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The values of the orbit-dependent hyperfine-structure constants are given for the ground-state terms

of the atoms B, C, 0, and F. These values are obtained from multiconfiguration Hartree-Fock wave

functions using a very limited number of excited terms. The excited terms are chosen from guide-
lines based on second-order perturbation theory. The results are in satisfactory agreement with avail-
able experimental data and accurate many-body perturbation-theory calculations for O. A physical
explanation, in terms of the configuration-interaction model, is presented for the essential importance
of non-core-polarization contributions to the Fermi contact term for these atoms.

I. INTRODUCf ION

The accurate ab initio calculation of the hyper-
fine-structure (hfs) constants of the ground-state
terms of the 2p-series atoms is of considerable
current interest. ' ' In fact, the determination of
their values has been a challenging problem since
Harvey' measured very accurately the hfs of the
ground '& term of 0'7 and the ground 'P term of
Fle

The magnetic and electric quadrupole hfs Hamil-
tonian may be written, in a nonrelativistic approx-
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where p, I is the nuclear magnetic moment in units
of pp. Harvey showed that» for pure L 8 coupling
(taking into account small departures from this cou-
pling for 0), three parameters were required for
the magnetic and one for the electric quadrupole
parts of the hfs Hamiltonian to explain the ob-
served hfs. The parameters are denoted as (1) the
core-polarization quanbty l g(0}l', with its angular
coefficient proportional to (g„~—1), where g ~ is
the Lande factor of the level o./considered; (3}
instead of the usual single radial integral (r ') for
the 2p electron, two different ones, denoted
(~, ')» and (r, c')», tobe used, respectively, in the
matrix elements of the l ' and the $s ' C ')j '
parts of K„„;and (3}a parameter (ro')» to be
used in the electric quadrupole part of II&„. In
particular, he showed that (r, )» and (r,c3)» are
different by more than 10% for both 0'7 and F'9.

Shortly afterward, Judd' interpreted the difference
between (r, ') and (r,c') in terms of far-configu-
ration interactions. Moreover, he showed that the
third radial quanbty, (r()'), used for the deriva-
tion of the nuclear quadrupole moment Q from the
electric-quadrupole experimental constants,
must be different from the other two.

Our aim in the present work is to find to which
accuracy a simple multiconfigurational Hartree-
Fock (MCHF) computation can interpret the values
of (r, ')», (r,cl)», and (ro')» in the ground-state
terms of the 2P-series atoms. We first give the
principles of our computations, then the results,
Rnd finally discuss the achievements and the short-
comings of the MCHF method for the problem con-
sidered. &Information is also presented concerning
the quantity l $(0}l'.

II. PRINCIPLES

A. MCHF Method

The principle of the MCHF method is well known
from the work of Hartree eg uE.' It can be sketched
in the following way: once a given set of Russell-
Saunders (RS}terms from various configurations
is assumed to contribute appreciably to the wave
function g of a state, the MCHF method yields the
radial orbital functions and the weights of the
terms which make the total electronic energy E of
that state stationary. (Of course, for the lowest
state of a given symmetry this energy is mini-
mized )The ele.ctronic Hamiltonian is the usual
electrostatic fixed nucleus Hamiltonian given in
atollllc lllll'ts (a.ll. }by

In the following, we shall call its three parts, re-
spectively, the kinetic, central-field, Rnd Coulomb
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operators. We shall also use atomic units for en-
ergy and length; the conversion factors" to eV and

A are

1 a.u. = 2V.211V eV, I Bohr = 1g = 0.529 1VV A.

For all the wave-function calculations, we have
used a MCHF progxam develoyed and written by
Froese-Fischer" and modified by one of us (P.S.B).
This program solves for the radial wave functions by
direct numerical integration of the MCHF integro-
differential equations. Thus we avoid the problem
of optimizing the nonlinear parameters of basis
functions which arises in analytic expansion ap-
proaches~ to the solution of these equations.

B. Choice of Configurations

%e are intexested only in the ground-state terms
of boron (B), carbon (C), oxygen (0), and fluorine
(F). Indeed, the nitrogen ground term is experi-
mentally an almost pure 'S term, to whose hyper-
fine structure only the core polarization contri-
butes appreciably.

As a compromise between accuracy and simplic-
ity, we aim to introduce in every computation, to-
gether with the ground-state term To of Is22s'2p~,
only the excited configurations which, when looked
upon in the central-field perturbation method, con-
tribute to the crossed second order of the Coulomb
and hfs operators. In other words, we introduce
those excited configurations which give rise to
nonzero off-diagonal matrix elements of Hh„with
the ground configuration. Because the three hfs
oyerators of interest are of the double tensor tyye
7'""~ with k = I or 2, we see that the relevant ex-
citations are the following:

Is-nd, 2s n'd,

&P-&f &P-&P.

if we had introduced only one of these types of
excitations with only one type of coupling at a time
in a series of MCHF calculations, then it would

have been necessary to use only one configuration
{and one new orbital) for each of the excitations.
This is easily seen by noting, for example, that

y= c, [ Is'2s'2P"P)+Q a„~[(Isnd) 'D2s'2p' 'D] 'P}

= c, ~
ls'2s'2p"P)+n'

~
[(lsd')'D2s*2p"D]*P),

where

~ z —[g ~R ]&Is

d' =Q u„nd/a'.

Since we introduce all these exeitations and cer-

tain others, as well, at one time, we should, in
principle, use several orbitals for each type of
excitation. For simplicity and because the inter-
actions among the excitations will not, in general,
greatly change the MCHF equations for the added
orbitals, we will use only one orbital for each
of these excitations. We will, however, construct
configurations (terms) for all allowed angular mo-
mentum couplings using that orbital. (In the fol-
lowing, we shall use the words configuration and

term interchangeably to refer to definite eigen-
funetions of L' and 8'. The word configuration
may also be used to x efer only to the distribution
of electrons into orbitals. The meaning of these
words will be clear from their content. } For ex-
ample, for the Is-d~ excitation for C, we intro-
duce the following three configurations:

i [ (lsd, ) 'D2s'2p' 'D] 'P),

~ [(lsd, ) 'D2s'2P"P]'P),

~ [ (lsd, ) 'D2s'2P"P]'P).

We will show, in Sec. IV, that for Q the second-
order contributions for these excitations using
just one MCHF orbital for each excitation are usu-
ally close to the second-order contxibutions ob-
tained by Kelly'~'~ using many-body perturbation
theory. We denote the orbital used for each type
of excitation as follows:

dI~ Is~dIy

II '& 2s d II

f»i 2p-fr&

p JI y 2p pII '

It has been shown for carbon" and for other
first-row atoms, "'" that the '*quasidegenerate"
excitation 2s'2p"- 2p~+' is extremely important
for the calculation of the total electronic energy.
Thus, although the Is'2ps+' configuration brings
no second-order contribution to the hfs, we add it
to the list of singly excited configurations retained
above. In a sense, if the Coulomb interaction is
neglected entirely, this configuration represents

The 1s-d, excitation makes only a, very small
contribution to the energy, -0.00004 a.u. for G.
Because of this small contribution we had diffi-
culty solving the d~ MCHF orbital equation. To
overcome this difficulty, we introduced the double-
excited configuration d, '('S)2s'2p" which makes a
much larger contribution to the energy -0.003 a.u.
for G.

The 2p- p„excitation presented a different
problem. In general, the off-diagonal matrix ele-
ments (2p" 'p» ~H„„~2p") will include integrals
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involving the kinetic energy and central-field op-
erators. Because of limitations in the computer
program, "me mere not able to introduce terms
mith off-diagonal matrix elements of this form
into the calculation. If, however, the term
(2pPaSI, has several parents, there correspond
several terms SI. in the configuration 2p" 'p„.
Following Bauche and Klapisch, "we note that one
of these terms (or the only term if there is only
one) may be written as

q, = g (p -'y; pl) p"~Sf) I [(2f)" '0, f i-, ]SIM.M.»

where (p~-'p,
p I }p~aSI.} is a fractional parentage

coefficient. '6 It can be shown that while

(g, IH,~ I2ps) does include one-electron terms,
the matrix elements for terms orthogonal to p,
do not. Thus, although we cannot include terms
of the form p„we can and do include the terms
orthogonal to g, . There are two such terms for
0 and F, resyectively.

Bauche and Klapisch" have shomn that, as an
extension of Brillouin's theorem, (P, I II,„,I 2p")
has a numerical value of zero for the Hartree-
Fock solution for the configuration 2p~ provided
only that p» in g, is orthogonal to the Hartree-
Fock 2p orbital. Although this matrix element
mill not be zero for the 2p~ configuration con-
structed from the MCHF orbitals, we expect that
it will have a small value. Thus, the term p, will

probably not make a significant contribution to the
electronic wave function or to the hfs constants
and its inclusion mould not significantly change our
results.

As we noted above, our configurations are re-
lated to those which contribute to the hfs constants
in crossed second-order perturbation theory.
They are also related to those used by Schaefer
et nl. ' in constructing wave functions mhich they
described as polarization and "first-order" wave
functions. %e discuss briefly, below, the rela-
tionship between our mork and these tmo approaches.

In addition to the excitations of Eg. (5), we have
included 2s 2p~-2p"" and ls' d', , which do not
contribute to the hfs constants in second order.
(We shall discuss in Sec. IV the effect of including
the latter excitation on the second-order contribu-
tions from Is excitations. ) However, we note that
me compute the hfs constants as expectation values
of Hhf, for our NCHF wave functions. Moreover,
we solve orbital equations for the 1s, 2s, and 2p
orbitals and do not leave them fixed as HF orbitals.
Vfe shall, in Sec. IV, compare fox 0 both the sec-
ond-order hfs constants obtained using our MCHF
orbitals and our results for &g „~„la„„lg „~&
with Kelly's second- and higher-order yerturba-

tion-theory results.
The polarization wave function of Schaefer eg gl.&'~

includes the excitations described by Eg. (5}and

also 1s s and 2s -s excitations. The first-order
wave function includes the polarization excita-
tions plus double excitations provided that at least
one excitation is into the 2p shell. Except for
2s~2p" 2p"' and 1s -d'„our excitations are a
subset of those used forthe polarization functions;
and except for 1s'-d'„ they are a subset of those
used for the first-order functions. Both polariza-
tion and first-order functions mere determined by
traditional configuration-interaction (CI} methods
using a fairly large set of orbitals. Thus, the
polarization functions contained 53, 65, VV, and
65 configurations, respectively, for 8, C, 0, and

F, and the first-order functions contained 153,
181, 113, and 95 configurations, respectively;
our MCHF wave functions contained only V, 9, 11,
and 9.

IH. RESULTS

A. Configurations Used for the

MCHF %ave Functions

Table I lists the excited RusseQ-Saunders terms
T, introduced in the four MCHF computations for
B, C, 0, and F. The terms noted T, and T„(for
0) and T, and T, (for F) cannot be written in con-
cise form, as they are selected linear combina-
tions of terms of the type (Is'2s'2P" 'S,I.„Pz)SI,
(see above). They are for 0

T, ~ ~VI [Is'2s'2P"D, P„]'P&

+~I[I~2~2P"I',P,r]'», (7

T,. 4I[-2P"s,~„]'I+&I[" @"~,p»l'»
—~l[" 2p"»ural'».

T, ~ I[Is'2s'2p"D, P»]'P&

—Wl [Is'2s*2p"S,p „]'P&,

T. 2i[" 2~"I.u, ]'I &

—~l [".2p"D, util'»
—I[" 2P"S,err]*».

To eliminate any ambiguity as to the phases of the
various states, we present in the last column of
the table the expressions for the off-diagonal
matrix elements of IJ,„,between the excited terms
and the corresponding ground terms T,. In the
relevant Slater integrals, the symbols gE have
been omitted for brevity.
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TABLE I. Configurations used in the MCHF calculations on boron, carbon, oxygen, and fluorine. The matrix ele.—
ments of H~, between the excited configurations and the reference configuration (ls 2s 2p") are given in terms of Slater
integrals. The orbital indices of the Slater G" and R" integrals are suppressed.

Excitation

None

2s2 2p2

ls d

ls2 d2

s-dg

Configuration (T~)

Boron

p [ls'2s'2p]'P

1 [1s22P j 2P

[(lsd&) D2s 2p] P
[(lsd') D2s 2P] P

4 [ (d2) i$2s22p] 2P

[is (2sdg) DgP] P
[ls (2sdg) D2p] P

[To~a,J Tp

-v 2G'/3

R'/ S

-2R'/5+R'/S

G 2/5

R'/Ws

-2R'/5+R'/S

Configuration (T~)

Q [ls 2s22p ] P

1 [1s22p 4] ~P

Carbon

[ls 2(2sd»)SD(2p )3P] P
[ls (2sd») D(2p2) D] P
[ls (2sdg) D(2p ) P] P

[ (lsdi)3D2s'(2p') P] P
[(lsdi)~D2s (2p2) D]3P

[(lsdi) D2s (2p )3P]3P

5 [ (d2) i$2s2(2P2)3P] 3P

G i/3

-W2R'/3

-R'/Ws

2R'/5-R'/S

G'/ 5

-W2R'/3

-R'/ S

2R2/5 R'/3

Oxygen Fluorine

None

ls di

ls2 . d2
I

2s dg

2p fg

2p-P g

(See text) 10 Tio

p [ls'2s'2p ] 3P

[(lsd&) D2s2(2p ) P] P
[(lsdi)3D2s2(2p ) D] P

[(lsd&) D2s2(2p ) P] P

4 [ (d )
2 i$2s2 (2p 4}3P]SP

[ls (2sdg) D(2p ) P]IP

[ls2(2sd »)3D(2P4)iD] SP

fls (2sd») D(2p ) P] P

8 [ls 2s (2p3) Df»]SP

9 T9

2R i/3

-Ri/ 3

2R2/5+R'/3

G'gS

-v 2R'/3

-R'/Ws

-2R2/5+R /3

-sv 2R /5v 5

3R'/5~16

-3R'/5'

p [ls'2s'2p'] 'P

[(lsd&)~D2s 2p ] P

[ (lsd)) D2s 2p ] P

3 [(d )2 iS2s22P']'P

[ls (2sdg) D2p ] P

f ls'(2sd»)'D2p'] 'P

[ls 2s (2p ) Dfg] P

T?

R'/~3

2R 2/5 R i/

G'/W5

R'/Ws

2R2/5 R'/3

sv 2R'/5'

SR2/5~10

sv 3R2/5v 10

TABLE II. Orbital properties (in a.u.) of the MCHF orbitals.

Boron

Ap

Carbon

Ao

Oxygen Fluorine

ls 7.6743 20.8919 0.3239 11.3100 27.7754 0.2663 20.6480 43.4382 0.1960 26.3552 52.0800 0.1733

2s 0.5277 3.9254 1.9669 0.7374 5.4233 1.5856 1.2789 8.4495 1.1435 1.6098 10.2271 1.0031

2P 0.3852 3.3444 2.0830 P.4756 6.0988 1.6820 0.6515 14.6432 1.2276 0.7401 20.6062 1.0831

di 50.9400 562.6949 Q.3603 73.9037 1087.7641 0.3001 133.9072 3090.7272 0.2233 172.8751 4785.8900 0.1963

d» 0.6071 1.3788 2.39PP 0.8105 3.0945 1.9530 1.4030 10.5219 1.4184 1.7985 16.5900 1.2433

0.6984 16.5552 1.6273 0.8059 30.6688 1.4390

p» 0.6606 8.8918 2.7316 0.8388 12.6487 2.4093
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TABLE III. MCHF energies and weights of the terms. The list of terms is in the same or-
der as in Table I.

Excitation

B

Weights

0

None

2 2P2

1s2 d2
I

»-f u

p Il

0.963 68

0.227 42

-0.00049
0.000 32

-0.00557

0.13789
—0.023 35

0.977 19

-0.146 04

0.000 41
0.000 50

-0.000 29

-0.004 70

-0.097 36
-0.11747

0.021 60

0.99127

0.000 37
0.000 46
0.000 23

-0.003 55

-0.067 68
-0.087 56

0.005 19

0.033 86

-0.021 32
0.059 14

0.995 67

-0.000 43
—0.000 21

-0.00315

0.07445
-0.002 78

-0.030 02

-0.020 38
-0.042 08

Wave function Energies (a.u.)

Hartree-Fock
MCHF (this work)
Polarization '
First-order

-24.529 07
-24.584 36
-24.551 29
-24.587 42

-37.688 63
-37.746 25
-37.728 14
—37.750 68

-74.809 41
-74.856 02
-74.855 71
-74.858 98

-99.409 36
-99.439 86
-99.438 11
-99.439 76

See Ref. 5.

B. MCHF Results: Properties of Wave Functions

We first built the complete matrices of the
Coulomb operator for the chosen terms. The
orders of the matrices are equal to 7, 9, 11, and
9 for B, C, 0, and F, respectively. Then the
four MCHF computations were performed.

The main features of the radial functions ob-
tained are listed in Table II. They are, for each
orbital: e„„ the orbital energy; A, (nl)
= [R„,(r)/r'] „„where R„,(r) is the radial wave
function; and (r)„, , the mean value of r for
the nl orbital.

The mixing coefficients of the terms and total
electronic energies are given in Table III. For
each atom, the terms appear in the same order
as in Table I. We compare our electronic ener-
gies with the Hartree-Fock values and those
obtained by Schaefer et al. ' for their polarization
and first-order wave functions. To obtain the
Hartree-Fock values given in this and the follow-
ing table, we have computed the Hartree-Fock
wave functions using the MCHF program. " It is
interesting to note that our MCHF energies are
very close to the energies obtained by Schaefer
et al. ' for their first-order wave functions.

C. MCHF Results: Hyperfine Structure Constants

We constructed the matrices of the $ '&, (e&'&C&»}&»

and C parts of H„„for the chosen terms. Using

the MCHF radial functions we obtained by numer-
ical integration the values of all necessary inte-
grals

J
E 1

R„,(r) —,R„i,(r)r'dr.
p

These integrals were used to evaluate
(%gcHF I &~. I ~McHF)»ble &V presents
under the heading MCHF (nonrelativistic),
our results for the hyperfine structures of the
1s 2g'2p" Hund terms, in terms of effective values
of (r, ')», (r,cs)», and (rq')». We also present
in this table, Kelly's "&many-body perturbation-
theory results (MBPT) for 0, and the polariza-
tion and first-order wave-function results of
Schaefer et a$.' Values of (r ') derived from ex-
periment' are presented for 0 and F. For com-
parison with these experimental values we have
included relativistic corrections to our MCHF re-
sults. These corrections are taken from Judd.""

IV. DISCUSSION

A. Comparison with Experiment

Through his experiments, ' Harvey determined
the quantities (r, ')» and (r,c'), for 0 and F
ground terms. From Table IV, we note that our
MCHF values including relativistic corrections
are within 2% of the experimental values for 0
and within 1% for F. Our values are not as ac-
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curate as those of Kelly, '~') which are the best yet
computed. But, in view of the simplicity of the
model used, they are very satisfactory.

Our values are close to and always larger than
the values obtained by Schae fer et a l.' using po-
larization and first- order wave functions. For 0,
their results appear to be in slightly better agree-
ment with experiment than ours; for F, this situ-
ation is reversed. This agreement with their re-
sults is impressive indeed when we consider the
simplicity of our wave functions.

B. Reduction of Number

of Excited Terms

Limited as it is, the set of excited terms which
we used can be further reduced if we content our-
selves with including only configurations which
can make contributions to the hfs in true second-

TABLE IV. Values of (r 3)2& in a.u. The MCHF val-
ues are compared to other calculated values and to those
obtained from expe™ent.

B

TABLE V. Second-order contributions to the hfs in

oxygen .

("c)
Kelly a Kelly ' Kelly a

This work MBPT This work MBPT This work MBPT

1s d

2s d

2P -f
2P P

0.226

0.086

0.072

0.141 -0.193 -0.115

0.077 0.009 -0.007

0.065 -0.072 -0.065

-0.246 -0.229 -0.049 -0.046 -0.442 -0.412

a Reference 3(a).

order perturbation theory. We recall, following
Kelly, ' that the first- order perturbation contribu-
tion to the hf s involves only the matrix element
(ro [Hhf I T,); that second-order perturbation con-
tributions involve products (T, (H„„(T, ) x
(T, (H„„(T,); and that higher- (nth) order contri-
butions involve products of one matrix element of
H„„and several (n-1) of H„„.

As an example, we show how this reduction of
configurations may be made for O. For the

2p -p» excitation, we form the orthogonal linear
combinations [cf Eq. (7}]:

MCHF
(this work)

MBPT

nonrel .
rel. a

nonrel .
rel .

0.801
0.802

1.682 4.647
1.685 4.663

4.547
4.563

7.313
7.345

I T9'& = ~ I T9& /~+ I r.o& /~
I rl. &

=
I r.&/~ - ~ IT,.&/~ .

(9)

Polarization
wave function '
First-order
wave function

Experiment

0.767 1.679 4.613 7.276

0.757 1.663 4.570 7.234

4.58 7.35

From Table I, we note that (T, I H,„, I T,') = O.

Thus only Tgo will make a second-order pertur-
bation contribution to the hfs . In an analogous way,
the terms T, and T, of Table I can be transformed
into

(&sc),p MCHF
(this work)

MBPT b

nonrel .
rel ~

nonrel .
rel.

0.884
0.887

1.829 5.240
1.838 5.285

5.126
5.170

8.121
8.209 I r;) = ~ [ r, )/~- n ( r, )/m,

( r,' ) = vY [ r )/vY + W ( r )/W;
(lO)

O'Q') pP

Polarization
wave function

First-order
wave function

Experiment

MCHF
(this work)

MBPT b

Polarization
wave func tion

nonrel .
rel ~

'
nonrel .
rel .

First-order
wave function '

(& ) Hartree- pock e

0.830 1.782 5.125 7.963

0.817 1.769 5.100 7.950

~ ~ ~ ~ ~ ~ 5.19 8.14

0.695
0.696

1 504 4 241 6 745
1.507 4.257 6.777

4.205
4.216

0.744 1.637 4.334 6.880

0.683 1.537 4.307 6.852

0.776 1.692 4.974 7.545

and the term T,' can be deleted for the purpose of
second-order computations. The same applies to
T5 and T,. Thus, if we wish to include in our
MCHF calculation only configurations which can
contribute in true second- order perturbation
theory to (r '), we require only 7, 7, 8, and 8
terms for B, C, 0, and F, respectively.

We can now examine whether the contributions
to the hfs from configurations which contribute
first to the third and higher orders are important.
For example, for our 11-conf iguration MCHF
wave function for 0, we have calculated the con-
tributions to the hfs parameters from T9 amI Typ

[cf. Eq. (9)] as

a Relativistic corrections are. taken from Judd, Refs. 8 and 17.
Many-body perturbation-theory results of Kelly, Ref . 3 (a).
Schaefer, Klemm, and Harris, Ref . 5. Relativistic corrections

are not included.
Harvey, Ref . 6.
The restricted Hartree- Fock values have been recomputed for

numerical wave functions .

where i = 9 or 10 and C, and C,' are the MCHF
mixing coefficients of I T,) and I Tf ), respective-
ly. We find that the contribution to (r, '&» from
Tzp is -0.246 a.u. , whereas that from T,' is -0.033.
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This indicates that these configurations can con-
tribute to the hfs well over 10% of the second -or-
der effects.

C. Oxygen: Comparison with Kelly's Results

For oxygen, we can test the quality of our re-
sults in more detail. In his paper, '~'~ Kelly lists
the second-order contributions to the &r ') quan-

tities, obtained by MBPT. Table V presents his
results and ours for the four relevant excitations
and the three interesting parts of the hfs. Our
second-order values are computed aRer trans-
forming T„T~, T„T6, T9, and T,o, as explained
above, and deleting the contributions coming from
T' T' and T' The second-order values are ob-
tained, as described above, from

C,QC, &r, ia, ir,.),

where the sum over j is not taken for I, 5, and 9
and the primed quantities are used for i = 2, 6,
and 10.

Considering the figures for &r,c), we see that,
for the 2s and 2p excitations, our values differ
from Kelly's by approximately 10%. In contrast,
for the Is d& excitation, our value is in excess by
about 60% with respect to Kelly's figure. This
difference in behavior is confirmed by the figures
for &r, ') and &res) To try a.nd interpret this we

looked at the contribution of the Is-d&& excitation
to &r,c); this contribution can be computed from
the radial functions obtained for 0, but the corre-
sponding RS terms cannot be introduced in the
MCHF procedure because they have the same
angular form as the Is- d& terms. We obtain a
value around 5% of the second-order 1s-d, effect.
Consequently, the difference between Kelly's
figures and ours for the Is-dz excitation must be
attributed to the fact that our d~ function is essen-
tially stabilized, in the MCHF procedure, by the
ls'-d~' excitation (see above}, which is of no in-
terest for the second-order hfs values.

W'e conclude that to get correct second-order
results through the MCHF method, we must when-

ever possible, content ourselves with the intro-
duction of those excited terms which are primari-
ly useful for the studied atomic property (the hfs,
here).

To be more precise, this means that we should
avoid including in an MCHF wave function the
terms which have zero matrix elements with the
reference configuration for either H,„,or H~, .
For 0, for example, this means that T,', T5, and

T,' should not be included since the matrix element
of H„„with T, is zero. Of course, T,(ls -d,')
should not be included, but also T,(le d, ) and

T,(2s-d») since for both the matrix element of
H„„with T, is zero.

D. Contact Contributions to hfs

As a by-product of our work on the orbit-depen-
dent parts of the hfs, we can get some information
about the quantity ( P(0) (

'. We take once more 0
as an example.

Owing to the occurrence of the excited con-
figurations Isd&2s 2p' and Is'2sd»2p' in the expan-
sion for the ground-state term, the mean value of
the Fermi hfs contact term is not zero. Following
Abragam and Pryce, "let us compute the quantity

4m
X =7 &Z 6g(&» }&~.)g.

where P is the state ' P„M~= 2, and the spin 8 is
1. We get, using the A, (ls) and A, (2s) values in
Table II,

X ~g = 0.373 au.

Bagus et a/. "have published theoretical values
of the Fermi contact term obtained from the spin
unrestricted Hartree-Fock method (SUHF). This
method can be called a second-order method,
since it takes into account implicitly the Is ns
and 2s ns excitations. ' '" It yields

XSUBp = 1.228 a.u.

We conclude that, to compute the Fermi contact
term, the third-order contributions (as are those
from the e-d excitaiions) are of eesenhe/ impor-
tance. This result is also clear from the work of
Kelly'+~ on the contact term in oxygen. [We note
that the third-order diagrams of Figs. S(a}and

S(b) of Ref. S(b) involve configurations of the
form that we have included in our MCHF wave

function. ] However, the importance is demon-
strated here in terms of a CI wave function.
In terms of the CI wave function, the large
contribution of these s-d excitations is
clear. The diagonal contribution to X of, say, T,
and 2; for 0 is proportional to C',

~ p„(0)(
' and

C', ) p„(0))', where C2 and C', (the MCHF mixing
coefficients) are -0.005 and

~ y„(0)~' is quite
large; A', (2s) is -VO a.u. (cf. Table II).

V. CONCLUSION

The MCHF method yields, without too much
labor, relatively accurate ab initio values for the
orbit-dependent part of the hyperfine structure.
Agreement with experimental results for O and F
is satisfactory. The MCHF results are also quite
close to the polarization and "first-order" wave
function results of Schaefer et ag. ' In comparison
with their wave functions, we note, however, that
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we have (l) used fewer types of excitations
(especially, in comparison with the first-order
wave function), and (2) used only one o"ptimized "
orbital for each type of excitation. Thus our MCHF
wave functions are very compact. Further, (3) the
MCHF method, since it involves numerical inte-
gration of Hartree-Fock-like equations for the
orbitals, avoids the problem of determining
opbmum (or near opbmum) nonlinear parameters
for the basis functions used by Schaefer et al. '

Tmo numerical difficulties mith the MCHF
method should, however, be noted. First, we
mere not able to obtain convergence for excited
orbitals which have a very small effect on the
total energy. Second, the fact that the computer

program which me used" does not allow for the
occurrence of interconfigurational off-diagonal
elements involving the kinetic energy and the
electron-nucleus interaction also limits its pos-
slbllltle s.
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