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Calculations on the 2po„'-2Pr„excitation in proton-hydrogen collisions demonstrate that
strongly coupled radial equations may be solved using simple semiclassical approximations
at the turning points. A theoretical justification of the best of these methods is based on an
extension of the large-mass high-energy approximation into the turning-point region. Other
model problems are solved to illustrate properties of this near average approximation.

I. INTRODUCTION

The discussion and calculations in this payer
are centered around the description of an atom-
atom collision as a coupled set of ordinary
Schrodinger equations in which all but one degree
of freedom (a radial separation coordinate) has
been incorporated into a state representation by
basis expansion and projection. To formulate
this is difficult if one wishes to satisfy scattering
boundary conditions exactly. ' Meaningful simpli-
fieations occur through the use of known physical
circumstances, such as large nuclear-to-eleetron-
mass ratio, high collision energy, small nuclear
velocity, avoided crossing structure, etc. These
simplifications may seem extreme, but they are
intended to be valid approximations for a given
problem. The same considerations apply to the
size and character of the electronic basis used;
even the inclusion of all open channels is pre-
cluded in atom-atom scattering at a collision
energy greater than a fraction of an atomic unit.
Convergence of close-coupling methods must
depend on the physics, so to speak, rather than
on an arbitrary number of channels in the numeri-
cal calculation.

The following points underlie the applications
of the approximations developed in this paper:
(i) the relative nuclear velocity is considerably
less than electron velocity, implying the use of
a fixed-nuclei molecular electronic basis; (ii) stat-
ic mass-polarization-type corrections are negli-
gible compared to coupling due to nuclear motion;
(iii) the total bar ycentric Schrodinger equation
is expanded in symmetric-top rotation states and
electronic fixed-nuclei states quantized on the
internuclear axis' ' with subsequent proje tion
onto the electronic basis, yielding a set of coupled
ordinary differential equations which in general
do not decouple at large separation; (iv) the
computational effort is not greatly different be-
tween the partial-wave or impact-parameter pic-

tures once suitable semiclassical approximations
are known. In a previous paper~ it was established
that two simple limiting procedures exist that pre-
dict quite 4'&ferent semiclassical approximations in
atom-atom processes; the first approximation was
a large-mass limit at fixed total energy giving an
adiabatic picture, while the other was a large-
mass limit at fixed collision velocity (high energy)
resulting in the rectilinear impact-parameter
description. The aforementioned points indicate
that a large-mass limit is relevant, but the colli-
sion energy appropriate for the present theory
may only be as high as will ensure that nuclear
velocities remain small (e.g. , E = 10, g =0.1
in a.u. ) Strong excitation (nonadiabatic, but not
necessarily diabatic) occurs in regions of near
electronic degeneracy, and large scattering de-
flections may dominate the differential cross
sections. In order to establish the notation, the
two limits~ are reviewed in the next paragraph
for the equations that arise from a molecular
expansion.

The coupled radial equations are assumed writ-
ten in a standard form of dimension NxN,

——(G" + 2DG'+ EG) ——AG
2p ~ ~ ~ ~~ 2p

O' L(1.+1)E-— 2 -W G=o,
2p

where the columns of the matrix 0 are linearly-
independent-solution vectors and the rows of 0
are coefficients of particular members of the
expansion basis of the wave function. p, is the
nucleax reduced mass, E is the barycentric ener-
gy, the prime denotes d/dR where R is the nu-
clear separation, D= -D~ is the matrix of the
operator d/dR between electronic states, E is
the matrix of d'/dR' in that basis, A = Ar repre-
sents all angular rotation coupling matrix ele-
ments, I. is the total angular momentum, and
%' is the diagonal matrix of eigenvalues of the
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fixed-nuclei electronic Hamiltonian. The dimen-
sionless semiclassical parameter n is introduced
by replacing g by p/n' in Eq. (1) and by scaling
I,(I, +1) as P'/n', P = I, + —,'. Part of the angular
coupling matrix A, A„should be sealed as A, /n
since it contains the eigenvalues of the total
angular momentum multiplied by an electronic
matrix element of an angular operator. ' ~ ' The
rest of A, A„ is not scaled. Introducing this
scaling into Eq. (1) and defining K'=2pE/g', A,

=2'/5', there results

n'(6" +2DG' + EG}+nA 6+ n'A, G

+(K' P/8-—A.)G=O. (2)

(SrS'), = — — = —" fej(s'(~'+ n~) s)

where A is diagonal, giving, up to O(n'),

n'F" +2n'(Srs'+S'T)s)E'+AF = 0.
Second, Eq. (4) may be converted to complete
potential coupling by'

G =NY, N'= -DN, N 8=1,
giving, up to O(n'),

n'Y" +Nr(z'+ nA, }NY=0.

(S)

The lowest-order solutions of Eq. (2) are the
uncoupled semiclassical solutions of

n y" +(K —P /It' —A.)}I=0 .
The second-order terms n'E and a'A, may be
dropped from Eq. (2} to give the coupling through
first order in n:

n'6" +2n'DG'+nA06+a 6=0.
The notation y' =K' -P'/It', 2 = g'1 - A. wiQ be
used for wave numbex s. The isovelocity param-
eter' a is introduced i.nto Eq. (1) by replacing p
by

gled,

E by E/e, and I,(I,+ 1) by P'/e' (nuclear
angular momentum eigenvalues scale as 1/e};
the result is, dropping second-order terms,

(4)

e'6" + 2s'DG' + eA G+ (z' —eA) G = 0 .

SOS=1,

S*(2+nA, )S =A= 2+O(n),

Part of the zero-order solutions of Eq. (5) are
the free-wave radial solutions &'X" + g'X =0, which
are the equivalent in the partial-wave picture of
rectilinear motion of the nuclei. The parametric
structure of Eq. (5) is identical to Eq. (4) except
fox the smallness parameter multiplying the diag-
onal energy matrix. It is solely this difference
in the limits e-0 and n 0 that causes Eq. (5)
to give strong coupling at zero order and Eq. (4)
to predict adiabaticity. For the rest of the paper
the & symbolism is dropped; when necessary to
develop high-energy (isovelocity semiclassical
limit) properties, z in Eq. (4) will be written
1g' —aA. , giving the identical structux e in a as
would have been seen in e from Eq. (5).

To complete the introduction and exhibit the
equations used in Sec. 7, the transformations
that may be carried out within the N-state basis
are given; first, one may convert Eq. (4) to com-
plete leading d/dR coupling" by the following
&-dependent transforms:

The relation between Eqs. (7) and (9) is clear when

one sees that Y=N~SP, identifying M~8 as the
transform that converts the diabatic form of Eq.
(9) to the derivative-coupling form of Eq. (V)

through leading order in n.
This formalism is sufficient to allow a study

of semiclassical close-coupling methods and
numerical testing on relevant problems. It should
be noted that no particula. r electronic behavior is
assumed in the diabatic representation. The elec-
tronic basis functions are the fixed-nuclei solu-
tions, and the distinction bebveen adiabatic and
diabatic will only enter through semiclassical
approximations for nuclear motion.

The remainder of the paper is arranged as
follows: Section II gives the mechanics of treating
coupled systems of equations containing a limiting
parameter. The discussion is similar to well-
known methods in the literature, and it forms the
basis for the new approximation developed for
distorted-wave theory in Sec. III and for close
coupling in Sec. IV. Additional numerical studies
are contained in Sec. V.

II. SEMICLASSICAL APPROXIMATIONS BY
REFERENCE FUNCTIONS

At high energy, g' in Eq. (9}and A in Eq. (V)
both are equal to l~'+O(n). This shows that the
largest terms in either equation are the diagonal
ones which are all equal to n'd'/dR'+ g'. lf
z'+18+0(n}, the diagonal of Eq. (7) is still the
largest part, as expressed in Eq. (8), but the
diagonal of Eq. (9) is not special. Since the pro-
cedures to be described make use of solutions to
the diagonal part of the coupled system, neither
the pure adiabatic equation (7) or the pure diabatic
equation (9) is used, but an equation with both
forms:

n'6" +2n'DG'+ (2 —nU)6 = 0 .
The reason that Eq. (10) is distinguished from
the original equation (4) is that U in Eq. (10) could
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X X'-X'x= ~&»

Thus 6 is written as

~XCl QC2 t (12)

which does not yet uniquely determine C, and C,.
The usual linear constraint relation to use in
conjunction with Eq. (12) is' "

6'= @C~+@C2,

X1Cl QC2

which necessarily must aQow a well-behaved de-
termination of C, and C,:

C, = (1/W„) (X'0 —@0'),
C, = -(I/W„) ()(,'G -gG') .

In place of Eq. (IS), one can use"

6'=@C,+y' C -DG,

glC +gC:=-DG
which affords a more symmetrical treatment of
derivative coupling. Combining Eqs. (11), (12),
and (15) with Eq. (10), one derives

C', = (I/aW„)[)(,(ae -U)()(,C, +@C,)
+ @aD(xlC. +~X'C.) —~aD()(),Ci+ XgC.)1'

(16)
~C' is the above expression with the 1 and 2

indices interchanged. The normalization choice
for X, and )( will either involve the real regular
and irregular solutions

@-K '~' is(nKtt/a ,'I, vg+) as -tt-- ~,

)(
—K '~'cos(KR/a —,'t.v+g) as tt- ~, —

W„=—1/a, «- K as g~ oo

contain diabatic potential coupling obtained from
the removal of d/dR radial motion coupling. D is
off-diagonal, and the diagonal. part of U is included
in «'. Numerical integration of Eq. (10) is difficult
for small a since the derivaties of 6, G~"~, gen-
erally behave in magnitude as a ". As in asymptot-
ic methods" where the essential singularity in a
is factored from the whole solution, 6 is written
as a linear combination of two linearly indepen-
dent diagonal solutions of the lowest-order part
of the differential equation, a'd'/dt's'+ «'. ' "
These diagonal solutions, "called reference
functions here, incorporate the leading part of
the essentially singular behavior in a. Since they
need not be exact, but are usually asymptotic ap-
proximations such as JWKB or uniform"" solu-
tions, a diagonal 8 matrix is used as a measure
of their aeeuracy":

~2@/i +Q~ ~28@

If uniform approximations are used for ~ and @,
8 is bounded for all R» and may be rigorously
dropped from Eq. (16) as a higher-order term.
%'ith suitable boundary conditions at small
tt (e.g. , C, =1, C, =0) system (16) may be numeri-
cally integrated; this semiclassical uniform ap-
proximation (SCUNF) integrates as rapidly as
expected for a system that is not in-out decoupled
anywhere. The derivatives of the dependent vari-
ables are of order 0.' " xather than 0. ". The Airy
functions were calculated by the algorithm of
Gordon' and the N quantities,

(-,'[ j~, «,(x) dx))'/'

[2(tt) i

were spline fitted for fast reference on the signif-
icant range of integration. The uniform g are
evaluated at any g as

(~)„=(«)Q„'Ai(-«„'Q„),

(g) = («)Q"' »(-«'„Q„),

()(,')„= («)q-„'«Ai'( gQ„)-,

(q,'). = -(«)Q„-"'&i'(-.'„Q„).
Integration was carried out by the Bulirseh-Stoer
method" which has some ability for "walking"
over the high-frequency structure if such amp¹
tudes are smaQ compared to the automatic error
control.

Let Eq. (16) be written in the in-out reference
function decomposition:

C', =v(1/2i)[)( (ae —U)(g,C, +)( C )

+)(„aD(j(',C, +)(' C )

—XI,aD(g,C, +X C )].
Away from the turning points T, of the reference
functions, JWKB approximations may be used
for X+.

.
(X) x. hexa(+'f „=x„(x)d / xai), '

5 (20)

(~) e(i x /a)exp(e „i=f x „(x)Ch/a e ,'ix)„„-
If «, +«, » i «, —«~ ( (always true in the high-energy
limit), the high-frequency approximation is in-
voked" in which all g,Uy, X' Dg& and g, Dg'
terms are dropped from Eq. (19), concurrent
with the use of JVVKB reference functions inward

or the complex incoming and outgoing irregular
forms

j(,=
X~ yi j(„- K '/" exp[*i(KR/a --,'I,r+g )],

R~~
(18)

W~ =-2i/a.
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to the turning points and a neglect of 8 mhieh is
not bounded or integrable at the T, . This system
of equations

C', =v(1/2i)[-)(,U)( +)(,aD)(', —)(,'aD)(]C, (21)

is required by guess to satisfy uncoupled boundary
conditions at each T„mhich establishes a con-
nection between the in and out parts of the solu-
tion. This mas introduced as a computational
procedure by Berson'6 for potential coupling; the
basic idea was weQ known, however. " The
method is to integrate the C equation inward

[C (~) =/1 until a turning point T„ is encountered;
from there inward the nth rom of C is
dropped from the coupled equations and values
of (C )„„i =1, ~ ~ ~, N, are saved. An outward
integration restores the couyling at each 7„,
using (C,)„, = —(C )„„sothat (G)„,= ()(J„(Cg„,
+()( )„(C )„,=2i«„&sin(-,'w+ Jr" «„/a)(C, )„, for
Q=T„. In practice, only outward integration mas
used and boundary conditions set up at the T, such
that C,(R}= C*{R). This procedurere, ferred to
here as SCJ%KB, is an attempt to enforce a glob-
al high-frequency approximation, or in-out de-
coupling, on strongly coupled equations mith no
special treatment of turning points.

In perspective, one sees that the conditions
«, + «~ &+

) «, —«~ ) are only ensured at high energy
except at certain avoided crossing points or de-
generaeies. Since this occurs generally in the
high-energy isovelocity limit, the following ex-
pansions are introduced into Eq. (21}to complete
that limit:

so that system (23) may be written as a Z-depen-
dent integration:

—C=MC,d

(25}

providing one connects C, to C at R=Ip/K, Z =0,
by defining C = -C for g & O, C =C for g &O ~0

III. SEMICLASSICAL DISTORTED-NAVE METHODS

The preceding section contained no nem theory
except for the inclusion of a mell-defined paramet-
rimation; this and the following section will
make use of the parameter to develop a nem ap-
proximation. Distorted-wave theory is not gener-
ally useful for the types of coupled problems being
investigated here; however, some of the conse-
quences of semiclassical approximations are
present in the distorted-wave approximation and
are easier to study.

Bates and Crothers" demonstrated an extremely
useful property of JWKB-type approximations for
coupled problems. That is, one ean cancel out a
considerable part of the nonuniform turning-point
error by artificiaQy coalescing the turning points
of the zero-order solutions and simultaneously
dropping the high-frequency terms. Consider the
matrix element

« = 1«+O(a),
(22}

«„(«)d« t'" «(x) dh «„(«) „
e a &)el«a &I«2 «(x)

This gives the zero-order (a independen-t) coupled
system

C~= M~C~,

I(a) =f dR)t, (R, a)U„(R)y,{R,a),
which is evaluated using the regular solutions:

(
da' ~, eef(a)) p (a,a)=p,

X, (R,a)-K, '+sin(K, R/a+n, ) as R-~,
+ =K'-I'/R'-«, (R)-K',

(26)

(2V)

(M,)„„=(ep. ()„—D„exp e(J(a pe,

whose turning points (or in-out connection points)
have all coalesced to IP/K. System (23) is the
partial-wave analog of the rectilinear impaet-
parameter equation. As is mell known, the inte-
gration coordinate transforms:

where the semiclassical large-mass parameter e
is explicitly retained. ln the a-0 limit, I (a) will
be of high order in n unless a crossing occurs
in A., and X,. Bates and Crothers consider a dia-
batic model with an actual crossing point R„ in
which case the stationary-phase evaluation of I(a)
at R„shows I(a) to be O(a'S):

I(a) = «~a~V„(R,)«, ~(R,)

[1/«(R) ]dR =+ (1/K) dZ,
R'= (I /K}'+Z', (24)

x
/
L'(R, ) —X,'(R,) / cos+„. (28)

It may be shown in general that the et'rw' in the
matrix element produced by using JWKB approxi-
mations with real-axis integration over the turn-
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ing-point singularities is about O(o+) ":
l~( ) I

= '(0.40)U„(T,) Ix,(&,)1[-U.'(T.)] ",
U, (It) = I '/It'+~, (It),

(29}

)(, =k ~'sin[(q+ks)/a],

X, = ~~2(~D)-"Ai(-D's/~"),

U» = (const), ~ = Kg(Tg) g

from the outer turning point at T,. Since the ma-
trix element and the JWKB error are of the same
magnitude, the real-axis SWKB method" is not

of general use as an approximation in the large-
mass fixed-energy limit. If one considers the use
of J%XB solutions at high energy and large mass,
the error comparison is quite different. I(o} is
of leading order Q' and the turning-point error
introduced by the JVfKB solutions remains local-
ized in a smaQ region about the turning points and
contributes (roughly) only order a'I'. lf the con-
tributions to the JWKB element I~w"~(n) from
inside the turning points are dropped and the

high-frequency terms are dropped outside,
leaving"

IHFA. &wKs(~)
1

r, 2(~,z,)~'

where the normalization of X was obtained from
the uniform solution as defined in Eq. (2V). I(a)
may be evaluated for the wave functions in Eq.
(32) if the lower limit of the integration is extended

to minus infinity:

I(~}=U»J dsX, X2

Q ~~2 U
~

sin + 33

Let Ai be replaced by the leading term of its
asymptotic series for s &0 in Egs. ($2) and (33)
and the high-frequency term dropped to give the
special case of Eq. (80):

) 'A ~"'ta)=-')) J dsh ~'(s))) '~'

2 D~/283/2 kSx cos —— +— ——. (34)

~K
+

~K (30)

x,'=Ds+O(s'}, D= -U,'(T,),
a, = ~',(T,) +o(s),
(~,z, ) 'I'=D '~'s-~~ /[~, (T,)]'~'+O(s' '),

J )):,= f x, +o(s)=y+~, (T,)s (+so'),

K = 8 D +O(S )r 2 3
2

U„=U„(T,) +O(s) .

(81)

If all of the higher-order terms in s are dropped,
then one has a model crossing problem consisting
of

the errors behave much the same as I& "~(c.)
neither systematically better nor worse, as con-
firmed by direct numerical evaluation of Eq. ($0)
for the problem of Bates and Crothers. The
insight of their forced-common-turning-point
method was that most of the error in I"FA J~KB

came from the end point of the integration, T„
where the integrand is singular and the phase
of the cos term is 1 ' g„which might never
receive matching oscillatory cancellation from
the rest of the integral. The magnitude of this
error may be examined by considering a simpler
model problem which is representative of the
outer-turning-point region. This is done now.

ln Eq. (2V) let s = R —T, and expand all potentials
and phases about g&= T,:

The stationary-phase approximation to FAl. (34)
at the point s = 0'/D gives the value of I(n} as
written in Eq. (83}. The exact evaluation of FAl.

(34), however, has an end-point contribution from
the lower limit as is seen upon transforming to
integration variable s = t+'.

l 2 a~'P
dgcos —-~+—

0 4 Q 3 Q Q (85}

I' (~)~b ) dtcos —=—sin-et bQ . ax
00 Q C Q

(35)

as a function of the upper limit for small g. The
integral is oscillatory about zero and therefore
is canceled to leading order without any residual
end-point effect. In fact, all that is necessary to
avoid a residual contribution from the lower limit
in the integral

where the derivative of the cos argument is zero
at both I =0'~'/D~' (s = 0'/D) and / =0. The size
of the end-point contribution may be estimated
from the area of the first half-wave and is of order

It should be pointed out that the relative
phase-shift term —,'m - y/o. is not the sole cause of
the end-point contribution.

If one examines the Bates-Crothers method, it
is evident that their procedure removes end-point
contributions. If I(o.} is replaced by their forced-
common-turning-point integral and the integration
variable transformed to t =Is, where s is the dis-
tance from the common turning point, the distort-
ed-wave integral behaves as



STRONG-COUPLING SEMICLASSICAL METHODS. . .

I(x) = f ds s "cos(as")

is that p, + v ~1. Bates and Sprevak" have demon-
strated that the forced-common-turning-point
procedure performs well for close-coupling
problems, as expected, since the residual end-
point-contribution arguments also apply at the
beginning of integration of the in-out decoupled
equation for the local S matrix'

(37)

S' = (1/2i)()( U)(+S +~S,U}| ), (38)

where, near the beginning of integration of channel
n, S„,= 5„„and the coupling develops like the
distorted-wave integral near its lower limit.

The distorted-wave average approximation is
now developed; this new approximation is concep-
tually and computationally simpler than the Bates-
Crothers method and appears to be as useful in
application. If the high-energy expansions de-
fined by Eq. (22} are introduced into Eq. (30},
one has the radial equivalent of the impact-param-
eter method,

A. -A,2 1+~2 2 1+ ~ ~ ~

2K SK
(40)

If, instead of expmding directly in a series in 0.,
one expands in the differences of X, and A., from a
common unspecified potential P:

[« —aU —a(J(, —U}]~ —[»' —aU —a(X, —U}]~'

, (~, -U}'-(~,-U)',
2(»' —aU)' ' 6(«' — U)' '

(41}

the second term will be identically zero for all R if
U is chosen to be"

U=-', (~, +~,). (42)

limI(a} = dR
2 U»(R) cos '

2
' d«)],

1 A.2
—A.~

n 0 I/E s/x

(39)

which illustrates the point that the high-energy
limit itself makes the radial turning points
coalesce to P/K. Consider the wave-number dif-
ference away from the turning points, using the

high-energy parametrization:

«g —«2 = (« —aA. ~) —(« —aJ(.4}

The expansion of the JWKB amplitude term

[(»' —a~,)(2 a—I )]-~14=« '+O(a) (43)

«(R, a) = [«' - -2a (X, +X,)]~',

«(T, a) =0,
(44)

which possesses all the necessary end-point can-
cellation properties discussed previously in this
section. A numerical study of the average approx-
imation for both values of the coupling parameter
of the model problem of Bates and Crothers con-
firmed that the method gives total cross sections
accurately (fractions of a percent error) and
partial cross sections accurately for large L."
The low-L partial cross sections are out of phase
as a function of L because of an accumulated dif-
ference in the two phase expressions:

fR pR
T Ky-J K2 gg1 + 2 1

F 2K (45}

The same difficulty arises in the Bates-Crothers
method, except that the phase error is not as
large for low L because their "averaging" is
switched off as P'/R' decays out at large R.

IV. AVERAGE APPROXIMATION FOR
CLOSE COUPLING; TESTING ON THE
2po„-2px„TRANSlTION IN H' ON H

There are several ways of developing the average
approximation for close-coupling; the simplest is
to begin with system (21) and require that the
essentially singular part in a of the coupling be
restructured consistent with the introduction of
the high-energy condition», —«, =O(a):

is likewise correct through first order in a if
expanded about the differences from the average
potential defined above:

[(«' —aX,}(«' —ah2)] ~'=(«' —aU) 'I'+O(a').

Thus, instead of allowing the high-energy approxi-
mation for I(a} to go to zero order in the isoveloc-
ity semiclassical limit [ Eq. (39)], I(a) is kept
correct through first order in n in terms of the
JWKB theory by the average approximation

('"(o.) = dR U„(R) 2
cos Jl

' ' dx),
1 f" X2-Z,

(46)

Equations (22) and (23) give the full a-0 limit; it is possible, however, to expand I, in a series whose
leading term is correct through first order in n, as discussed in Sec. III. Suppose the phase difference is
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expanded in an n series:

~f" «„d«J" «„d«
n m

a Z„(T)X„(R)-Z (T)Z (R)
2« 2 2(u'(T)K(R)

1 "}}.„(T))}„(x)(u'(x)—A„(x)(u'(T) —A. (T)A (x)(u'(x) + A.
' (x)(u'(T)

(u'(T) 4«'(x)

( ( «.(r)«„'(«}—«(r)«'(«)«)
(u'(T} D r 2«(x) (47)

where

K', (x,n) = «'(x} —»((x}
(u(x) = K'(x),

K', (T, (n}, a)=0, (u(T) =0.

If in Eq. (48) one makes the replacement,

K'(x) = K'(x) —nU, ~, (x) = ~, (x) —U,

(48)

(49}

(~M}„=(+2.—U„-D. )
1

21K

x exp +s " dx

K = (K —nU}

K(T) =0,

(53)

and inserts these new definitions into the phase
expansion in Eq. (47), the whole second term is
identically zero for all R if U = 2(A.„+A, ). Thus

y„(R, a}= 2, ",dx+O(n'},
2g„~+, g)

nm

K„(x,a) = [K'(x) ——,
' n(z„+x )]~'

«„(T„(n),n)=0.
(50)

(«,«, ) ' '=1/K„+O(n'),

2[(K(/Kg) +(Kg/K(} ]= 1 +O(n ) )

(51}

where the O(n') term is not bounded for all R; it
is the leading term of a divergent series for
~R -T,~(a) ~

=O(n); the same applies to Eq. (50).
The full average approximation consists in re-
placing in Eq. (46):

(M). =(««. (r —D„„)„1
2S /c„

x exp kz dx (52)

Each coupling has been replaced with an average
to incorporate the first-order term exactly. One
can further approximate Eq. (46) by

Expansion (50} incorporates a coalescence of the
turning points into the crude JWKB theory consis-
tent with the high-energy limit. The JWKB amp-
litude factors are also expanded about the pairwise
average:

using a common potential for all channels. In
atom-atom collisions, it would seem reasonable
to choose this common potential to be a screened
nuclear repulsion. Boundary conditions for the
average approximation are slightly complicated
by the presence of ,'N(N- I) "notc—h"points T„,
as opposed to N turning points. The computational
procedure is as follows: (i) the diagonal potentials
A., and the coupling terms U, z and/or D, ~

are spline
fitted or used as functional forms if known; (ii} for
each L all turning points and notch points are
found by grid search and the method of false posi-
tion; (iii) the JWKB phase shifts are determined
and all T,

&
ordered; (iv) outward numerical

integration of system (46) containing the averaged
coupling is completed between adjacent notch
points, dropping coupling between channels whose
notch points are outside the current interval;
(v} the average phases, as defined in Eq. (50},
are computed as the system is integrated; (vi)
only the + equations are solved, using the unitarity
property C~C, =1 and C =C,*, C,= —il as &-0,
to evaluate the partial-wave S matrix, defined by

G =K '~'[exp( fKR/a+-,'iLK)-
—exP(iKR/n, '~LK) JS as R- ~,

(54)
8 = ( J'(N«)C~G (' wKB)

S~=S, SOS=1.

The integration coordinate outside any particular
notch point T,&

is transformed from g to Y:
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d 1 d
dR 2 YdY'

(55}

0.06

0.05

~I = (2tI/if' )(Z —V;) —(L+ 2)'/R',

U,~
= U2, = -(v 2 )[ L(L + 1)]'~ ( L+) /R,

where

(56)

V, = W~I, ~ -1/R —0.5+O(R )

- -0.5 +O(1/R')

Vm
= W~~„-1/R —0.5+O(R )

- -0.125 +0(1/R')

as R-O

as R-,
as R-0
as R (57)

(L,) =(2pv„~L+ ~2pv„)-(2)"'+O(R') as R-0
-(2/3)'R as R-~,

in a.u.""Solutions by SCUNF (see Eq. (16}and
et seq. ) and the hybrid quantum-JWKB method of
Knudson and Thorson agreed to several figures
for this problem as they should. Since SCUNF
was of the same computational speed and avoided
the test of where to join solutions, it is used as
the "exact" result for all semiclassical compari-

1.0

0.9-

0.8-

0.7-

0.6-

& 0.5-
CCI

CI- 0.4 .

0.3

0.2

to remove the (R —T,&)
~' singularity at the begin-

ning of each integration interval.
A good test of a strong-coupling semiclassical

method is to solve a problem whose transitions
arise from the turning-point region. This occurs
in rotational coupling in atom-atom collisions
where the electronic fixed-nuclei eigenvalues are
tending toward a near or exact united-atom degen-
eracy and the A, potential-like coupling [Eq. (5}]
is large as R- 0. H' on H has been studied exten-
sively by Knudson and Thorson and their results
are used as a benchmark for the study here. Ro-
tational coupling occurs between the 2po„and 2pm„
electronic fixed-nuclei states of the H, ' molecule'.

G,"g +K, G, g
= U,~ G2g,

G2] +K2G2] = Ua, G,],

0.04

I

g 0.03-
CCIo
CL

0.02-

0.01-

0.00
0 16 24 32 56

250 eV

H2

FIG. 2. Comparison of the semi-
classical PvVKB close-coupling ap-
proximation with the uniform method
at a higher energy for the 2pcr„-2pn„
excitation in H+ on H.

FIG. 1. Comparison of six semiclassical approxima-
tions for the 2po„- 2'„rotational excitation in H+ on
H scattering as a function of nuclear rotation quantum
number. "Inner" and "outer" refer to the use of V& or
V2 as a common potential and GM refers to the geome-
tric-mean-vel'ocity method.

sons.
Figure I presents an L-dependent study of the

probability of excitation for six semiclassical
methods at a relative collision energy of 31.25 eV
for the lowest state (E =0.6485 a.u. ): (i) the uni-
form reference function method, SCUNF, which is
essentially exact; (ii) the average approximation;
(iii) the use of V, as a common potential; (iv) the
use of V, as a common potential; (v) the JWKB
reference function method, SCJWKB; and (vi) the
geometric-mean-velocity method advocated by
Lawley and Ross. '4 The average approximation is
clearly superior and demonstrates that the turn-
ing-point region is treated adequately by the pro-
cedure. Bates and Sprevak have shown that their
method has almost exactly the same relative error
for this problem. "

Figure 2 demonstrates that at a higher collision-
al energy, 250 ev relative kinetic energy in lowest

0.0
0

I

20
I

40

I

60 100

L

120 140 160
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state (E=8.68V9 a.u. ), the SCJWKB method can
give a more reasonable global picture of the exci-
tation probabilities. The average approximation
is coincident to graphical accuracy with SCUNF,
and either the V, or V, common potential would

work mell as known from Knudson and Thorson's
study of V, .' The straight-line impact-parameter
results are still in error for small I, though, so
they completely miss the inner peak which con-
tributes to large-angle scattering; the impact-pa-
rameter study for this excitation process is con-
tained in Ref. 5. This general trend of approxima-
tions at high energy is to be expected.

V. TESTING OF AVERAGE APPROXIMATION

ON OTHER PROBLEMS

1.0-

0.5-

o.o ~

~-05-

o-10-

IIs:
$-1.5-

ELECTRONI C COUPLING

ELEMENTS USED IN 3-CHANNEL

MODEL PROBLEM

This section contains the numerical study of
several model problems which seem to be of
special interest in testing of semiclassical approx-
imations.

The rotational coupling of Sec. Vf acted between
molecular states which were degenerate at g =0.
It is of interest to compare the methods pictured
in Fig. j. for coupling between nondegenerate mo-
lecular states, with the coupling potential still
weighted towards the turning points. In yarticular,
for a given energy, the turning points are further
apart and the transition probability is much sma11-
er. Figure 8 presents a study of an "artificial
problem" generated by using the coupling U~ of
Eq. (56) and V, of Eq. (5V), but replacing V, =W», „
with 8'„„,which has the properties:

-20-
W2

- 1.95
U

-2.5-
W2

- 2.0
2p fy

-3.0-
W1

- 2.40372

9

3J 5
0

R

FIG. 4. Diagonal potentials and coupling elements
used in the three-c~~el problem. The Q+ energies
are scaled to resemble the lower states of HeH+. (L+)
is the matrix element used in the 2p united atom cou-
pbng of H2+.

125 eV

ARTIFI Cl AL PROBLEM

W„„-1/R —2 +0(R')
- —0.5+O(1/Z'}

as A-0,
as 8- ~

(58)

0 20

L

FIG. 3. Comparison of semiclassical approximations
for the artificial problem defined in the text. The cou-
pling arises from the turning-point x egion, but the
diagonal potentials are not degenerate at B= 0. 'inner"
and "outer" refer to the use of the lower or higher in-
teraction as a common potential and GM refers to the
geometric-mean-velocity method.

This study was done at a relative kinetic energy of
125 eg for the lower state (E =4.0940 a.u. ).
SCJWKB is grossly in error and not shown.

Many-channel calculations are specifically of
interest at higher energies where transitions arise
from coupling between energetically well-separat-
ed fixed-nuclei electronic states. Although such
calculations cannot be expected to mean much
without plane-wave factors, '4 nothing prevents
testing of the semiclassical close-coupling meth-
ods on them. From the three H~'potentials and
the H,' rotational coupling function, a model is
constructed with three states, energetically like
HeH'.

V, =8 „„-2.40372,

V, =R„. -20,
V, =W„„„—1.95,

D~ =&Be
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SCUNF

2 CHANNEL ONLY

FIG. 5. A comparison of the aver-
age approximation with the more pre-
cise uniform method for a three-
channel problem at 1 keV. The in-
teractions for this problem are dis-
played in Fig. 4 and the masses used
were those of HeH+. Note the en-
hanced excitation at low I. owing to
the third channel.

Va=~aI ~s 3

U~ =(2p/fi*)(0 03)(-',R).e' "'*.
(60)

The crossing occurs around R =2 where V~ is
about 0.03 a.u. The effect of the accumulated

P„=—(v 2)[L(L+1)]"'(L,) /R'. (59)

The relevant behavior of these is plotted in Fig. 4,
and the results of two-channel and three-channel
solutions displayed in Fig. 5 at 1-keV relative
kinetic energy in channel 1 (E =33.848 a.u. ). The
"angular" coupling between 2 and 3 has a curious
effect on the 1 to 2 excitation probability. SCUNF
confirms that the average approximation was as
good as expected at this relatively high energy
with no spurious results. The other semiclassical
methods (common potential, impact parameter)
are undoubtedly well into their domain of accuracy,
but were not calculated for this rather fictitious
problem.

Figure 6 presents a study of a problem designed
to show the primary defect of the average approx-
imation. The situation is a two-channel potential-
coupling problem with a crossing (diabatic cou-
pling) of the diagonal energy curves:

Vi = Woo~ + 1/R

average phase error [Eq. (45)] is evident in the
interference oscillation pattern at low L. The L =0
turning points are at approximately 0.89 and 1.37
and the average potential turning point (notch point)
is at 1.20 where the integration starts. By the
time the integration reaches g =2, the average
phase difference [Eq. (45)] would appear from
Fig. 6 to be —,'m rad in error. The inelastic differ-
ential cross section in the center-of-mass frame
shows that the L =60 peak contributes to 40' scat-
tering with a maximum of 4a', where a, is the
Bohr radius, and that the region of L less than 15
contributes to scattering greater than 120' with a
magnitude less than 0.3a . Thus, for this problem,
the phase error as indicated in Fig. 7 is a large-
angle effect and not too significant over-all.

The last problem investigated is based on the
atom-diatomic molecule vibrational-excitation
model of Secrest and Johnson, ~' which is a well-
known problem in the field. For that reason, only
the scaled input parameters are given here. Fig-
ure 7 compares two-channel coupling as a function
of energy for a weak-coupled system and a strong-
coupled system with a smaller mass parameter.
The channels are the lowest two harmonic-oscil-
lator states of the target and the barycentric ener-
gy is measured in units of —,'h&." The average
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31.25 eV

DIABATlC CROSSING
MODEL
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I
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FIG. 6. A low-energy crossing mod-
el which displays the accumulated
phase error in the average approxima-
tion. The diabatic coupling at the turn-
ing region is treated correctly (cor-
rect envelope), but the average phase
between the crossing and the turning
region is only correct through Qrst
order. The reduced mass is that of
H2+ and the coupling is given in the text.
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FIG. 7. Comparison of two-channel average and full-
quantum calculations for the atom on diatom vibrational-
excitation problem (Ref. 25). These results are identical
in potential-coupling or derivative-coupling pictures.

approximation was compared to full quantum close-
coupling results" since SCUNF was slow and not
of sensible use. Table I presents a series of cal-
culations for a six-channel problem, including the
full quantum results (which include one closed
channel, and are inaccurate in the last significant
figure). Several facts are evident: (i) the excita-
tion probabilities of the average approximation in
the potential-coupling representation [see Eq. (9)]
are not equivalent to those of the average approx-
imation in the derivative-coupling representation
[see Eq. (7)] for more than a two-channel problem;
(ii) for this problem, the derivative-coupling aver-
age is superior; (iii) the two-channel result for the
average agrees with the quantum two-channel cal-
culation (Fig. l) showing that this failure of the
potential-coupling average method is a many-chan-
nel effect.

Vl. DISCUSSION

In the many-channel case, the use of a common
potential with in-out decoupling has always been
appealing because of the classical trajectory inter-
pretation of the equations. " Its utility really is
the inherent necessity of making the radial turning
points coalesce to avoid the real axis JWKB turn-
ing-point contributions as explained by Bates and
Crothers. In the case of a two-channel problem,
the average approximation has a simple common
potential interpretation whereas the Bates-
Crothers method does not. For two channels, the
average approximation gives the same transition
probability in either the potential or derivative
coupling pictures. This is because the average
potential is just one-half the trace of the coupling
matrix, which is invariant to the transform that
converts between the two representations [Eqs.
(6)-(9)]. The many-channel average approximation
does not have this property.

Computational speeds are nebulous things to
compare, but any of the in-out decoupled semi-
classical methods discussed here are more than
an order of magnitude faster than the SCUNF pro-
cedure, which is fast itself in the semiclassical
limit.

Phases of the S matrix have not been reported
here explicitly; in general, they are of the same
quality as the modulus for all of the methods.
Neither did the calculational testing report the use
of a SCJWKB method in the derivative coupling
picture. This procedure, which would seem the
theory of choice for low-energy collisions based
on a large-mass fixed-energy limit with in-out
decoupling, is considerably better than SCJWKB
in the potential-coupling picture, but not generally
better than the common-potential methods for the
H, ' problem of Sec. IV or the artificial problem of
Sec. V.

In conclusion, it seems that the average approx-

TABLE I. Comparison of potential- and derivative-coupling average approximations with full quantum results for the
six open-channel Secrest- Johnson problem(Ref, 25) defined by 8 =12.8365, a =Q1287, m =$, all in their scaled oscillator
units. The columns represent the probability of excitation from the ground state of the target diatomic molecule, la-
beled as 1.

Final state Quantum

0.632

0.317

0.0485

0.0025

3.3x10 5

0.5x10 ~

Potential-coupling
average

0.711

0.247

0.0358

0.0057

9.5x 10~

1,2x 10~

Derivative-coupling
average

0.630

0.318

0.0490

0.0026

3.9x10 ~

1x10 7
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imation is the best of all simple common potentials
to use for two-channel coupling. The multichannel
average loses this common-potential aspect, but
the method is obviously advantageous if one con-
siders close coupling among two individually de-
generate manifolds of states, e.g. , the 2p and SP,
8d united-atom levels. At high energies the com-
mon potential is useful' and eventually the impact-
parameter method will suffice' to describe the
major features for all problems. It might also be
added that the first derivations of the average
approximation for close-coupling made direct use
of the simple expansion techniques of Ref. 4 rather
than the reference-function procedure used here.
The original results gave the two-channel average

approximation and a common-potential method for
many channels. The reference-function procedure
seems to afford an adequate generalization to the
many-channel problem.

Note added irs proof. The average approximation
for the He'Ne system studied by R. E. Olson and
F. T. Smith [Phys. Rev. A 3, 160V (1971)]reveals
about a 10% peak-to-peak phase error at low L
and a total cross section of 0.698 a.u. at 70.9 eV.
CDC-6600 computation time was 1 min.
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