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Theory of Hyperfine Stark Shifts in Many-Electron Systems: Application to Lithium*
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The linked-cluster many-body perturbation theory has been applied to the study of the quadratic Stark
shift of the hyperfiae transition frequency of lithium atom. This procedure provides a method of
quantitatively analyzing the relative importance of one- and many-electron contributions to the hyperfine
Stark shift. The theoretical result Sv= —(5.2+0.3)X 10 e Hz/(V/cm) obtained for lithium is in
substantial agreement (86%) with the recently measured value Sv= —(6.1+0.2) X 10 ' e' approaching the
situation in the hydrogen atom.

Recent measurements' on the influence of elec-
tric fields on the hyperfine transition frequencies
in the alkali-metal atoms pose a challenge to our
theoretical understanding of electronic structure
of atoms since it simultaneously requires accurate
knowledge of the electronic wave function near the
nucleus for the hyyerfine interaction and the pe-
riyheral region for the electric-field perturbation.
This article is aimed at demonstrating for the first
time that a first-principles many-body calculation
of this hyperfine Stark shift (HSS) effect can give a
clear understanding of the mechanisms that con-
tribute to this effect and can provide agreement
with experiment to the same order as currently
exists '3 for the ideal case, the hydrogen atom.
Although syecific quantitative application is made
here to the case of lithium atom and comparison is
made with exyeriment, the procedure adopted is
directly applicable without modification to more
comylicated systems, such as the heavier alkali-
metal atoms as well as -the fifth-group atoms, the
latter being potentially more interesting from a
many-body point of view. '

A theoretical analysis of the 888 in many-electron
atoms and molecules essentially requires the yer-
turbation of the exact wave function for the atom
by two orders in the ayylied electric field and one
order in the hyperfine interaction. Since exact
many-electron wave functions are not usually avail-
able, it is convenient to utilize a set of states de-
rived from a single-particle potential as a basis
for the perturbation treatment of the problem.
However, for both hyyerfine effects '5 in isolated
atoms and electric-field shielding effects, 6 it is
well-known' that many-body correlation effects are
often important. One therefore needs a procedure
which can include correlation effects in both the
yresence and absence of the electric field in a
straightforward way, such as the Linked-cluster
many-body perturbation-theory (LCMBPT} ap-
proach adopted here.

In this approach, one handles all three perturba-

tion terms, the electric field term H„ the hyyer-
fine Hamiltonian HM„and the electron-electron
interaction through the diagrammatic perturbation
procedure (the last being included in principle) to
all orders. In keeping with the convention usually
adopted, ' the quadratic HSS 5v is defined by the
relation

v(s) and v(0) being the hyperfine transition frequen-
cies between the E=/+ I and F =J+I- 1 levels, in
the presence and absence of the electric field g,
respectively. The constant x in Et(. (I) is mea-
sured by experiment' and is the quantity to be cal-
culated here. Considering only the magnetic hy-
perfine Hamiltonian in a iI"M~PI) representation
and utilizing the techniques of Racah algebra, one
obtains

Iv= Z (ZM, =Z~ 7,'"(a)~JM, =Z). (2)

Here we have taken II~, =I"' [7'"(0)+& '(I)
+ 2'"(2)] as the tensor-product form of the Hamil-
tonian with the labels k = 0, I, 2 in Eg. (2) denoting,
respectively, the Fermi-contact, magnetic-orbital,
and syin-dipolar operators. For the nuclear-
quadrupole contribution to the 888, one obtains a
similar exyression for the general case J& —,'.

In Eq. (2}the IZMz =J) represent the electronic
wave functions for the system in the absence and
presence of the electric field g, where in the latter
case J (and M~) characterize the corresponding
state in the absence of &. In the LCMBPT proce-
dure these wave functions are given by the linked-
cluster expansion, ' namely,

Here 40 is the solution to the zeroth-order problem
H040 = E040, with Ho constructed with the V" ' one-
electron potential. ' The perturbation H" in Eq.
(3) is
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FIG. 1. Leading diagrams for the H88 of Liv. Contri-
butions to & above the diagrams are in units of 10 8 HE/

(V/cm) 2.

a"=Z —+ Z v", -'+a„ (4)
+Q

with the Stark Hamiltonian being H, =g, er& ~ e in
the presence of g.

For the lithium atom in its ground-state configu-
ration 1s 2s, 8,~2, the occupied and unoccupied
states were obtained by numerical integration of
the one-electron equations for a V" ' potentials due
to the 18 core and the nucleus. In evaluating the
magnetic-hyperfine-frequency contributions in Eq.
(2) using Eq. (3), the linked perturbation diagrams
which make significant contributions to ~ for I.i'
are shown in Fig. 1. The symbol 6 in these dia-
grams denotes the H vertex. Similarly, C or D
followed by a wiggly line corresyonds to the Fermi-
contact and spin-diyolar interactions, the orbital
interaction being ineffective here. Although, in
keeping with the experimental situation, diagrams
are presented fox the case of electric field and
reference magnetic field (determining the spin
quantization) parallel, the perpendicular case can
also be evaluated by suitably changing the angular
factors fox the syin-dipolar diagrams.

Diagramso l(a)-l(f) represent the most important
Fermi-contact contributions to the HSS. These
appear to involve the zero and first orders of elec-
tron-electron interaction on the perturbation of the
wave function by the electric field. However, if
one counts the oxders of electron-electron interac-
tion per ee, some of these diagrams, namely, 1(a)-
l(c j, involve additional orders of electron-electron

interaction which are yresent even fin the absence
of the electric field. This fact is exylained in Fig.
2, which gives the meaning of the bars in diagrams
1(a)-1(c).

For lithium, diagrams 1(a)-1(c)contribute about
V0% of the calculated HSS. Thus, because of the
near degeneracy of the 28 and 2p states for lithium,
the 2P contribution in the major diagram l(a) con-
stitutes almost everything (99. I%), with higher ex-
cited states contributing only 0.8% of the total.
Considering the other class of Fermi-contact dia-
grams, l(d) gives a substantial (about $0%) contri-
bution to the 888 and physica1ly it x'epresents the
radial expansion of the 28 state owing to second-
order perturbation by the electric field. In this
diagram, the kP = g contribution accounts for
84. 5% of the total value, the remainder being due
to 3p and higher states as well as the continuum.
The effect of the electric field on 18 states is
smaQ, as is evident by the contributions from dia-
grams l(e) and l(f) as well as l(b) and l(c). This
is easily explained by the combination of the small
overlap between the 18 and 2s states and the fact
that 18 is tightly bound to the nucleus and can
therefore be only weakly perturbed by the electric
field.

Finally, diagram 1(g) illustrates that a spin-
dipolar interaction is possible when the 2s is ex-
cited to a p state by the electric field. The contri-
bution from this diagram is small (about 1.+) and
opposite in sign to the net Fermi-contact contribu-
tion to the shift. Dipolar contributions which are
yroduced from a second-order perturbation of the
wave function by H, were very small. A nuclear-
quadrupole interaction is also possible in the pres-
ence of the electric field and receives its major
contribution to the 83S from a diagram analogous to
1(g). For Li7 (where @&0), the quadrupolar HSS
effect is of the same sign as the diyolar and about
2. 5% of the latter in magnitude.

From the values of the diagrams, one can draw
conclusions about the relative importance of con-
tributions from the perturbation of individual one-
electron states [diagram 1(a) with bar replaced by
Fermi-contact vertex inserted on 28-hole line, as
in the first diagxam on the right-hand side of Fig.
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FIG. 2. 8ignificance of the '%er"
in the 888 diagr~msi of Fig. 1.
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2, and diagrams l(d), l(f), and 1(g)] and those from
the additional influence of electron-electron (ee)
interactions. The role of ee interactions can be
split up further into two parts. The first part in-
volves effects associated with the unyerturbed
atom, referred to hereafter as zero-field ee ef-
fects. The second type of ee effect depends on the
yresence of the electric field and will be referred
to as the Stark-perturbed ee effect. Examples of
the latter are represented by diagrams 1(b), l(c),
and 1(e). For the present case of lithium, the net
ee interaction contribution is about 20% of the total
calculated H88. This is almost entirely constituted
of the zero-field ee effect, owing to the near can-
cellation of the Stark-perturbed ee effect among
1(b), l(c), and l(e).

This examination of the relative contributions
from various diagrams and the similarity' of the
direct, core-polarization, and correlation contri-
butions to the zero-field hyperfine interaction,
among the alkali atoms, led us to conclude that the
over-all importance of ee results will be quite
similar for all of them. As a point of detail, for
the other alkali-metal atoms, the influence of the
Stark-perturbed ee effect, of course, may not be
as negligible as in the present case, because the
close cancellations among the class of diagrams
1(b), 1(c), and 1(e) may not recur, especially since
we now have P shells for the valence-s electron to
correlate with. However, one does not expect this
latter effect to be of determining importance. In
the light of this conclusion, one can understand the
reasonable agreement between theory and experi-
ment obtained for Cs"3 by Feichtner, Hoover, and
Mizushima, '~ who did not explicitly include ee ef-
fects in their calculation. However, the influence
of the sero-field ee effect was included indirectly
in their treatment through the use of the experimen-
tal hyperfine energy, as examplified by Fig. 2. In
addition, continuum excited states were not included
in this treatment. " But this also does not appear
to be a major factor in alkali-metal atoms, in view
of our observation that the continuum states do not

play a major role in lithium [only 15% of diagram
1(d) and a negligible fraction of diagram I(a)] due
to the yroximity of the 2p excited state and a simi-
lar expectation for the other alkali-metal atoms in
view of the small ns-np separations. On the other
hand, without further work this conclusion cannot
be extended to the case of other atoms, particularly
those involving more than one electron in the va-
lence shell, such as nitrogen and phosphorus,
where correlation effects have already been shown4

to be of determining importance for hyperfine in-

teraction in the isolated atom.
Our theoretical H88 for Li' leads to a value of

a in Eg. (2) of —(5.23 + 0. 3)x 10 8 Hz/(V/cm) for
the parallel case and —(5.35+ 0. 3)X 10~ Hz/(V/cm)
for the perpendicular case. 9 The recently mea-
sured value for the parallel case is —(6. 1 t 0. 2)
xlQ s Hz/(V/cm)'. The mean values of the calcu-
lated and experimental results agree within about
14% of the latter. We have included an estimated
error range for the calculated value of z which is
primarily due to the numerical techniques asso-
ciated with the integration of the electric field ver-
tex in Fig. 1(d). An analysis of uncertainties in the
continuum-continuum integration in this diagram
associated with this vertex led to an uncertainty of
not more than 15% of this diagram or 4% of the ex-
perimental value. For the large contact diagram
l(a) we estimate an error of no more than about 1%
of the experimental value due to numerical tech-
niques. %e thus consider our error-range estimate
of ~ 5% or + 0.3x10 ' Hz/(V/cm)' as a reasonable
upper limit for our theoretical result. Because of
the relative simplicity of the lithium atom, we feel
that no significant diagrams or physical mecha-
nisms have been omitted from consideration.

The present situation of the small but significant
difference between theory and exyeriment for lithium
is somewhat similar to that for the hydrogen atom,
where one anticipates the best possible agreement
between theory and experiment. There are two

published theoretical estimates3'~ for hydrogen
which differ among themselves by 10%. On the ex-
perimental side, a recent measurement leading to
a value - (0. 79+0.08)x10~ Hz/(V/cm) has yielded
tr about 6% larger than the previous result, "while
the range of error has been increased from 6 to
10%. The most recent published theoretical result~
is about 10% different from the latest mean experi-
mental value and just inside the range of experi-
mental error. In view of these observations on

hydrogen, it appears to us that additional measure-
ments of the lithium HSS, including a measurement
of ~ for the perpendicular case, would be very help-
ful in resolving the small remaining difference with

theory. In this connection, it is worth noting that
for potassium a difference in mean values of z of
about 10% has been reported between two recent
measurements. ' '~ We are currently in the proc-
ess of carrying out a theoretical study of z along
the same lines as here to make a comparison with
this system.

The authors are grateful to Dr. R. J. Mowat for
sending us his results prior to publication.
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It is shown that the factorization method, when introducing accelerated ladder operators or accelerated
ladder matrices, leads to a formula in closed form for the general ofF-diagonal (n Q n ') hydrogenic ra
matrix elements. This explicit expression, which involves only factorials and binomial coefficients, is
directly reducible to any particular case. The well-known selection rules follow from the formula. The
method seems appropriate to other cases of factorizable equations. Its extension to the Dirac-Coulomb,
generalized Kepler problems, and the discrete-continuous case is considered.

INTRODUCTION

If, for special cases, hydrogenic radial r inte-
grals have been calculated many times, either
using the generating function of Laguerre poly-
nomials "or using both the factorization meth-
od and algebraic manipulations, ' or both the fac-
torization method and group theox'y, 4 ' the eval-
uation of the general matrix element is known to
be rather difficult and intricate, owing to the
quantum-number-m dependence of the variable.
Recently, we have questioned whether the fac-
torization method is solely able to give recursion
formulas or whether it can also give explicit
formulas without the help of group theory, and
we have showns that this method, when followed
by an "accelerated" operatorial formalism or an
equivalent matrix procedure, leads to formulas in
closed form for calculating diatomic vibrational-
transition matrix elements. While investigating
this last question, it appeared that it contained
the hydrogenic case with two slight changes: On
the one hand, the key matx ix elements are trivial,
as they merely reduce to factorials or to Euler
complex-r functions (for the discrete-continuous
key matrix elements); on the other hand, one must
be careful when normalizing the wave functions. s

A px eliminary investigation has shown that the

difficulties for evaluating the diagonal or the off-
diagonal matrix elements are of the same kind;
in the present paper, we consider, the general
(s wn') hydrogenic radial r~ integral. Other par-
ticular cases are merely a reduction of this last
case. In Sec. I the recursion formulas we use
are derived. In Sec. I, it is shown how the oper-
ator formalism and the alternative matrix pro-
cedure wox'k, and we give the hydrogenic radial
(nf lr In' l') matrix elements in closed form. The
results are given and discussed in Sec. ID.

I. RECURSION FORMULAS

The radial Schr5dinger equation for a Coulomb
field, after setting (I(„, (v) =r 'R„, (v), is

ff one defines 2Z& =e* and B(r) =e* fJ(&), Eq. (&)
transforms to

Equation (2) is factorisable, "i.e., one can write
the following pair of difference-differential equa-
tions equivalent to Eq. (2):


