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It is shown that the factorization method, when introducing accelerated ladder operators or accelerated
ladder matrices, leads to a formula in closed form for the general ofF-diagonal (n Q n ') hydrogenic ra
matrix elements. This explicit expression, which involves only factorials and binomial coefficients, is
directly reducible to any particular case. The well-known selection rules follow from the formula. The
method seems appropriate to other cases of factorizable equations. Its extension to the Dirac-Coulomb,
generalized Kepler problems, and the discrete-continuous case is considered.

INTRODUCTION

If, for special cases, hydrogenic radial r inte-
grals have been calculated many times, either
using the generating function of Laguerre poly-
nomials "or using both the factorization meth-
od and algebraic manipulations, ' or both the fac-
torization method and group theox'y, 4 ' the eval-
uation of the general matrix element is known to
be rather difficult and intricate, owing to the
quantum-number-m dependence of the variable.
Recently, we have questioned whether the fac-
torization method is solely able to give recursion
formulas or whether it can also give explicit
formulas without the help of group theory, and
we have showns that this method, when followed
by an "accelerated" operatorial formalism or an
equivalent matrix procedure, leads to formulas in
closed form for calculating diatomic vibrational-
transition matrix elements. While investigating
this last question, it appeared that it contained
the hydrogenic case with two slight changes: On
the one hand, the key matx ix elements are trivial,
as they merely reduce to factorials or to Euler
complex-r functions (for the discrete-continuous
key matrix elements); on the other hand, one must
be careful when normalizing the wave functions. s

A px eliminary investigation has shown that the

difficulties for evaluating the diagonal or the off-
diagonal matrix elements are of the same kind;
in the present paper, we consider, the general
(s wn') hydrogenic radial r~ integral. Other par-
ticular cases are merely a reduction of this last
case. In Sec. I the recursion formulas we use
are derived. In Sec. I, it is shown how the oper-
ator formalism and the alternative matrix pro-
cedure wox'k, and we give the hydrogenic radial
(nf lr In' l') matrix elements in closed form. The
results are given and discussed in Sec. ID.

I. RECURSION FORMULAS

The radial Schr5dinger equation for a Coulomb
field, after setting (I(„, (v) =r 'R„, (v), is

ff one defines 2Z& =e* and B(r) =e* fJ(&), Eq. (&)
transforms to

Equation (2) is factorisable, "i.e., one can write
the following pair of difference-differential equa-
tions equivalent to Eq. (2):
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1, d 1, d—e*-S ———e*-S+—V =(S -m )U2n dg 2Q dg

(
1 d 1 d—e* —(S + 1) + ——e* —(S + 1}——Ue

2n dx 2n dx

= [(S + 1)' -rrP] U

The radial matrix elements to be calculated are

(nl ir»[n' l') = f R„*,r R„., dr, (10)

when the R„,(r) radial wave functions are assumed
to be normalized to unity. By introducing the
U +'(x) wave functions, one gets

where
j 1S =n-g and m=1+ g. (4)

(nl i
r»

i
n' l') =[CC'/(2Z)»+']5g' „,(m, m'),

where

Thus, the corresponding ladder operators are de-
fines

ff; U„' = e*——S + „—U' = [(S -m) (S + m)] U'-',/~ sr

9R, „,(m, m') =(1/CC')

x f Usa+a (x)&(»+») xUm&+ o&
(

(12)

ff+U '= ~x -S-—U -'d
2n ch

=[(S -m)(S+m)]'/*U' .

(5)
As pointed out before, the values of the constant
C(or C') must be adjusted to match with the usual
R„,(r) normalization condition. One gets

C» = (2Z) ' f (R«}» r ' dr = [Z/n'(2l + 1)],

The necessary condition for the existence of
quadratically integrable solutions is'

S -m =v=integer=n-l -1. (6)

so that

C -Zl/»n-3/2(2 l + l )-1/2 (14)

The key eigenfunctions are obtained for
9 =m -v=0 and are solutions of the first-order
differential equation

g m + Uts 0

Qne gets

U~=Cn- [(2m-1) l] /»exp(mx —(1/2n) e')., (8)

where C is a constant which shall be adjusted
further to match with the usual R„, normalization
condition. As has been previously shown, ' the
ladder operators are defined so that they preserve'
not only the quadratic integrability but also the
normalization of the eigenfunctions U '" and

It should be noted that for 0=-2 andm+ v=m'
+v', i.e., n =n', owing to the orthogonality of the
U "functions, ' the matrix element (nl[r»in'l')
vanishes unless m =m', i.e., l =l'. Qne finds
again the well-known result of Feinberg, "which
appears as the limit of the Pasternack-Stern-
heimer" condition which will be re-established
further.

Now, one must calculate the general matrix
element K» ..(m, m') [Eq. (12)] and derive re
cursion relationships, giving its determination
in terms of the key matrix elements

2nn' + '+~+'
5gt, (m, m') =

» +n'

+ eo +a
C» f (Usl)$ dx f (Ulll+» .)» dx (8)

(m + m' +0+ 1}l

n n'™[(2m-1}l(2m' —1) l]'/* '

Each eigenfunction of the whole discrete set of
quadratically integrable solutions of Eq. (2} is
now completely characterized by the integer val-
ue of v, which fixes its rank starting from the
key function U [Eq. (8)], labeled v=0. The
quantum number v is just the usual radial quan-
tum number n„=n -l -1.

(15}

Obviously, from (15), the only nonvanishing key
matrix elements are obtained for k ) —(m + m'+ 1),
i e , k & —(l.+. l ' + 1).

Using Eq. (5) with the quantification condition
S =m + v, and owing to the mutual adjointness
of the ladder operators, we find for v&0:

(m m') = [v(v+ 2m)] '* f'" (ff' U +')e&"* *U„"i" dx

[v(v + ~}] $/» f Uss+v-I (fI e(»+») s Ulll +v }dx (16)
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In order to always have the ladder operator H-+,
acting directly on the wave function, we note that
there exist the following pair of relationships
which are valid for any value of the constant "a"
and of the quantum numbers "m" or "v" (this
relation will be used systematically):

H' e'* U(x) = e'*(+a + H ')U(x) .
Then, remarking that

where

n-t -1 (n-l +k)l
(

~ 2
for 4& max

l -n

(23)

1» i i (-k-2}l
~

~ 2- (- )
( k+ l n 1) t

for k &min
f

H +„U(x) '=[H i+, i+ (m' -m + v' —v)

+ (1/2n-1/2n')e*]U(x), (18}

one finally obtains the following required recur-
sion formula (v') v):

+ „,(m, m') = [v(v+ 2m)] -'~'

x[[v'(v'+2m')]'~'5g' „,(m, m'}

+ (k+ 2+m' -m+ v' -v)+, „I(m, m')

+ (1/2n —1/2n')5g»+', „,(m, m')] (19)

Thus

(1&i & v). (20)

and its counterpart (v) v'), which is formally
obtained by interchanging respectively v, n, m
and v', n', m'. By repeated use of the recursion
relationship [Eq. (19)] and its counterpart, any
matrix element 5g»„„,(m, m') can be finally ex-
pressed in terms of the key matrix elements
5g,', (m, m') [Eq. (15)] (i -k).

It should be noted that for n =n' and v' =0, the
relationship in Eq. (19) merely reduces to

(k+ 2+m' -m —i)Jg, ,( , ) —
[

.
(

.
2 )],~, 5g , , ( , )

A. Operatorial Procedure

For each value i of the quantum number v, Eqs.
(5) may be rewritten

U(»+I e& (m + i) + Um
+( i(i U(((+4-1d

m+ j m 2 g& m

(24)

H+ U sl+( 1 sx (m+ i) U(((+( 1 N IUII+Id
II+I Il 2 d Il 4 sl

where

N& = [ i(i+ 2m)]~~»

and¹,= [i(i + 2m')]'~»

(25)

The ladder operators in (24) may be considered
as "one-step" ladder operators which generate
the eigenfunctions, step by step, upward or down-
ward. Let us define the "accelerated" or "v step'"
operators

(26)

II. CALCULATION OF MATRIX ELEMENTS

Although the recursion formula (19) is valid even
for discrete-continuous matrix elements, ' ""we
limit ourselves hereafter to discrete-discrete
matrix elements.

g=l LZ(~ + ~ l/2

For the diagonal element, i.e., n =n', and for
v' =0, i.e., m' -m= v= l' —I )0, the matrix
element 5g»» (m, m') vanishes when
2&-k&1+ (f' —l). This is the Pasternack-
Sternheimer" selection rule.

Using Eqs. (11), (14), and (15), one finally
gets

n-g -1
(. (lr'( a —(&= n (1+(+ ()

4=l

(21)
Since, obviously, the ladder operators H+,

&
and

H', &, respectively, commute among themselves,
one gets

X+U-=X V+V
V 77$ V $$

X((U"„'"= 5f(,U(((,

where

V vf'v+ 2'2„= H [i(i + 2m}]'~'= ' ' ' . (28}
(2m} I

Then the matrix element [Eq. (12)] may be re-
written

n»-'(l + n + k + 1) t

2 (2Z) [ (2n —1) t (n —l —1) I (n + l ) I ]'('»

(22)

sa' „,(m, m'}=51-„'f (X:U")e&"'&*U ""'d».
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HSls~ j —HtN (31)

one gets, when introducing the abbreviated nota-
tion

kp= 0+ 2+m' -m

(32)

Owing to the mutual adjointness of the ladder
operators, we get

j ya
U)~ (iK. e(ktl) s Um'+v' ) d&

I
V

+so V

n)i- )
Ni"')*(1 '"' i*

eo j~y
(3o)

Using Eqs. (17) and (18), and noting that

Using Eq. (17) once more, and rearranging the
terms, one deduces

V

II (k + n e'+H -i) U

V i
(n,e')' ' II (k, +H„-u)U ..'" . (34)

j ~p g j.

One must now introduce upon U i" the action of
the success ve one-step down H-.,„, ~ ~ ~ operators.
The finite-difference mathematical nature of this
quantification problem suggests the use of the
Vandermonde'4 formula [Eq. (35)] to transform
the product factor of [Eq', . (34)]:

(a+b -u)
a=1

no = (1/2n —1/2n '};
ya

3g~ (m m') = Us& ~(A+2) x
V, V~ y ~ Vt

V

f g, f-f f
(a+ u - i - 1}II (5 + w —1) .

f 0 2 g=g fV
(35)

V

x II (ko+ noe* + H-, - i )U"„+" dx .
i=i

(33}

We apply the Vandermonde formula for a =Op+ v'
and b=g -v'=H r+„., since, obviously, 4p
commutes with H" . Hence, we get

II'(n~*+ k, +H , -i)U„"-',"' =g . (n e')" 'Q .
~

II (k, + v'+u -i -1) IIH„,„+w-I U .'"
p 3t 1

(36)

so that now, since

One finally obtains

II.' „,(m, m'}

x'
1) i U)))i+I) 5 (37)

+v

element 3R~ „,(m, m') in terms of the simpler ones
3go~'„",-J (m, m'), but also because it gives the deter-
mination of these last matrix elements in terms
of the already calculated [Eq. (15)] key matrix ele-
ments 3R~,(m, m'). Indeed, for v'=0, involving

j =0, expression (38) reduces to

3g, (m, m'}

(.)g(.)(n ()1 + s' —i+u -1))

x'.x "' n"-'3g"" (m m').0 P,Vi-f
V

(38)

Expression (38) can be used twice, not only be-
cause it gives the evaluation of the general matrix

V

(k, -i+u —1))n' 'Q" '(m, m'),
+v i=p

(39)

Hence, using both Eq. (38) and the counterpart of
Eq. (39), (for v'-v' —j) one obtains the required
expression of the general matrix element in terms
of the key matrix elements

g I V f ~I ' Ql

x -' r n (1.+ — — )) (-)"- -'g"-"-'I(,"'-'"'-'-"
+v '-f 3tx=o

(40)
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Before explicitly deriving the corresponding final
expression of ( nl )

r'
(
n' l ' ), we investigate its

alternative determination by a matrix procedure.

8. Matrix Procedure

to the 31~0
& (j = 0, v'), . by the action on the "accel-

erated" or "v step-down" matrix

{45)

Before investigating the general case non', let
us first, for the sake of clarity and simplicity,
consider how the matrix procedure works for the
diagonal case n =n'.

1. Diagona/ Matrix Elements n =n'

and particularly

V'„„.=5R„' „,=Q(5C)..... , V.', ,
f=o

(46)

(4V)

For n=n', the. set of the [(v+ 1)x(v' +1)]
successive recursion formulas [Eqs. (19)] (i =0, v
and j =0, v') reduces to

Q ~ (m, m' ) =H) ~ [HJ 5R), ~ ~ (m, m' )

+ (0, + j —i)5R', , ~(m, m')],
(41)

where N, , Nz, and ko have been defined by Eqs.
(25) and (82), respectively.

For each current value i of v, this set of equa-
tions can be replaced by the action of a one-step
square matrix [H(i) ] acting on a (v' + 1)-dimen-
sional vector [ Vf J in which, for convenience,
the successive normalization constants ¹zare
incorporated. This last procedure produces, as
will be seen later, a substantial simplification in
the final result.

Indeed, let us define the following square matrix,
and vector

Owing to the particular structure of the commuting
successive square matrices [H(i)], the current
element of the last rom of the accelerated matrix
[R„]is {v' & v)

v«f
(X„)„,„= . g(k +v' -v+n -1) (j = O, v').

g=l

(48)

One finally obtains the following expression
which is valid for n =I' and e' ~ e:

, Vt V

5R„, =(I/51„)g . g (k, + v' —v+n -1)
f ««o ~. m=1

&(5I„'. /5I'„, „)5R', „

As shown in the preceding section, successive use
of expression (49) and of its counterpart for v =0,
allows the determination of Q „, in terms of the

key matrix elements 5R, o

[H]=

a'o+e

(42)

2. Off-Diagonal Matrix Elements non'

Let us consider the general case nwn'. The
corresponding set of the [ (v+ 1) (v' + 1)] succes-
sive recursion formulas (i =0, v and j =0, v') is
now

5R q+ ~~ (m, m' ) ~Ãg ~ [¹~5R ~)+~ ~,

where the (j + 1}th component is

V

21 «O

(42)

Hence, for each current value i of e, the matrix
equation

[V;] =N [H(i)][V,(, [H(i)] =[H] —i (44)

is equivalent to the set of recursion formulas
[Eq. (41)] when multiplying both sides successive-
ly by¹,*, N,'& x .. . ¹x,when' decreasing from
gl

Then, one can relate [ V„[ to ) V0 [, i.e., 5R...

(50)

where N, , ¹fand k„no h.".ve been defined by

Eqs. (25) and (32), respectively.
For each current value i of e, this set of equa-

tions can be replaced by the action of a one-step
rectangular supermatrix [[G(i)]] with [(v - i + 1)
x (v' + 1)] rows and [ (v —i + 2}(v' +1}]columns
acting on a [(v —i + 2}(v' + 1}]-dimensional super-
vector () W, ,[) . Indeed, let us consider the follow-
ing supermatrix and the corx esponding super-
vector, in which, for convenience, the successive
powers of the constant no are incorporated:
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[1] [H(2 — )]
[1] ~ .

~ ~

[[&(i)]] =
II w, II=

[1] [H(i -1)]
[1] [H(i)]

no-I
I

gib+2}-4
I

n, IV)+'I

IV& I

(51)

where [H(i)] = [H] —i.. . and [H] is the preced-
ing (v' + 1)-dimensional square matrix (42) and
the supervector I W, II is built up from the pre-
ceding vectors I Vf I [Eq. (42)] . With these defi-
nitions, Eq. (50} is equivalent to the matrix
equation

II +g II =&g' [[G(i)]]II &~,ll (52)

Hence one can define, in the same way as before,
the accelerated supermatrix

1 V 4

V'„„.= Q . n", 'Q (R, )„.„, , V", „".', , (55}
Vf-0 ~ j Q

where the scalar matrix element (X, )„,„, ~ is
given by Eq. (48}.

Finally, using Eq. (43), one finds again expres-
sion (38} that was derived by the operator pro-
cedure. Of course, as expected, the operator and
the matrix procedures correspond step by step.
Nevertheless, as pointed out elsewhere, ' from a
computational point of view, the matrix deriva-
tion seems more advantageous than the use of an
explicit expression.

[[9]]=~ II [[G(i)]],

so that, introducing the accelerated matrices
[36(] [Eq. (45)], one gets the matrix relation

IV'I= —Q [se ]n'-'I V"'-'Iv
V

3I i=0

and then

(53)

(54)

HI. RESULTS

In order to derive the final (nl I r'I 'nI') matrix
element we make successive use of expressions
(ll), (14), and (15) and substitute the definitions
of X, [Eq. (28)] k, and n, [Eq. (32)]. Then,
keeping in mind that v=n„=n-l -1, v' =n'„

1=n' —l' —1, m = l+2, andm' =l'+ g, one obtains
the following formula which is valid for v' & v:

V V-5' ~ V Wj

(nil r ln'I') =A+ . Q . II (k+ 1+n' n+ i+-u}
i ~0 j=0 2 I~1

v«j g n~-~ '+' V «f«i
ng " (-}t "; (l+1'+2+2+1+t}l }}. (l-l'+2+2 ~ 1- }),t 8 +S u=1

(56)

where

1 n+2' '-' 2» '""' 2»' ""' (n' —l' -1}l(»'+ t'}t)l
4Z 4Z n'+ n n+ n' (n —l —1) t(n+ I)( (5V}

We have written formula (56) with the II symbol rather than with the equivalent ratios of factorials to keep
the same expression for any value of 0. Furthermore, selection rules are apparent.

Setting n =n', the only nonvanishing contribution in Eq. (56) corresponds to i + t =0 (i.e., t =0 and i =0)
and we obtain

V V«j j 1
(nl I

r'I nl') ~A, Q . II (k+1+u) II (& —&'+0+2-u)
s=1 g~1

(58}

where

n '-' (n —I 2 —1) l (n+ I ') I

4Z 2Z (n —I —1) l(n+ I) l
(59)
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Formulas (56) and (58) have been checked with
the available explicit expressions givenelse-
where. """

IV. CONCLUSION

It appears that the factorization method, when

using accelerated ladder operators or accelerated
matrices becomes a powerful tool for calculating
matrix elements. We have shown that the problem
of calculating hydrogenic radial r~ integrals for
any value of the quantum numbers, i.e., for
Nen', l ol', and any value of 0 can be completely
solved. Up to now, even using group theory,
closed-form formulas for the general case have
not been given except for the particular cases
k =1 or k = —1.'*" (See also Infeld and Hull. '}
It should be emphasized that our recursion for-
mulas [Eq. (19)] and, correspondingly, our ex-
plicit expression (56) of the radial r' integral,
which are established for the general case non'
are "continuous" when n =n' and then, as was

shown in Sec. IG, can be reduced to any particular
case. As pointed out by Landau and Lifshitz (see
Ref. 2, p. 159}, Gordon's formulas are not di-
rectly valid for n =n' owing to the presence of
the variable 4-nn' j(n -n')' in the hypergeomet-
ric function.

By introducing a direct factorization closely
related to Schr5dinger's technique, ' we have over-
come, without introducing either a dilatation
operator or a nonphysical two-variable wave
function' —the well-known difficulty that the
radial variable is not r but r/n.

We find again, for n =n', the Pasternack-Stern-
heimer" selection rules by directly considering
the nonvanishing conditions of products appearing
in expression (58). By inspection of our general
expression (56}, it seems that for nssn', these
selection rules do not hold. The same conclusions
occur for discrete-continuous matrix elements.
This last case as well as the extension of our
results to the Dirac-Coulomb and the generalized
Kepler problem will be given elsewhere.
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