinity, P{-~}=0.If V(x) is infinite at some
finite x, say at x =0, we demand that $(0}V(0) be
finite; hence g(0) =0 (and goes fast enough to zero).

Vfe will discuss three types of potentials: cases
(A), (8), and (C). For case (A),

(A) V(+~) = w~, -~(x (+~.
Vfe assume that the energy scale has been adjusted
so that V(0}=0. Note that -~(E(~. We then
choose

(A) K'(z) =z+z/p.

Thus -~(z (~, K2(+~) =02(+~) =+~, and z, =-Pz.
[We use the symbols E and V for energy multiplied
by 2m/g'; they are therefore of dimension
(length) ', so that P is a positive constant of di-
mension (length)". ] For case (8),

(8) V(O)=+, V(-)=O, O«x-+ .
Here E&0. %e then choose two examples for E':

{Bl) IP(»)=z-s2/»2,

(82) EP(z)=z-2g/z.

Thus in both cases 0(z (~, K2(~) =JP(~) =E, and
», =g/E"2 for (81) and», =2a/E for (82). [Again,
a is a positive constant, dimensionless for (Bl)
and of dimension (length} ' for (82).] For case
(C),

(c) IV(+ )I(™,— -«+-.
Vfe assume the energy scale has been adjusted so
that V(-~) =-V(+~) =Vo. We have E~-Vo and we
choose

(C) K'(z) =E+V, tarn( /p).

Thus - o (» (~, K2 (+~}=@2(+~)=E + V, and
z, = -P tanh '(E/Vo). (P is a Positive constant of
dimension length. )

Case {A) is the Langer approximation'2; {Bl)is
the case treated by Hecht and Mayer' and is the
same as the radial wave equation for three-di-
mensional scattering by a constant (here zero)
potential. Case (82) yields the l =0 radial wave
equation for three-dimensional scattering by a
repulsive Coulomb potential. The reason we give
two examples for the type (8}is the boundary
condition at x =0. Precisely how fast V(x} ap-
proaches infinity as x approaches zero matters;
hence it matters how well we tailor the trans-
formed K'(») to the original I12(x). As we shall
see, the phase shift v differs considerably de-
pending on the power with which EP(z) diverges at
zero. Case (C) is a smooth "step" potential,
rising from -V, to V, as a particle strikes it from
the right. All four potentials and K'(z) are

/0

FIG. 2. V(s) andE (z) for the one-turning-point prob-
Iems, (a) V(x), (b)E (z). (A)X2(z)=E+z/P, (BQ'X (z)
=E —a2/z 2, (82) E2( z ) =E —2u/z, and (C) E~(z) =E +Vo
tanh (z/P ) .

graphed in Fig. 2.
In each case we follow the same format. First,

S(x) and (»') "' and their asymptotic behavior are
given. Then the solution $(x}with the proper
asymptotic form and/or boundary condition is
presented and hence expressions for R and v (and
T, l1) are obtained. Most, if not all, detailed cal-
culations are omitted; reference is made to the
appropriate sections in AS.

For case (A), where K'(z) =E+»/P,

Z — pz oo~(z (aof

S (x)= P(z-/P) ',
s- (.) = =*,plE+»!pl "',
(z I)-1 2 (St)-1 2 Iz +z/Pl 1 4

u(») =Ai(- ,'P(E+»/P)"'). -
See AS, Sec. 10.4, p. 446ff, for the Airy functions.
The other Airy function Bi, being singular at-, does not satisfy the boundary conditions.

Hence P(«) goes exponentially to zero as x- -~
(remember Swc &0):

y(x) ~ {Q+P113st)-i/2esNc(31

As x-+~, $(x) goes asymptotically as

y(x) (wp" 3S')-"2sin[s(x)+-,'z].
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Hence

R =1y v=gg.1 (18)

[We have used sin(S+p}=~2' e /e(e 12+e
xe"2); hence v=}/-2$. Here p=4}/; so v= —,'}/.]

For case (Bl), where IP(z) =E-a'/z',

z, =a/PE, 0&E

(gl) 1/2 (Sl) 1/2
~
E 2a/z~ 1/4

(S/ ) 1/2 El/4
g ~+oo

~ (S„'c) "'(2a/z)"',

v(z) =Z, (a/WE, z&S). (21)

2 Z/2

Sa. (x}=(sa'-a'}"'-asin '(1- Ez~

zvE --,'az,

a+(a'-Ez')"'
SNc (x) = (a2 -Ez')"'+a ln

zvE

a ln(e zE"'/a),
x ~0

(g /) 1/2 (S/) 1/2(E a2/z2)1/4 ~ (S/ ) 1/2 El/4
x ~+~

(SNc ) "'(a/z)"',

(19)

g(g} ~ (2/z)"2cos[S(g) --,'w —(t}],

1/(z) =E"'z"'&,(z&E),

where p =+(a'+-,')"'. See AS, Chap. 9, Eqs. 9.1.7
and 9.2.1, for the Bessel function 4z. The other
Bessel function Y~ is irregular at z =0 and is
therefore discarded.

Thus $(0) =0 and

See AS, Chap. 14, Eqs. 14.1.3-V, Sec. 14.5, for
the Coulomb wave functions E, and t",. The latter
is irregular at z =0; hence it is discarded.

Then g(0) =0 and

P(z} ~ sin[S(g)+Q —(a /}}E)ln(a/e&E)],

where

P=argI'(1+ia/vE)

Hence

8=1,
(22)

v =z —2 argI'(1 + i a/WE) + (2a/VE ) ln(a/e&E)

v is plotted as a function of E in Fig. 3(a).
For case (C), where Z (z) = E+V2tanh(z /p), there

are two distinct energy intervals to consider. They
are E/V, = agreat—er than and less than one. For
a &1, there are no turning points and in addition to
an incoming and outgoing wave for large positive
z, there must also be an outgoing scattered wave

where

y =-'}/(p —a}=-2'z[(a'+-4')"2 - a] .

Hence I0 &0

(20)
v =-,'z +2(t}=-'}/[1+(a'+-,'}"'—a].

Note that, as in (A), v is independent of the energy
E. This is expected in both cases, since in (A) a
change in E is just a translation of the z axis, and
in (Bl) we have the V(g) =-0 radial wave equation;
so in neither case do we expect v or R to depend
on E.

For case (B2), where EP =E -2a/z,

z/ =2a/E, 0 ~E
al2

Scl.(g) =[z(Ez —2a)]"' —~ tanh ' 1—
HE Ez

—./2. ~ i. (, ', ),

(b)

2.

Ssc(z) =[z(2a -Ez)]'"
Exl2 .2. -sz "',

a

FIG. 3. v(g) forK~(z) =E —2a/z. (b} v(E) and gg) for
& (z) =&+Vo tanh(z/p). Note that p is defined only for
a =E/Vo 1, i.e., only for suprabarrier energies.
(c) T and 8 forK (z) =E+Votanh(z/P). For 0. =E/Vo&1,
only R is defined and is identically 1.
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for large negative x. It is convenient to set
P2V, =1, which is just a choice of the scale of z.

First, for a&1,

z, = -P tanh 'ay -Vo ~E ~ Vo

a +tanhyS ( )=( +t)"'tant '( Q+1
112

—(1 —n)'"tan '( 1-~
z(E+V,)"'+y,

1/2
1 (n)=-(1-n) "tao'( e-1

a +tanhy
+ (1 + ~ jl 2 tan-1

z (V, —E)"' ——,
' (1 —n)"' in[2 (1 —a}]

g ~moo

1~2

+(1 +a)hl'tan '
1+@

Here y =z/P =zvV, and

1+~ 1"
(t) =-,'(a+1)"'In[2(1 + a)l —(1 —o.)"'tan '

Further,

(z')-"'=(S')-"' ~E+V, tanhy("'

(24)

where

(S') ' iE+V i' -1

v(z) =t" """'(1 —t) '"'~" ' 'E(a hac; t}, (25)

where t = z(1 +tanhy}, a =, (I —o)' '--,'i(1 +a)' *,
b =I+a, c =1+(1—(z)"', and E is the hypergeomet-
ric function (AS, Chap. 15, Eqs. 15.3.6, particularly
Sec. 15.5). The other linearly independent solution
is discarded since it is irregular at z = -~(t =0).

Thus p(z}-0 exponentially for z- -~, and

e(x} ~ Ae'z(*) 'e+c.c.,

I'(1 + (1 —a)"') I'(i (1 +e)"')
I(1 +-,'(I —(z)"'+-', i(I +o[)"')Oz(1 —(z)"'+hi(l +(x)' ') (26)

Hence

E =1, v =2$ —2argA. (27}

[y(E) is plotted in Fig. 3(b). Using various identities involving I' functions (AS, p. 256), we write argA as
112

argA =argr(I + i(I +a)"'}-2 argI'(-,'(1 —c[)"'+-,'i (I + a)"')——tan '

(I +a)"', (I +a)"', , 1 + a

This form is handy for computation, since the two series cancel each other termwise almost exactly for
even moderate n.

For c(&1 there are no turning points. We arbitrarily (and conveniently) set z, =0. Then for all z (re-
member y =z/P =zh(V, )

e+tanh 1/2-
S(z) =(~+I)'" taw-'

n+1 a+1

—( —1)'' h '( ) th ()'
z (E+V,)"'—8.

g ~+00

z(E —Vo)" +8 (28)

(z')-"'=(S')-"'(E+V,tanby("' (S')-"'(E ~V,["'=I,

where

1/2
~ (n-1)" tanh ' ™ --,'1n[a(n —t))),

1I2 I 1&2 1I2

8 =(a+I)' ' tanh ' -z in[2(I+o, )] +(a-I)"' tanh ' -tanh '
9+1 &+1 Q

n =(..1)" ~~- (™-,') ~~- (,)

(29)
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and

v(z) t(i/mxa 1) (1 t) (llswc+I) tl

x E(a+I -c, b+1 —c, 2-c; t). (30)

an outgoing wave.
Then, from (28)-(30),

~(x) e~e -~s

a, b, and c are as given immediately after (25).
The v(z} in (25) is still a solution, but one which
is an incoming wave for large negative x instead of where

e" + +'+Be «s+e+
g ~+oo

I'(1 i(-a —1)"*}I'(i (a +1)"')
Nl+ 2 t[(a+I) ' -(a —1}' ]') F(si[(a+I) 's —(a —1)~'s])

8= I'(I -i(a -1})N-i(a+I)"')
Nl - -,' t[(a +I)"'+(a -1)"'])r(--,' t[(a+1)"'+(a -1)"']) ' (31)

Hence

1 sinh[w(a+1)' s]sinh[w(a-I)' ']
~B~' sinh'(-,' w[(a+I)"*+(a —I)"' ]}

(a+I )"'

A ' sinh'[-,'w[(a +1)' '- (a —1)"'lj
B sinh'(2w[(a+I)"'+(a —I)"*]] '

p, =9 +e —argB,

v =-28, +argB-argA.

For computational purposes we can write

(a+1F"—(a -11"
)2a=I n

o.+1, e

(32)

(33} S,(x) = f kdx =f '
Kdz ~0

in the classical region x, &x,

S (x) = f" kdx =f K dz &0
Xg

in the classical region x &x„and

(34)

(35)

\-o-iSge

V(x) B, x, &x x,
&E, x&x, or x, &x.

Hence between the turning points k'(x) is negative;
we are in the nonclassical region. Outside the
turning points, k'(x} is positive; we are in the
classical region. The turning points in z are
z, =z(x, ), i =1,2. K' is negative in the nonclassi-
cal region between zy and z, and positive in the
classical region outside them (Fig. 4).

We define

~ga=g tan-'(~''~ ),t (~' '~
)

(a +1)"'+(a —1)"'
-2tan '

2n

iSe
ip+i$:JVe

"o

p(E) and v(E) are plotted in Fig. 3(b); T(E) and R(E}
in Fig. 3(c}.

Note that the equations T+R =1 and p, +v=-,'m,
which hold in general if V(-~) = V(+~), do not hold
here. [See the discussion following (38}.]

III. TWO TURNING POINTS: BARRIERS

By two turning points we mean that for all ener-
gies E there are at most two values of x, called
turning points and denoted by x, and x„with
x, &x„ for which k'(x) =0. In fact, for energy be-
low the top of the barrier there are precisely two
turning points; for energy above the top, none; and
for energy at the top, one. Thus V(x) is such that

E-V

( t3)

FIG. 4. V(x) and K2(z) for two turning-point (barrier)
problems. (a) V(x) and the asymptotic forms for |Ii(x).
(b) K (z). (A) N(z)=&+z /P, g3) K (z)=E-Vosech (z/P).
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S'(x) = S(x)= lk(x)l =z'IK(z)l -0.d
dx

(37)

Swc(x) = f„' Ikldx= f' IKI« ~0 (36)

in the nonclassical region x, &x&x,. For all x,

f*'lkl «=w(E) = f,"IKI «
for E below the top of the barrier [E& 0 for (A)
and E&V, for (B)] and

I f, kdxl=-w(E)=I J,, Kdzl

(41)

(42}

(A) V(goo) — oo, eo&x & ieo

We assume that the energy scale and x axis have
been adjusted so that V(0}=V =0. Thus -~ &E
&+~ and we choose

(A} K'(z) =E+z'/P'. (39)

Thus —~ &z &~, K'(s~ }= k'(+~) = +~, and

z, = -Pv -E, z, =+P~E. P is a positive constant
of dimensions (length)". This is the Miller and
Good approximation2 in a slightly different form.
For case (B),

(B) V(+a&) -V( a) )(&) &) &x & pe)

We adjust the energy scale and x axis so that
V(-~)=V(+~)=0 and V(0)=VI =Vo. Thus 0&E
and we choose

(B) IP(z}=E —V, sech'(z/P). (40)

Thus -~ &z &~, K~(a~ }= km(a~) = E and z,
=-P sech '(E/V, )'"=-P cosh '(V,/E)' ', z,
=p sech '(E/Vo)"'=p cosh '(Vo/E)"'. p is a posi-
tive constant of dimension length.

In both (A) and (B) there is an as yet undeter-
mined parameter P. It is determined, in terms of
E and V(x), by the requirement that

As customary, we seek a wave function (j) which
has the asymptotic form of an incoming (from the
left) wave of amplitude unity and a scattered wave:

e" +It"'e '"e " ~ g(x) ~ r"'e'"e".
(38}

T and 8 are the transmission and reflection co-
efficients; p and v, the phase shifts of the trans-
mitted and reflected waves. In general, T +8 =1
and p, +v =~a. This follows from properties of the
Wronskian of the solutions of the Schrodinger
equation. " The condition T+8 =I is conservation
of flux and holds only if k(-~ }equals k(+~},
otherwise the condition is E +[k(+~)/k(-~)] T =l.

We will consider only two types of barrier here.
The first [case (A)] is one for which V(a~) =-~;
for the second [case (B)], V(+~) =V(-~)&~. For
case (A)

for E above the top of the barrier. I'(I") is a
straight-line contour between the complex zeros
of k(x) [K(z)] closest to the real axis." Thus

(A) w(E) =-.zplEI,

(B) w(E)=zpl~v, -wz I.

For case (A),

(A) K'(z) =E+z'/P',

and for E &0,

(43)

where

4 =argr(-,' --,'ipE) =argr(-,'+~ W/z)

Also

(46)

z, =+

P' 2 (2P)"'

PE PE z PE 4ez2
4 2 „+ 2p 4 pE

(e -*+(*'~()' ))(2p)"'

pE pE -z' pE 4ez'
4 2, „2P 4 PE

(44)
The solutions to (2), v" +(E+z'/P'}v =0, are the
parabolic cylinder functions E(IPE/2I, z(2/P)"')
and E*(IPE/2I, z(2/P)"') (AS, Chap. 19, Sec.
19.6-19.23). E has the proper asymptotic form,
E* does not; hence we discard E*. Then

&o/o)"')'"
v(z) ~

X ~+'e ( z

mo/)))'")"'
z

g ~+oo

PE PE (t} n'

xexp i S++ ln + +—
4 2e 2 4

e(e) e( ) I((+e ' )"'exe '(& +
&

(e)*I(—) ++& ~ —
)
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2(&IMP"

)
"'

(1+e ) exp i S — ln1f Be 1/g ~ pE pE4'
,

2e 2 4

PE PE $ n'-e ' 'exp-i S — ln
4 2e, 2 4 (47)

Hence, since z'-1 for ~x~ large, we see from
(88), (45), and (47) that

Z' = (1 + e ~ z) = (1 y e v) '

E =(1+e'~z} ' =(1+e 'v} '
PE PE W W W

ln +/= P-—ln —+ —,
2e 7T, 1f 7f

(48)

functions of W in Figs. 5 and 6.
For case (8),

(8) K'(z) =E —V, sech'(z/P)

We set a =(E/Vo)" Th. en for 0~a ~+1,

z, =-P sech 'n, z, =g sech 'a.
Thus

(50}

(49}

v PE PE v W W W
v = —— ln —Q = ——P+ —ln—

2 2 2e 2 m n' n'

S,=p(E)""tanh-'t —p(V,)"'tanh-'(at}

~ zvETP, .
(51)

We have thus

T+R =1,
1

P, + v = g1T.

where

a' sec—h'(z/P)
o.' tanh'(z/P) (52)

Note that T, R, p. , v are given entirely in terms
of W = J„"2~k~dx, i.e., entirely in terms of E and

Vg}. The parameter P does not enter the solution
at all except as a scaling factor for distance.

For E&0, we pick z, =0. Then (44)-(49) are
correct for E&0 also. The solution III is the same
and so are all formulas for T, E, g, v (with W

replaced by -W). These quantities are plotted as

.5"

1 —a
fl (E)"=l-',n (', P(V )"'+tanh'u, (53)

(54)

and S, (S ) takes the positive (negative} branch of
the square root defining t.

The solutions of (2} are hypergeometric func-
tions (AS, Chap. 15):

v, =[s'ech(z/P)]" "E(a, 5, —,'; tanhz(z/P)}, even

v, = tanh(z/P }[sech(z/P)] "~

xE(c —a, c —5, —,'; tanh'(z/p)), odd

7f 1 ~

(b)
(b)

3

(a}

«3 -2 o 2 3
(a)

FIG. 5. Transmitted phase shift p(E). (a) K2(z) =E
+z2/p . Here W=gnpE. (b) K {z)=E -Vosech (z/p). Here
= (E/Vo) ~ Note that in both cases p(0) =0 and p, +v=~2

FIG. 6. Transmission coefficient TQ). (a) K2(z) =E
+z /p . Again W=m+pE. (b) K (z) =E -V()sech (z/p).
Again 0. = (E'/V(})~/2. In both cases the reflection coeffi-
cient is given by R =1—T.
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where Since z'-1 for ~x~-~, using AS, Eq. 15.3.6, we

have

r =$ ip~&

a =y+~ +~(l -4P$VD)~

b =r +k -k{I 4-P'V$)"',

c =2y+1.

(ss}

P, (z) ~ A [cosh(z/P)] '$~~+c.c.,
g ~goo

P, (z} ~ +B[cosh(z/P)] '$~~+c.c.,

where c.c. stands for complex conjugate and

(s6)

r(-,') r(-ip~E)=
r(-,' - ,'iP&E-- ,'(1 -4—P'v)'"}I'(-,' - ,'i PVE+--,'(I -4P$v, )~ $} '

r(-,'}r(-ip~E}
r(—'- 'ipvE-+ ,'(1 -4—p'v)'")r(-'-,'ip&E--'(1-4p-zv)"$) (s7}

Hence, using cosh{z/P)- ze"/ as ~z~-~, we have

y, (z) A2' z e"~~+cc. a' -1E&/z ln -'PV&/$ ln (62)

A 2 js~~ e"."&'~'+c.c.,

(z} + {B2i 8ZE e 7 sEE +c c }
(58}

~ ~ (B2&$+8 e7 4($~ &e) ~c c )

we find that

s =2-~-«/z(I/A) e'e,

b = -aA/B.

Thus

Taking the linear combination aP, +b/I/$ = g such
that

el $ y R1/$ e- I v e-f $ ~ y ~ T 1/2 el $ ei$
t

cosh 27r 3
s inh'(v a)
sinh'(z a)

cosh$(-,'w~
~

~ ~

i/ =-,'v +24 +2 argr(ia) —argI'(-,'+ i(a+-,'W3))

(60'}

For a'& I, this of course is the same as (53}.
Then all the other formulas (51)-(61)hold, and

T, R, p, v are given still by (60}and (61}, with

(62) for P. T, R, p, and v are plotted in Figs. 5

and 6.
We see that here the parameter P is still evident

in the final formulas. P appears really only as a
scaling factor for s. It is convenient to set
p'V, =1 (this choice has the proper dimensions).
Then {P'V,——,')"' is replaced by (&)"$ and P&E by
a =(E/Vo) $ Thus.

n4
mj y- jaas«2 h 2

2 A B

R e = ——+ e«2 -j & 2j $- j2Sg I h12

2 A 8

(59)
—argr(-,'+ i(a --,'&8)},

V=g1f -Pq1

where

(61')

V=pK P.1 (61)

For a*&1, we set z, =0. Then (51) still holds if
we replace P by

and, using the I'-function formulas (AS, p.256},

1 A* B ' cosh'[v{P'V --')"']
4 A B sinh'(zP~@)

1 A* B* '
1

sinh$(vP&E)

(60)

p, =-$'z +2/+2 argr(ip~E)

- argr(-,'+i [PW+ {P$V,--,')"'])
—argr( —,'+i [PW- {P$V0-—,')"']),

a2-1, 1+a '

p=zaln, +—,
' lna 1-a

i

(62')

This choice of P~VO =1 has been made in Fig. 5.

IV. TWO TURNING POINTS: DWELLS

The situation here is precisely the opposite of
that for potential barriers. Here k'(x) and IP(z)
are positive in the classical region beheeen the
turning points x, and x, (z, and z, ) and negative
in the nonclassical regions outside the turning
points (Fig. 7). Except in one case, we consider
the bound-state spectrum only.

We consider the following types of potentials.
For case (A), -~ &z«, V(a~)=+~. We as-

sume that the energy scale and x axis have been
adjusted so that V(0) =V ~=0. Thus E~O and we
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situation.
For case (D), 0&x&~, V(x}-+x ' as x-0,

V(x) has a minimum at some positive x, but V(x)
goes to zero more rapidly at plus infinity than
the Coulomb potential. In fact, we shall choose
a IP(z}which goes exponentially rapidly to zero.
Again, we assume V(~) =0 and choose a variant
of the Eckart potential, '9' '

-c/8 y -g jg
(D) K'(z) =E+ (66)

I/~ ~X&

ego
I

F/Q. 7. p(x) ~&K (g) for two-turning point (well)

problems. (a) V(x). (b) K (g). (A) K (s) =E'-g /P .
(B) Km(z) = E+ Vo sech(z/p), (C) K~(z) =E+ e2/z

l(l + 1)/z-2. (D) K~(z) = E+ Asxp(-z/P) [1—sxp(-z/P)[
—b sxp(-z/p) [1- xps(-z/())]

choose

(A) K'(z) =E -z'/P'. (63)

Thus -~ &z &+~, IP(+~) =-~, and z, =-PRE,
z, =+PVE. P is a positive constant of dimension
(length)". This is again the Miller and Good
approximation. '

For case (B), -~ &x&~, ~V. ~&V(+~) =V(-~)
&. We adjust the energy scale and x axis so
that V(a~) =0 and V(0) = Vm~ ——-Vo. Then E & -Vo
and we choose

(B) IP(z) =E+V sech'(z /P). (64)

(C) IP(z) =E+e'/z —l(l+1)/z*. (65)

Thus 0&z&~, K'(0)-z ', IP(~)=E, and z,
= (-e /2E) - [(e'/2E) - l( l +1)/E] "', z, = (-e'/2E)
+[(e/2E) -l(l+1}/E]~' for E &0. For E &0 there
is only one turning point; we will not discuss this

Thus -«z «, K'(+~) =k'(+~) =E, IP(0) =k'(0)
=E+Vo, and z, =-t) sech '(~E[/V, ), z,
=P sech '([E~/Vo) for E&0; for E&0 there are no

turning points.
For case (C), 0&x«, V(x)-+x ' as x-0,

V(x) - -x ' as x- ~ and V(x) has a minimum for
some positive x. Thus, V(x) is supposed to have
the long-range behavior of the Coulomb potential
and the short-range behavior of the centrifugal
x ' barrier. We again assume that V(~) =0 and
hence choose precisely the radial effective attrac-
tive Coulomb potential:

A. and b are positive constants of dimension
(length) ', a & b [this ensures that K'(z) has a
local maximum for x &0], and P is a positive con-
stant of dimension (length}". Thus 0&z &~,
K'(~) =k'(~) =E, and

X -b-2E+[(1.—b) +4Eb)i 2

2(X -E)
x —b -2E-[(k —b)' 4811"+')

2(1 -E)
for E&0. If E&0, there is only one turning point;
we again will not discuss this situation.

The essential difference between (A) and (B) and
between (C) and (D) is that (A) and (C) have an
infinite number of bound states, while (B) and (D)
have a finite number of bound states. For (C} and

(D), it is known that for attractive potentials which
behave at the origin like the centrifugal barrier,
x ', then the energy spectrum for E &0 consists
of a finite number of discrete levels if V(x} falls
off at least as fast as x ~ for large x and an infi-
nite number of discrete states (bounded from be-
low} if it falls off slower. "'" We illustrate this
with x ' (C) and e * (D).

The boundary conditions we put on P(x) are
$(a~}=0 for types (A) and (B}and $(0) =P(+~) =0
for types (C} and (D) for negative energies.

Just as for potential barriers we fixed the
"extra" parameters in IP(z) in terms of E and
V(x) by integrating k(x) and K(z}between their
turning points, we here must demand

e(E; V}=f mkdx= f ~Kdl (67)
«1 «y

4 is the integral over the classical region (for
two turning points} and is hence the classical
action of the well, divided by 2S. We therefore
expect quantization conditions similar to the Bohr-
Sommerfeld rule 4 = (s+-2)x.

The precise definitions of the quantity S(x) dif-
fers somewhat from type to type here; so they will
be given in each case separately.

For case (A),

(A) IP(z) =E —z'/l)'.

Here we have two turning points for all E & 0; so
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we define

S, = Ad@= K dz
gm 4g

zz 1./z PE z +( z PIE)1/I
P* 2 PE

and

pE 2lzl pES'z), ~2 +2 ln ~ +4
The dimensionless action 4 is given by

4(E)=f z kdz= f &Kdz
1 Cg

(70)

S = hach= K dz
~x C~

z z' "' PE -z ~ (o' O'Ej'-')
pz

= ——2-8 + ln
2 PvE

(69)—(S')-"*(lzl/P)"',

/68}

for x&x, and x&s„respectively. Also, for all x,

(z') "z=(S') "'Izz/P' —E

= f', '(E-z'/p*)"'dz= ,'zpE-. (71)

e(.) = (z')-"'U(--.'PE, z(2/P)"*).

We have

(72)

The solutions to v'(z) + (E -z'/p') v =0 are the
parabolic cylinder functions (AS, Sec. 19.2-19.10)
U( 'PE-, z(2/P)"')»d V( 2P-E, z(2/P)"')
these, V is singular at ~; so the solutions are

,, „. Izl
"' l (k+ .'PE)"-"*p[ !z(z-'/p* E)"-*]+!PE»[z(2/p}'"]

- (S')-"*(!Izlp}'"(»)-'"("-P*E)-"'[1(-'-lpE)]'"exp[-S, +~E»(!PE)l
~ ~+os

= 0, (73)

0(&) (S') "*(-.'I lzp}'"( 'zO' )E-"'[&('+-' P-E)]"'( 2)z"'

zPE PE PE exp[S +QE ln(-,'PE)]
4 4 F(z(1+PE))~4(1-PE))-' (74)

Now, the last term in (74) blows up at minus in-
finity unless its coefficient is zero, i.e., unless

1
r(-,' —yE)

hence z -QE=-n, n+0, 1, 2, .. . . The quantiza-
tion condition is thus

and for all x

(z } 1/2 (S/) 1/z [E+ V sech2(z/P)] 1/4

4 is givenby

4(E, V, p}=f '&[E+V sech'(z/p}]"'dz
EX

(78)

=pz (~VO —~IEI ). (79)

The solutions to v'+[E+V, sech'(z/p)]v =0 are

v, (z) =[cosh(z/p)] "E(a, b, —,'; tanh'(z/p)), even
y(z) (S/) I/zlE zz/PRI1/42-sjhs-8 /Rsff (z/~P)

/I/(E) =-,'PzE = (n+ (75}

precisely the Bohr-Sommerfeld rule, and for ,'PE—
a half-integer, U is just a Hermite polynomial; so

For case (B),

(B) IP(z) =E+V, sech'(z/P).

(76)
and

v, (z) = tanh(z/P) [cosh(z/P)]

(80)

xF(c-a, c-b, z; tanh*(z/p)), odd

We discuss E ~0 and E~0 separately. First, for
E&0, there are two turning points, and similarly
to (A), we have (a=E/V, )

s (z}=plEI'" tanh 'lt
I
+pv"*tanh '(It I

lal"')
z&E (77)

where

a =-,'pv'IEI,

a =o+4+z'(1+4PzVO)"',

b = o+-,' ——,'(1 +4P'V, )"',
Q =20'+I

(81)
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E(a, b, c; z) is the hypergeometric function (AS,
Chap. 15). For large z,

v, ~ A [cosh(z/P}] "+B[cosh(z/P}]*'

]Ig

0E+V

22a &wHs1+B 2 ~a &&

and (s2)

v, ~ +C[c osh( z/P)] *'+D[ cosh(z/P)]"'
x ~/co

C 22 a +v &BI +g) 2-2o e a IEI

x~ geo

where

P=llZ"'ln( ) +tiV "s'i,n '( ' ). (SV)

Then the same solutions hold for E &0 as for E &0,
with a= ,'PgE-~ replaced by a=-s'lPvE. Thus

$,(z) ~ A 2' z e"s& "e+c.c.,
where

r(-,'}r(-,' —a —b)
r(-,'-a) r(-,'-b) '

r(-,'}r(a+b ——.')
r( ) r(b}

r(s}I'(s -2c+a+b)
r(-', +b-c)r(-,'+a —c) '

(83}

y, (z) ~ C2'size" ~s" e+cc
(88)

obtaining

P=p7f -V1

Vfe take the linear combination of these two which
has the asymptotic properties

ebs +R"*e-& u e-ss ~ ~ ~ T missis e&s~

r(-', ) r(2c--', -a -b)
r(c —b) r(c —a)

Hence v, remains finite at ~~ only if B =0, hence
only if a or 5 is a negative integer. Since a is
positive, we have that

b= 2p~E) -,+'--—,'(1+4p'V }c" =s- ,nn=O, 1, 2, . . .

=-,'z —2$+tan '{tan[-,'z(1 +4P'V, )"*]tash(zfE}j

+2 arg[r(iPvE) I(—'+-,'(I +4PsVc}' —iPKE}],

1 A C ' cos'(sz(1 +4P'V,)"'}
4 Ae C* sinh'(zP~)

1 A CR=1-T=
4 ~ +

4 =Ps(/V, —QEO=Pzv'V, -2za =(2n+p}z, (84)

where
sinh'(zPV'E)

coss(s'z(1 +4P'Vc)"'} (ss)

p = s +P KVO —s (1 +4/ Vo)
' .

Similarly, v, remains finite only if D =0; hence

T and p, are plotted in Fig. 8 as functions of E.
Note that as a function of P'V„T(R) has a maxi-

4 = (2n+1+p)w.

Hence, in general,

4 =(m+p)z,

(s5)

4=(m+p)z, m=O, 1, . . . , l.
p =[l(l +1}]"'—l .

For E&0, we choose z, =0; hence

(88)

1IQ

8,= Kdz =PE"' sinh ' sinh-
E+Vo P-

and the parity of g(z) is (-1} .
There are a finite number of bound states, since

a &0 implies

m -—'(1 +4PsV }"s —-'.

If we set P'V, =l(l+1), this is

m&l;

so
-8"

FIG. 8. Transmission coefficient T and tmLnsmitted
phase shifty for suprawell energies forX~{a)=E -Vo
xsech~(ajar), u =E/VO~0. We have taken P Vo-—&. The
transmission coefficient R is given by R = 1—T and the
reflected phase shift ii = Q —~
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mum (minimum) for P'Vs = l(1 +1), l any integer.
Thus, for those wells such that 4(z =0, P'Vs

=l(l+1)) =I/[L(L+1)]"'=I/pvVs, we find T =1 and

8 =0, i.e., no reflection occurs. In this case,
p=sII -2$ sI/ as E o. Also T exhlbi'ts a IIlilll-
mum for p'V, =(l+-,')(l --,'): T(E) =tanh'(vpIE),
Z = sech'(I/PIE}. That is, T{IL}has a minimum

(maximum) for wells such that 4 (E =0,P*V, = P ——,')
=I/(P --')"'

For case (C),

(C) E'(z) =E+e'/z - l(l+1)/z'.

For E&0, there are two turning points. %e have

e'/2Z+z+{-X/E}" [l(l, l)] ., 2L(l+1)-e'z+2[L(L+1)X]"* z

2$Z~ [e'/4Z'- l(l+1)/E]"' 2L(l+1}—e z,

z zi,

X = -Ez - e z + l(l +1},

S ~gdx gX
e

ln
e/ z ( / ) [l 1+1 ]I/sl ( + ) e z+ [l(1+1)X]

2$Z~
" [e/2Z' L{L-+1)/ZJ"

' "
2L{L+1)-e;,

~ [l(l+1)]"slnz,

and

(z') I/s =(S/) I/s fA'(z)(I/I

(S/)-I s ~L(L+1)/zs~I 4

can be written in closed form. " However, we
only need the facts that

S, z~[z[,

(z/) I/O {93)

e=f"~z~d. =j'."[z.-" L{L.I-)] "d.
=v(es/2$Z~ —[l(l+1)]"'] . (90)

The solutions to v" +K'(z)v =0 which are regular
at the origin are" (AS, Eq. 22.6.17)

( )=(2 &El)'" '"L, (2 Rzl),

c =IIP [(~-z)"'- ized"'- b"'].
The solutions for v'+E'v =0 which are regular

at z =0 are" " (AS, Chap. 15)

v(z}=e " (1 -e ' ) F(a b, 2p 1-e ' s)

(94)

where L is the (generalized) Laguerre function and
v =e /2QE~ is a positive integer. Hence the quan-
tization rule is, using v =g +1+1 where 0 ~n is the
radial quantum number and 1 & v the principal
quantum number,

4(z) =(n+1+L —[L(L+1)]"'jn, 0 ~ n, O~L. (92)

where

o =phiz~,

p =i+-'(1 +4P'b)"',

a =o+p+P (X -E)I/',

b =o+p-p(X-E)"s.

(95)

Note that (92) does not have the l degeneracy of the
Coulomb problem [since l —[l(l+1)]"'is never
precisely an integer except for l =0] . This de-
generacy has been removed because V(x) is simi-
lar but not identical to the Coulomb potential.

For case (D),

g~-«/8 y
-«/8

{D) IP(z)=z+, /s —
(

For E&0, we have

S,=f '
I Ilf«and S=f '

I Zl «.
These are rather complicated integrals, which

P(x) =(z') "'v(z)
e "/ +Be"/ =Ae s'+Be s (95)-.

Here
r(2p) r(-2.)

I'(b —2o) I'(a —2o}
'

r(2p) r(2o)
r(a}r{b)

(97)

and P remains finite at plus infinity only if B=0,
hence only if a or 5 is a negative integer. Since
0 is positlvey this means
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b =o+p —P(X -R)"'
=-,'+-'(1+4p'b)' '+pgE~ p—(z Z—)"'= s— .

Hence

C (Z) =zp [(~ -Z)"'-A-QZi]
= w[n+ z +—,'(1 +4P'5)"' Pv b—],

O~n~pA-2 --,'(1+4p'k)" . (98)

V. CONCLUSION

A method has been presented for obtaining the
transmission coefficient (T), reflection coeffi-
cient (R}, phase shifts (p and v), and quantization
rule for various types of potentials with one and
two turning points. To obtain T, R, p. , and v,
one need merely calculate W for the given poten-
tial, ad~ust the parameters in the relevant trans-
formed potential to make z' as constant as pos-
sible, and use the formulas given, and similarly
for quantization rules.

1'f we write P'k =l(l+1), this becomes

4 (E)=z[n+1+l -[l(1+1)]"'), 0&n &ps X —l- l.
(99)

Note that this is identical to the quantization rule
(92), K (z) the Coulomb potential. The effect of
the expotential tail instead of the x ' tail is to cut
n off at PA —l -1, making the number of bound
states finite. d (k/K) (100)

this is analogous to the usual condition for validity
of the WEB approximation,

~
k'/2k ~«1, to which

(100}reduces if K=1 and we neglect k". The con-
dition for validity thus depends both on the mapping
we use and on the original potential.
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In addition, an approximate wave function, valid
for all x, may be obtained merely by calculating
the integral S(x)= f* kCx and writing the argument
z of the transformed wave function as a function of
S(x}. The wave function is then given in terms of
known, generally tabulated functions. It is not
clear that this procedure for obtaining P(x} is much

less work than straightforward integration of the
Schrbdinger equation —it is certainly no more.

The next step in the approximation scheme is
clearly to determine when the approximation is
valid. One must take, for each potential, the
expression z(x) obtained by neglecting (z; x) in

(4) and determine that it indeed satisfies the self-
consistent requirement

(-,'(z; x) («k'(x).
Since
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