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Exact relativistic Coulomb wave functions, in the form of partial-wave expansions, are used to obtain

analytic formulas for the differential cross so:tions and energy spectrum for electron-positron pair

production by photons. Radiative corrections, which are believed to be small (of the order of 1%),are

neglected. The errors introduced by the finite nuclear size and recoil effects are quite negligible for the

energy region considered here. Apart from these approximations, the present formulas give the exact

cross sections for the unscreened atomic field. Numerical results are obtained for positron energy spectra

for a large number of photon energies and atomic numbers in the ranges 2m, c' & k & 10m,c' and

1 & Z & 100. Total cross sections are obtained by numerical integration of the spectra. A

representative choice of spectra is given. The approximately 500 total cross sections calculated are

given in tables and diagrams. By one- or two-way interpolation in these data the total cross section for

any photon energy and nuclear charge within the given limits may be obtained with an accuracy of

1% or better. For heavy elements large Coulomb corrections to the Bethe-Heitler Born-approximation

results are found. The positron energy spectra obtained are asymmetric, favoring positrons of high

energy. The total cross section o. is smaller than the Bethe-Heitler total cross section cr~ for photon

energies very close to the threshold (owing to the repulsion of the positron), awhile cr is generally larger

than cr~ in the energy region 2.2m, c'& k &10m,c'.

I. INTRODUCTION

The problem of obtaining relativistic Coulomb

corrections to the Born-approximation cross-sec-
tion formulas for processes like pair production,
bremsstrahlung, and the photoelectric effect is
almost as old as the Born-approximation calcula-
tions themselves.

Jaeger and Hulme' made calculations on internal
conversion using relativistic Coulomb wave func-
tions, as partial-wave expansions, as early as
1935. They also obtained a few results for pair
production, ' finding that the exact cross section
was a factor 2 larger than the Born-approximation
result for Z=82 and a photon energy k =~'.

This deviation was not surprising. The Born
approximation should be valid only for aZE/P «1,
suggesting that for heavy elements the Bethe-
Heitler formula is a crude approximation even for
high energies, and of course worse for low ener-
gies, as Z/P increases. When the first measure-
ments of the high-energy pair-production total
cross section were made around 1950, it was
therefore a surprise that the results mere only
about 10% below the Bethe-Heitler value for lead.
These results were confirmed by Davies, Bethe,
and Maximon, ' who used the approximate Furry-
Sommerfeld-Maue wave function to calculate the
Coulomb correction, in a high-energy approxima-
tion.

For photon energies below 20-30 MeV the
Davies-Bethe-Maximon high-energy approximation
breaks down. Besides, the Furry-Sommerfeld-
Maue wave function itself is not good for large Z

and small energies. ' In order to obtain Coulomb
corrections for low energies it mas therefore
necessary to turn to the exact Coulomb partial-
wave method again. This method has, although it
is complicated, become much more powerful
through the development of the modern electronic
computer.

The main difficulty is the evaluation of the radial
parts of the matrix elements. The methods used
to evaluate these may be divided into two catego-
ries, of which the first is to integrate the radial
integrals analytically. The integrals may then
be expressed in terms of generalized hypergeo-
metric functions, which are more or less difficult
to evaluate numerically. This may be called the
analytic method. The other method is to perform
the radial integrals numerically, using numerical
solutions of the radial wave equations. %bile the
analytic method applies only to Cou1.omb wave
functions, this numerical method has the advan-
tage of being applicable to screened potentials. On

the other hand its usefulness seems to be limited
rather strongly by the fact that it requires much
more computer time than the analytic method.

The early calculations" were based on the ana-
lytic method. So also mas the work by Hult-

berg et al. on the K-shell photoelectric cross
section in 1962,' calculations by Hozics and John-
son on bremsstrahlung, ' and by Ailing and Johnson
on the photoelectric effect. ' Matese and Johnson
used a modified analytic approach in an attempt
to calculate also screening corrections for. the
photoelectric effect. '

A numerical method mas applied by Pratt et aL
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for calculations on the photoelectric effect (un-
screened Coulomb potential). ' Similar calculations
with screened-potential models mere performed
by Hall and Sullivan, ' Hakavy and Hon, "Schmick. -
ley and Pratt, "and Brysk and Zerby. " Brysk,
Zerby, and Penny used a numerical method for
calculations on bremsstrahlung (with a screened
potential). " Similar calculations were carried
out by Tseng and Pratt fox' bremsstrahlung and

pair production. "
For the photoelectric effect the numerical me-

thod has been used to obtain rather extensive
numerical results. In bremsstrahlung and pair
production„however, me have tmo free fermions,
and the number of matrix elements becomes so
large that the numerical method is of limited
use 14 15

In the present work we use an analytic method
to obtain extensive numerical results for the Cou-
lomb correction to the pair-production energy
spectrum and total cross section for yhoton ener-
gies k «3.0m, e'. ' '" Sections II and III contain a
short discussion of the Coulomb mave functions
and the matrix element. The angular and radial
parts of the latter are treated in Sec. IV. In Sec.
V we integrate the differential cross section and
obtain a formula for the positron energy spectrum.

Almost all the existing experimental data on lom-
energy pair production concern the total cross
section. A fem measurements of differential cross
sections have been reported, but mostly for ener-
gies far above the present range. In this mork me

therefore confine oux selves to calculate enexgy
spectra, from mhich the total cross sections are
obtained by numerical integration.

The evaluation of numerical results requires
rather complicated computer yrogx"ams, and for
some of the results the procedure of calculation
is very delicate and time consuming. " In Sec. VI
me therefore give a detailed description of the
results, in the hope of making them as easily
accessible as possible. We have calculated the
enex"gy spectrum and the total cross section for
about 500 different combinations of photon energy
and atomic number in the ranges 2~' & k «10m~'
(i.e., 1.022 &@&5.11 MeV) and 1» Z» 100. A rep-
resentative choice of spectra is given in dia-
grams. The emphasis is on the total cross sec-
tion, mhich is pxesented in tables and diagrams.
From these it should be possible to find the total
cross section by interpolation for any photon en-
ergy and atomic number within the given limits,
with an accuracy of the order 1%.

The calculations are based on a simple vertex
diagram in the Furry picture, that is, a photon
line connected to tmo fermion lines which corre-
spond to Coulomb wave functions. Thus me ne-

gleet radiative corrections. For high-energy
pair production the radiative corrections to the
total cross section amount to about 1%." For the
intermediate energy region no results have been
given, but it does not seem unreasonable to as-
sume that the correction is of the same relative
order of magnitude for the whole relativistic do-
main. For nonrelativistic energies the radiative
corrections are negligible. "

Gur use of Coulomb wave functions implies that
me xegard the atomic nucleus as an infinitely
heavy point chaxge. However, the errox's intro-
duced by the neglect of the finite nuclear size and
recoil effects are quite negligible for the present
energy region. For comparison mith experiments
one has to take into account the screening effect
from the atomic electrons. For the major part
of the energy region considered here (say Sm~'
& k» 10m~') the screening effect gives small
corrections, of the order of a fern percent. For
the threshold region 2m~' & k& 3m~', however,
the screening is important, as argued by ghrerbg

'
and as shown by the calculations of Tseng and
pratt. " As previously mentioned, the analytic
method does not allow us to treat screened poten-
tials exactly. However, it is possible to use an
approximate method to obtain very good screening
corrections to our exact Coulomb results. This
we plan to do in a subsequent paper, mhere we
shall also compare with experiments.

X„v(r) —= Xs~, (r) = Q (jg ~
I Pvav) , —F," "(z)X ";

v =kg

(2.2)

( jp I l m ~ v) is a Clebsch-Gordan coefficient, I, is
the spherical harmonic, and X "(v= + ~) is the pauli
syinor. " Our notation is further explained by the
eigenvalue equations

—f a V+ P+ V(r) —8
P(e L + 1}+z g„(E, V, r)=0, (2.$)

J —p

o'L+I+ tc

I(I 1) X.g(&) =o,
J'- j(j+1)

(2.4)

II. NAVE FUNCTIONS

The spherical-wave solution of the Dirac equa-
tion with a central potential V= V(r) may be writ-
ten (we use units g=c=m, =1)

@ (Z V )
@+I' (g„(V, r) X„„(r) )

Kp y y 2g (if.(V, &) X-,„(&))
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(1 0)

The following relations are frequently used:

j =j„=-I»l —2, & =I„=j+2»/I »I,

I .= I'. =j -2»-/I»l.
(2.6)

In the Coulomb case, with V= —aZ/2, the radial
equations

+df (1 —K)f + (E —V- 1)g= 0,dr

dg (1 + K)g (E y 1)fdr' r

(2.7}

have a well-known" " analytic solution, which
we write in the form

are the Dirac matrices, 0' is the Pauli spin opera-
tor, and L and J= L+ &0' are the orbital and total
angular momentum operators. The quantum num-
bers ~ and p, assume the values

»=+I, +2, ..., /=+2& +2) ~ ~ ~ y +(I»l 2)

(2.5)

In (2.8) the radial functions g and f appear essen-
tially as the real and imaginary parts of a com-
plex-valued Whittaker function. We notice that g
and f may also be expressed in terms of real-val-
ued functions of the type e '~,F, (y+ iy; 2y;
2iP~) 22,27

The spherical wave functions Q„„(E,Z, r) con-
stitute a complete set of states for the Coulomb
field, in the sense that any state of given energy,
satisfying the Dirac equation with V= —aZ/2', may
be expanded in terms of the spherical waves of
the same energy. Fermions whose angular distri-
butions are not observed may therefore be repre-
sented directly by the spherical wave functions.

For the case where the angular distribution of a
fermion is observed, it is well known that this
particle must be represented by a solution of the
Dirac equation which behaves asymptotically es-
sentially like a plane wave plus diverging or con-
verging spherical waves, depending on whether
the fermion is in an initial or final state. " The
well-known solutions for the Coulomb case are"'"

4, (p, E, 0, Z) =4vg i'e" 22
KJl

X[X.'„(P)((&}]4,„(E,Z, &~, (2 13)

g. (&)I 1 (2[()&)" ' s "/'ll'(y + iy)I
f„(&)] 2p/(E+ 1) I'(2y + 1)

(2.8)

respectively, where

5'„—= 5„-y In2p2 = )I —arg I (y + iy) ——,
'
vy + —22(l+ 1),

where

H=(y+iy)e'2 ' PF, (y I+i+y; 2y+I;2iPr)

and

and the unit vector f= v (F) ov(f) gives the spin
direction in the rest system of the electron. '
Asymptotically"

i[P r 2 212(2r& P r ))+(52(&)/2 )
22(2@+212222)e + e

(» —y)P+iaZ(E —1)
[2(E—1)(EK —y)(» —y) ]'/'

where the sign S may be chosen arbitrarily.
Asymptotically

(2.9} where

g„(r}~ (Pr} 'sin(Pr- 2vl+5„), —

(2.10)
f„(r) P(E+1) '(Pr) 'cos(P2 - 2vl+5„), —

where

5„=)I —argI'(y + iy) +y In2pr —2vy + 22(i+ 1).
(2.11)

In the preceding equations

P (E2 1)1/2

i.e., the wave functions (2.13) are normalized to
unit volume.

Positron wave functions are obtained by changing
the sign of the fermion charge in the Dirac equa-
tion. For the Coulomb potential this is equivalent
to the substitution 2- —&, which means that a
positron wave function 4' may be obtained from an
electron wave function 4 by the formula.

4'(P, E, g, Z)=e(P, E, f, —Z). (2.14)

y= nZE/P,

y [»2 ((2Z)2]1/2

(2.12) It is easily shown from the Dirac equation that

C, (P, E, j, Z} = S y, C;*(-P, —E, E', Z}, (2.15)

and I and, E, represent the gamma and confluent
hypergeometric functions.

The formulas given above are valid for all ~E~

&1, which is convenient for the handling of posi-
tron wave functions, as discussed in what follows. (2.16}

where the asterisk means complex conjugation, 8
is an appropriate sign which is unimportant, and

P
' and Q are related by the well-known formula

L '= C- 2P(P't ),
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corresponding to

v( f ') = ia Pa,.v*( 8 )

x4, (p, , E, , f„Z)e ' "' d'K, (3.1)

where 4, are given by (2.13), a =(0~;), and e is
the polarization vector and k the momentum of
the emitted photon. The unit vectors P, and g give
the directions of motion, and E, and E, are the
energies of the initial and final electrons, respec-
tively.

We obtain the pair production matrix element
byreplacing e~e ' " ' by e e' "', corresponding
to annihilation instead of creation of a photon, and
by replacing the wave function 4, of the initial
electron by y24'*, where 4' is a positron wave
function as defined by (2.14). According to (2.15)
the expression y, c '*(P„E„Q„Z)is identical to
the wave function 4),(-P„—E„f,Z), with the re-
lation (2.16) between i; and g, . (The index + de-
notes the positron quantities. ) This means that
the final-state positron is replaced by an initial-
state negative-energy electron, moving in the
opposite direction.

In the following we shall evaluate a matrix ele-
ment of the form

9R = 4 P2, E„J„Z.e
x 4(p)„+E„Q„Z)e'"' d'K. (3.2)

From the resulting formula one may then obtain
&~ by the substitutions

III. MATRIX ELEMENTS

It is a well-known fact that the matrix element
for pair production is related to that for brems-
strahlung by a very simple rule of substitution.
The matrix element for bremsstrahlung, corre-
sponding to the simple vertex diagram mentioned
in the Introduction, may be written

SR~= 4 P, , E,f„ee

Insertion of (2.13) into (3.2) gives

Stt=(4w)' Q (i'( (2 e'l& ' (~ [X,',„,(g) v(E,)]*

(3.6)

where l, and 6,' are shorthand for l„and 6'„
[cf. Eqs. (2.6) and (2.13)], and

0 1SR„~„~= Q „„(E„Z,r) a.e

xg„„(E„Z,r)e' ' ' d'x
1 1

(3.6)

is a matrix element between spherical wave func-
tions given by (2.1). We choose our coordinate
system with ~ = k and may then substitute

e " ' =e "=4w p i~j~(kr)[(2L+I)/4»]' 'Y~(r),
L=o

where jL is the spherical Bessel function. Defin-
ing the "plus" and "minus" components of a vector
a by

a, =2 "'(a„sian),

we may write

(3.'l)

o'e =o, e +0 e, .
(We work in the Coulomb gauge, with e k=e.z=o. )
Substituting into (3.6) we arrive at the following
expression:

while the pair-production matrix element st~ will
be obtained from W by the substitutions

A

P, —-P+,

(3.4)

e-e*,
(3.3)

where 6&„ is the Kronecker-6 symbol and

(3.8)

—K,/~K, ~
when e =+ + .~„(K,—eM)(», —eM)

(K, +KM)(K, +@M)
(2K2 —I)(2»Y+ 1) 2

y (3.9)

where I', is shorthand for l', defined by (2.6). The angular integrals
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and the radial integrals V(l, L/, M) =0. (4.2)

H'„,„=-2u[P, (S,+ I)P, ls, + 1 l]
'~2

2'
(/t ) gK ( 2)fK ( g)

f., (E.) g.,(H,)
(3.11)

This is easily seen from (3.10), since I'I has the
parity (-)'. One may also easily verify that

V(/, L/, M) = V(/, L/, -M) = V(/, L/2M); (4.3)

are treated in Sec. IV. [The factors in front of
(3.8) and (3.11) are a choice of convenience. ]

The angular integrals (3.10) are given by stan-
dard formulas as products of two Clebsch-Gordan
coefficients, '0

2l +1 '~
V{/, L/PS) =(2L, +1)

y+

x&1, olL0/, 0&&/, MlL0/, Mj. (4.1)

If 2t-=l, +I.+ l, is an odd integer,

i.e., the angular integral V is an even function of
M and it is symmetrical with respect to 1, and 1, .
The angular integrals limit the summations over
L in (3.9) and over M (i.e., over p, 2 and p, ,) in
(3.5), since V(l, L /, M) is only different from zero
when

l 1, — ,/l -~ L-~ ,/+ ,/

(4.4}

lM l
~ min(/„ /, ).

For t= ,'(1, +L+-l,)=integer, the explicit formula"
ls

V(l, L/, M) =(-)'2"(2I, +1)[(21,+ l)(21,+I)]' I, +1,+1,+1!

gt (- ) I.![(12+M)!(12 -M)!(1,+M)!(/, -M)!]'+
(t —/, )!(t —1,)!(t —L)! r E!(1,+ L —/, —E)!(1, -M- K)!(L —Kj!(1,—L+M +Ej!(1,—/ +Kj!

where the summation index K assumes all integer
values for which all the factorial arguments are
nonzero.

As already mentioned in Sec. I, the radial inte-
grals (3.11) constitute the main problem in our
calculations. Analytic expressions for B' may be
obtained in two ways: (i) by making use of the fact
that the spherical Bessel function is a special case
of the Whittaker function,

m'~' kr ~

j (pr)= 2
—e 2',F, (L+I; 2L+2; 2i/!r);21' L+-22 2

(4.8)

(ii) by using the finite-series expansion

(4.7)
where c.c. means complex conjugate. In the pre-
sent work we use (4.7), which gives //' expressed
in terms of Appell functions E„as shown in what
follows. An analogous derivation based on (4.6)
would lead to expressions in ter ms of Lauricella
functions E& of three variables. Both of these
functions are generalizations of the ordinary
(Gauss} hypergeometric function, F, .""

Before proceeding to evaluate the integral we
notice that the integrand of (3.11) behaves for
small r essentially as

Z„'(e)=Im r"~'» " 'e '"
0

x 4 (H, + Hf') (H, + H22) dr (4.8)

It follows from (4.4) that the index 22, which is
introduced by (4.7), is limited by

0-s- lx, I+I~, l

~ $2+']t +I,
j.

and for large t' essentially as r ' times a product
of sines and cosines. Thus the integral converges
(but not absolutely) for large r. According to
Abel's test" the integral B(e), defined by (3.11)
with an additional factor e '" in the integrand, is
then uniformly convergent (in e) for e ~ 0. Hence
the integral H(e) is continuous for e ~ 0, and we
are allowed to take the limit e - 0 (the Abelian
limit) after the integration. The convenience of
this operation becomes clear in the following.

Insertion of (2.8) and (4.'/) into (3.11) now gives
integrals of the form

E.'(e) = - (//2) r"~ '» " ' e "(J+&*)
0

x (H, v H*, )(H, + H2~) dr,

where H is given by (2.8) and J =—i~" "e '2".
Since (H, + H,*)(H,s H,*) is pure imaginary, we may
write
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All the integrals (4.8) are therefore convergent
for large values of r. For small r the integrals
behave like

J T&1+&2 " 'dr;
0

i.e., they all converge except for the case n=n
= L =

( «, (+ ( «, ( {for Z &119 the integral is also
divergent for n = Lm~ —1). We avoid this diver-
gence problem, which is due to the expansion
(4.7), by considering, instead of (4.8), the inte-
grals

E„'( e$) =Im r"~'4 " "~ e
0

The other three combinations in (4.9} also lead to
integrals of the form (4.11), when we use the
Kummer transformation on the terms II, and H,*.
Using the standard integral representation

r (c)
I I ( ) ) } r(b)r( b)

1

x e'"u' '(1 —u)' ' 'du,
0

we now get

I(z, $}= r' "~ e '
G,G,

0
1 1

X u,'~ '(1 —u )'& '~ '
0 0

xJ(ll, v H,"))R,s)), )de (4.9)
where

xu, '& '(1 —u, )'2 '2 'du, du dr

where e &0 and

( & g, —= max((«, [+ («, (- y, —y ) = 2 —2[1 —(o'Z)']'t'.

(4.10)

With this condition the integrals in (4.9) are conver-
gent for all Z & 137 and may be evaluated analyti-
cally. The resulting formula for R'„z„(e, (}may
be continued analytically to t = 0, as shown in the
following.

The combination JH,H, in (4.9') gives an integral

f(z e)= r~-&+(e-)'[&+(&x+4+2&)))W
y bl

0

X,F, (b„c„t,r),F, (b„c„t,r) dr, (4.11)

where

a=y, +y, -n, tr =2iPr, br =y, +1+i&1

U—= e +z(t, +t, +2&) —t,u, —t,u,

l r' "~e " dr= r(a+()U '
0

with

( argU~& —,'w.

Writing

(4.13)

8 2P . ~ . l=1, 2t + 2(ti+ tq+ 2tk) pi+p2+ k —t6

r(c, )
G

( ) ( )
/: 1 2

With c & 0 we can perform the integration over r
first, obtaining

cr =2yr +1 l=1, 2. (4.12} we then have

I'(a+ ()
~ ~) w+ g F2 (a+ t) b» b» c i ) c» zi ) z2)) (4.14)

since G,G, times the double integral is identical
to a standard integral representation for the
Appell function F, ."'" (The double integral
exists, because the complex quantity p -=1-u1z1
-u,s, is never outside a parallellogram in the
complex f plane with one corner at g =1 and the
other three in the lower half-plane, provided that
e &0.) We notice that the I' function in (4.14) has
simple poles for $= $„$0-1, g0-2, etc., where
0 & $0 &2, according to (4.10). Thus one or two of
the poles are on the positive real $ axis. [These
singularities are, however, spurious, since the
total radial integral (3.11), with the additional

factors r~e in the integrand, is regular for
t' & 0.] Except for the poles, the right-hand side
of (4.14) is analytic in the ( plane. Hence we can
take the limit $-0 by analytic continuation, and
the only problem left is to find

F, (b„b,) =—lim F, (a; b» b»c»c» z» z,). (4.15)
0

For the case of pair production we can take the
limit e-0 at once, because for this process we
have

&++&, &p++p, P, +p, .
Therefore
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lim(fz, f+ fz, f)=
k

' &I,2(P, +P,),
6~0 1 2 (4.16)

and the factor (1 —u,z, —u,z, ) appearing in (4.14)
can be expanded in a double binomial series, lead-

ing to the fundamental double-series representa-
tion for the Appell function E,."'" Including all
the factors from (2.8), (3.11), and (4.7) we may
then write our radial integrals in the following
way:

-(E,/(E, f)[(E,—1((E,+1)]' ' (L+u)! il" I'(a)
—[(E +l((E —1)] ~ !(L— )! 2k« (k+P, +P,)'

(4.17)

where

(2p)"2 +(2p)» 'ke' "s'"i k(~(r. +is.)II I'(r, +as, )I
"2 1 I'(2y, +1) I'(2y, +1)

S„'=Im(e '"!»'» z '«/2 [K K E(b„b)aK~KgF2 (b„b, —1)+K)K, F(b, —1, b, ) K~~K)-F2(b, —1, b, —I)]).

In these formulas

a=y, +y, -n,
b=y+1+iy,

c =2y+1,

y [»2 (aZ)2]1/8

S = aZE/P,

P (E2 1)lk

(4.18)

(3.4). For simplicity we omit this substitution in
the formulas (4.17)-(4.19). It should be noticed
that while S,= aZE, /P, is a positive quantity, S, is
negative, "

S,= —aZE, /p, . (4.21)

The numerical evaluation of the E, series is
done most conveniently by writing the double series
as a single series over ordinary hypergeometric
series, F„

where

p (a)i.~(bi)i(b24»'»',
(c,),(c,),i!j! (4.19)

(» —r )P + iaZ(E —1)
[2(E- l)(E»-y)(» —y}]'"

where we have suppressed the obvious indices 1
and 2, which refer to the initial- and final-state
electrons in the matrix element (3.2), respective-
ly. For pair production

F, (b» b,) = E, (a; b„b;,c„c»z„z,)

a b»'
& =o ~Cia~ S t

Computing the first terms by means of the hyper-
geometric series, we may use a simple recur.-
rence formula to calculate higher terms. A de-
tailed description of the method of calculation may
be found elsewhere. "

We conclude the discussion of the radial inte-
grals by noting that for bremsstrahlung we have
the kinematic relation

k=E, —E2 &p, -p~,

so that for this case

p, +p, +k, 1=1,2 lim((z, (+ f z, () = ' '&1.2(p, +p, ).
0 + 1+

(a), —= a(a+1)(a+2) ~ (a+i 1) = I'(a—+i)/I'(a),

(a), = l.
In the preceding equations 0 and E, denote the en-
ergies of the photon and the outgoing electron,
respectively, while E, is the energy of the in-
coming negative-energy electron, which is to be
substituted by

(4.20)

where E+ is the positron energy, according to

Therefore the limit z - 0 cannot be taken in (4.14};
the F, function must be expressed in terms of
another representation, i.e., an analytic continu-
ation of (4.14), before the limit can be taken

V. DIFFERENTIAL CROSS SECTIONS

With the matrix element SR& defined by (3.2) and
(3.4) the differential cross section for pair pro-
duction is given by

daj =
g
~ dE+ dQ+ dQg I'5«tel, (5.1)
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where a = e 2/(Sc) = 137 ' is the fine-structure
constant, r, = e 2/(222c 2) is the "classical elec-
tron radius, " k is the photon energy, and the in-

dices 2 and + refer to the final-state electron and
positron, respectively. Using (3.5) and (3.8) we
find

d'e2(e, E, , E2)=; dE, dQ, d02 g i'& '2e' 2' x ~

o.k'

2
&& p [x.', „/.(E.)v(E.)]*[X'.,&,/. (A)v(E)]e,&... (5 2)

where the index 1 refers to the initial-state nega-
tive-energy electron, which is equivalent to the
positron, as discussed in Sec. IG. This com-
pletely differential cross section depends on the
photon polarization and on the spins and directions
of both the final-state fermions. The symbols l]
and 6,' are shorthand for l„, and 6'„, which are
given by (2.6) and (2.13). The spin angular func-
tions x„„are given by (2.2), and the spin direction
g, and the unit vector P, are related to the corre-
sponding positron quantities by (3.4). The spinors
v(E) are defined by

v(f} = [&(}+4}] '*( .' ) (5.3)

The components e, of the photon polarization are
defined by (3.7), and the quantities A'„„„are
given by (3.9).

In order to be able to perform summation over
polarization states and integration over angles
analytically we write (5.2) in the form

E=v (E)av(E),

and are given explicitly by the well-known formula

( g E) (} d@ did dpi g fi 22-]2+[2- l& ((6' +[]' -6'- -[] —)
CX

1 1 2 2

x ~ [xt, &,—,/. (P.)v(E.)v'(E.)x., „/(p.)]
NN 66

[x.', ,/. (P,)v(E,)v'(E, )x-.,-=,/. (&,)](e —,)'e-, (A!,—.,-)'A!... ).
(5.4)

For the photon we may choose as orthogonal states
right- and left-handed circular polarization (in
the following denoted by RHC and LHC). Since we
have chosen a coordinate system with z= k, the
polarization vectors may be given by

Rsc, mc =

From (3.7) we then have

As an example we give the pair-production cross
section which is differential with respect to the
electron angles; i.e., we have averaged (5.4) over
the photon polarization, summed over the spins
of the electron and the positron, and integrated
over the positron angles:

2r2

RHC, IBC

Thus for an RHC photon only terms with & = & =+
contribute in (5.4). For the projection operator
vv~ we use the relation

v(E)v (E) = —,'(1+& (2),

which makes the summation over spins trivial.
After the spin of a particle has been summed over,
the integration over its direction of motion is also
trivial, since we may use the orthonormality re-
lation

J A

X K 37+ 2 /2 (P) X Ke+ 2/2 (&) d& (&) —5 K .5e + 2 /2, N+ 2 /2 ~

(s.s)

x} p 2'2-"e'"'2 '2i
Kg K2K2

[XK e+2/2 (PR ) XK 4+ E/2 (~2) l
N, c 2

where the factor 2 comes from the averaging over
the photon polarization. In this formula ~ =+ and
c = —give the contributions from an RHC and an
LHC photon, respectively. Since the cross section
is differential only with respect to the momentum
of one of the particles, and the spin of this parti-
cle has been summed over, one expects from
symmetry that the contributions from the two pho-
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ton states must be equal. This may also easily be
verified explicitly. " In (5.6) we may therefore
remove the sum over e and the factor 2 and re-
place & by plus or minus.

For the case that only the energy of one of the
particles is observed, the cross section (5.6) may
also be integrated over the direction of motion of
the electron, and we get

tioned in Sec. III this formula might also have
been derived by the direct use of spherical wave
functions. "

From (4.2)-(4.4) it follows that the sum over L
in (3.9) gives contributions only for even or only
for odd L, depending on K1 and tc2. Therefore we
may write

(5.7)
doi&(E+ ) 2ro ~ g+

dg + K1 K 2'
which is the positron energy spectrum. As men-

dop(E, ) 2r ', ~ ( ),
dE ek' K2K1N'

+ K1K2+

where the real quantity B is given by

(5.8)

V(l, Ll, M)R„ (5.9)

L =min(. ( l, —l,' (, [ l,' —l, (), L =max(l, +l,', l,'+l, ),

and l and l' are given in terms of z by (2.6). The
angular integrals V are given explicitly by (4.5),
and the radial integrals R' are given by (4.17)-
(4.21). The sums over a, and x, in (5.8), in princi-
ple, run over all nonzero integers, while the limits
on M are implicit in the angular integrals [cf. Eq.
(4.4) ]. It should be noticed that when r ', is substi-
tuted by its numerical value ( = 7.94X 10 "cm'),
Eq. (5.8) gives the spectrum in, say cm'/(m, c'),
since we use the energy unit m, c' = 0.511 MeV.

positron and electron energies, respectively, we
have the following obvious relation:

do
(E2& E+& ~) =d (E+& E2& -&) .

do'
(6.1)

For the middle of the spectrum, where E, =E, = 2k,
Eq. (6.1) only shows that db/dE, at this point is an
even function of Z. For E+ = 2k we have, however,
the relation'6

VI. NUMERICAL RESULTS
[B„,„,„(Z)]'=[B„„,„(-Z)]', (6.2)

The main difficulty in the evaluation of numer-
ical results lies in the calculation of the radial
integrals, i.e., of the Appell functions. For pho-
ton energies close to the threshold the calculations
are very easy, because the Appell series and the
partial-wave sums both converge very fast. As
the photon energy increases, the convergence
becomes slower, so that the machine time re-
quired to calculate one point of the spectrum in-
creases rather fast with the photon energy. For
photon energies between 5 and 10 m, c' we had to
use a careful and rather complicated numerical
procedure in order to obtain accurate results. '

A. Positron Energy Spectrum

If we denote the positron energy spectrum
(5.8) by

do
(E E ~)

+

where the first and the second arguments are the

where B is given by (5.9). The substitution Z - -Z
only affects the radial integrals. By inspection of
(4.17) and (4.18) we see that we only have to mul-
tiply the factor d„„by e '&"&'"2&, and change
Z to -9 in 5„'. This is equivalent to complex con-
jugation of the Appell functions and the factors
K,K„K,K2&, etc. Thus the relations (6.1) and
(6.2) reduce the numerical work by a factor 2.

In Sec. I it was stated that the matrix element
from which we calculate our cross sections cor-
responds to a simple vertex diagram in the Furry
picture, with the radiation field included to first
order and with exact Coulomb wave functions as
fermion states. This vertex corresponds to an
infinite sum of Feynman diagrams containing
plane-wave states, where the interaction with the
nuclear field is included to all orders, but with
the radiation field to first order only. The lowest-
order terms in this sum are the second-order
diagrams corresponding to the Bethe-Heitler
Born-approximation result. Therefore we may
write for the positron spectrum
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and

c, (E„E,) = -c; (E„E,), i =1, 3, 5, ... .(6.4)

c, (E„E,) =c, (E„E,), i =2, 4, 6, ... . (6.5)

Thus the contributions to the spectrum from the
even (odd) powers of Z are symmetric (antisym-
metric} under the interchange of the positron and
electron energies. " It follows from (6.4) that

(2k, 2k, Z) =
d ( 2k, ak)s

x 1++c,„(kk, irk) (uz)'"

(6.6)

It also follows that the total cross section may be
written

do'
(E„E„Z)= „(E„E,), 1+Q c, (oz)' .dO'

+

(6.3)

where do/dE, (E„E,)s is the Bethe-Heitler spec-
trum" (which is proportional to Z'). The coeffi-
cients c& are functions of the energies,

cg = c) (E E~) ~

Equation (6.1}then requires

Thus for the unscreened Coulomb potential the
total pair-production cross section depends only
on the photon energy and g'.

We have calculated the spectrum for about 500
combinations of k and P, mainly in order to be
able to study the detailed behavior of the Coulomb
correction to the total cross section. In Figs.
1-6 we give a selection of these spectra, illus-
trating the general behavior of do/dE+ as a func-
tion of the energies and the atomic number.
These diagrams clearly show the importance of
the Coulomb correction for the present range of
photon energies. From the criteria of validity
for the Born approximation,

aZE, /p, «1 and nZE2/p, «1,
it is expected that the Bethe-Heitler formula is
insufficient for large g, and even for small g if
we consider small values of the kinetic energy of
one or both of the particles. This is confirmed by
the behavior of the spectra in Figs. 1-6. Com-
pared to the symmetrical Bethe-Heitler result
the exact spectra are all seen to be asymmetrical.
For small values of E, the Coulomb correction is
negative; as E, increases, it changes sign. We
notice that for small E, the spectrum behaves

o(k) =cjoy(k) 1+ Q C„(k)(uZ)'",
n=l

(6.7)

where o~ is the Bethe-Heitler total cross section,
and

"-I dg
C„(k)=, , (E„E,} c,„(E„E,)dE, .

( 6.8)
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FIG. 1. Positron energy spectra for different atomic
numbers Z (attached to the curves). The broken line
gives the Bethe-Heitler spectrum. The photon energy
(in units of m~c ) is k = 2.03..
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FIG. 2. Same as Fig. 1, fork = 2.2.
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FIG. 3. Same as Fig. 1, fork = 2.5.
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quite differently from the Born approximation,
approaching zero when p, -0 in a manner similar
to e~ ~~'~~+I (see what follows). At the right-hand
side of the spectrum, where the electron energy
E,-1, the exact cross section. tends towards a
finite value.

The Coulomb correction is seen to increase with

Z, as expected. Thus for Z = 92 it is considerable
even for 4 =10m,c', as seen in Fig. 6, although
the correction to the total cross section nearly
vanishes for this case(cf. Sec. VI B). As 2 be-

comes smaller it is seen that the range of validity
of the Bethe-Heitler formula is extended towards
smaller photon energies. Thus for g =1 the Born
approximation is fairly good for photon energies
down to about 2.10III,cI (see Fig. 1; and Fig. 1 of
Ref. 1'l).

The reasons for the breakdown of the Born ap-
proximation for low energies are in a way two-
fold: first, as the energies decrease, the wave
functions close to the nucleus are more and more
perturbed by the Coulomb field; second, the main
contributions to the matrix element are known to
come from a region limited roughly by re q
where q is the minimum recoil momentum of
the nucleus, q =lI -(h*-4)'~'.
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FIG. 5. Same as Fig. 1, fork = 7.0. FIG. 6. Same as Fig. 1, fork = 10.0.
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TABLE I. Total cross section 0' obtained by the present theory and the Born-approximation
total cross section 0~, in b/atom. (The form 1.111-1means 1.111X10 .)

Z Qec~) 2.000 01 2.0001 2.0003 2.001 2.003

1
2
4
6

13
18
29

Z %Fg

k (m~c2)

6.271-21
7.718-24
3.252-31

1.5095-19

2.01

2.092-16
2.587-16
1.391-17

1.5161-16

5.725-15
2.054-14
1.610-14
3.081-15

4.0936-15

2.02

1.796-13
8.613-13
2.776-12
2.775-12
1.179-13
3.914-15
6.631-19

1.5148-13

2.03

4.378-12
1.998-11
9.419-11
1.918-10
1.568-10

4.0788-12

2.04

2
4
6

13
18
24
29
37
44
53
60
68
82
92

100

6.479-10
2.985-9
7.494-9
2.873-8
3.072-8
2.063-8
1.166-8
3.495-9
1.012-9
1.737-10

7.154-12
2.864-13
2.671-14
3.820-15

1.4963-10

4.928-9
2.158-8
5.360-8
2.853-7
4.571-7
5.257-7
4.708-7
3.001-7
1.681-7
6.752-8
3.026-8
1.123-8

1.1808-9

1.686-7
9.600-7
1.777-6
2.538-6
2.765-6
2.439-6
1.824-6
1.065-6
6.373-7
3.298-7
9.030-7

3.9315-9

3.808-7
2.193-6
4.340-6
6.957-6
8.460-6
8.998-6
7.967-6
5.788-6
4.119-6
2.594-6
1.003-6
4.652-7

9.1942-9

Z Q c2) 2.05 2.07 2.10 2.12 2.15 2.20

6
13
18
24
29
32
37
40
44
53
60
68
74
82
92

100

7.168-7
4.110-6
8.419-6
1.445-5
1.885-5
2.081-5
2.267-5
2.295-5
2.248-5
1.893-5
1.512-5
1.089-5
8.160-6
5.310-6
2.914-6
1.719-6

1.859-6
1.044-5
2.200-5
4.065-5
5.756-5
6.710-5
8.053-5
8.658-5
9.209-5
9.366-5
8.692-5
7.437-5
6.341-5
4.913-5
3.346-5
2.347-5

5.086-6
2.768-5
5.878-5
1.135-4
1.705-4
2.070-4
2.682-4
3.030-4
3.453-4
4.134-4
4.350-4
4.324-4
4.127-4
3.719-4
3.062-4
2.501-4

1.878-4
2.875-4

4.739-4

6.390-4
8.172-4
9.115-4
9.653-4

9.315-4
8.333-4
7.276-4

8.283-5
1.742-4
3.425-4
5.333-4

9.167-4

1.297-3
1.778-3
2.102-3
2.384-3
2.521-3
2.602-3
2.547-3
2.390-3

3.475-5
1.784-4
3.708-4
7.275-4
1.144-3

2.038-3

3.016-3
4.437-3
5.574-3
6.801-3
7.612-3
8.486-3
9.161-3
9.306-3

Z

Z +~2)

1.7718-8

2.25

4.7340-8

2.30

1.3268-7

2.35 2.40 2.50

2.2340-7 4.1988-7 9.3469-7

2.60

13
18
24
29
37

3.208-4
6.599-4
1.286-3
2.025-3
3.661-3

5.143-4
1.049-3
2.031-3
3.191-3
5.799-3

7.619-4
1.544-3
2.969-3
4.650-3
8.455-3

1.065-3
2.147-3
4.104-3
6.403-3
1.163-2

1.840-3
3.680-3
6.965-3
1.079-2
1.947-2

2.838-3
5.643-3

1.632-2
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TABLE I (Continued)

Z (m~c~)

44
53
60
68
74
82
92

100

5.549-3
8.497-3
1.107-2
1.414-2
1.640-2
1.920-2
2.209-2
2.363-2

2.30

8.900-3
1.397-2
1.863-2
2.452-2
2.913-2
3.530-2
4.241-2
4.704-2

2.35

1.306-2
2.080-2
2.819-2
3.786-2
4.577-2
5.677-2
7.048-2
8.028-2

2.40

1.801-2
2.895-2
3.964-2
5.403-2
6.613-2
8.354-2
1.062-1
1.234-1

2.50

3.017-2
4.890-2
6.774-2
9.400-2

1.512-1
1.984-1
2.371-1

2.60

4.514-2
7.328-2

1.428-1

2.349-1
3.143-1
3.821-1

Z 1.7171-6 2.7948-6 4.1861-6 5.9018-6 1.0321-5 1.6044-5

2.80 3.00 3.25 3.50 3.75 4.25

13
18
29
44
53
68
82
92

100

Z

5.455-3
1.077-2
3.053-2
8.257-2
1.333-1
2.611-1
4.376-1
5.971-1
7.391-1

3.1163-5

8.805-3
1.729-2
4.836-2
1.283-1
2.053-1
3.995-1
6.710-1
9.209-1
1.148

5.0612-5

1.383-2
2.704-2
7.475-2
1.944-1
3.076-1
5.905-1
9.856-1
1.351
1.686

7.9889-5

1.956-2
3.815-2
1.045-1
2.677-1
4.195-1
7.935-1
1.311
1.788
2.224

1.1345-4

2.583-2
5.027-2
1.368-1
3.459-1
5.375-1
1.003
1.638
2.218
2.747

1.5018-4

2.059-1
5.106-1
7.826-1
1.425
2.277
3.041
3.727

2.2982-4

Z (m~c~) 5.0 6.0 7.0 8.0 10.0

29
53
68
82
92

3.141-1
1.153
2.043
3.177
4.163

1.629
2.812
4.260
5.479

3.516
5.231
6.641

4.160
6.111
7.690

5.306
7.667
9.542

3.5656-4 5.2680-4 6.9102-4 8.4642-4 1.1296-3

Thus in the threshold limit the important contri-
butions come from r 6 0(&). We get a more quan-
titative understanding of this by considering the
nonrelativistic case. Then the relative densities
of the electron and positron wave functions at the
nucleus are4' 1+ (~), S(v +8) (6.11)

approximation by multiplication by the factors
(6.9), (6.10), and another Coulomb correction
factor S ( o.Z, k), which was given only to the or-

(~@)3 48

and

(6.9) With the expression

(
,k-2

gg
= ~Z &o 3 P+P'a

+ NR-B
(6.12)

e'(r =0) ' 2'
4'(r =~) ~,y

(6.10)
for the nonrelativistic Born-approximation spec-
trum, the result of Nishina et al. then reads

where

» = cl&Ea&Pa ~ y+ = &&&+~P+ ~

Nishina, Tomonaga, and Sakata~' found that for
nonrelativistic energies and small values of Z, the
positron spectrum may be obtained from the Born

(6.18)

valid for k-2«1 and ng «1. The interesting
thing here is that the form of the spectrum is
given by the Born approximation (6.12) times the
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6.9 and 6.10). [This holds also for large
g, for which,

'
h however, the ac or

'th the accurate re-comes too small, pcorn ared wi
mula "] The be-from our exact formu

11r relativistic spec ra o
(6 10) hi h aknow explained by the factor

the spectrum eb have essentially like

e -211nSP+ (6.14)

1 . Thus the smallness of our exactfor small P,.
11 p is due to the re-for do/dE, for small p, is

po
of the spectrum, where g, —

p ' '
dtor (6.9) diverges as p, . xs

the hase-space factor P, in
value of da dE, in

'd bl d t'o14& ives a consi eraThe factor (6. , g'

f th spectrum.
dtot

eft-hand part o e
comes larger, compareThis part beco
& k-1 when the p o nh to energy de-range 1& E & k-,

A result then Z increases. s acreases or when Z
'

the Bethe-Heitlereen the exact and e eratio o/oa betw
in the limit k - 2 (cf.cross sections tends to zero in e

Sec.VI 8).

B. ~Total Cross Section

s are obtained by numer-Th total cross sections are o
tra "ical in egrt gration of the spec

(6.15)f (,";=)az''

n
'

o in b,~atom for a choice of pho-In Table I we give o in a
een 2.00001 m~' andton energies between
ese results is of the order 0.1%.The accuracy of these

'n the table the values of the Born-We also include in the e orn-
otal cross section cr~. opp o

ma be obtained with s ici
b M

' 4 Thracy from expansio g'nsions given y
endix. As may e seb seen fromare given in the App

the A endix and from the resultsformula, (Al) in t e pp
le I the total cross sec iont n varies byg

several orrders of magnitude in e
It is there orth fore convenient too r ng.

e discussion of our exact resu s
dditi d tratio &r/oa, which gives in a

n of the Coulomb correction.
/ f tio of tIn Figs. 7-9 we give o v~ as a un

ener for various atomic num
that the Coulomb correction's seen from Fig. 7 that the ou o

2Q

i
h to energies around 10m~,'td d

for o n
' 'on of the crossing poin

th' o ' - o' t al eg. Ask decreases from t is cro
g ' reases toward ao 0 for a given Z incre

to of h 1 od d

d ity
2m c~. %'hen i

8 s ra idly and eros
8 and finally approac es ze

9. The behavior in
to ' f th

as shown in Fig.

positron by the nuc, ' «ma
energies is is accounted for by the fac r

la the Z dependence of the
ussed in Sec. VI A.

10 nd 11 threction we give in Figs. a'f s 1 to' o as a function of (aZ or a
p oo rg g'

From the curves we can raw10m, c .
he coefficients in the expan-clusions regarding the coe ic
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FIG. 7. Ratio bebveen
the exact and the Born-
approximation total cross
sections as a function of
the photon energy k, for
different atomic numbers
(attached to the curves).
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sion (6.7). It is seen that all the curves are ap-
proximately straight lines for small Z, as ex-
pected. For increasing Z all the curves are seen
to fall below the straight-line extrapolation

o/os =1+ C, (k) (az)'.

For large photon energies the degree of this de-
viation is small, indicating that a few powers of
( aZ)' would suffice to describe the behavior, even
for large g. As k decreases it is obvious from
Figs. 10 and 11 that the coefficients C, (k) become
larger [for example, C, (k) is roughly proportion-
al to 1/k-2)], and that an increasing number of
terms in (6.V) contribute significantly. Thus, for
k s 2 20m, c'.we see from Fig. 11 that o/os de-
creases nearly exponentially for large Z, "cor-
responding to an oscillatory behavior of the series
(6.V), with large positive and negative terms which
nearly cancel. For k & 2.20m, c' the decrease of
o/os with Z is so strong that even o itself passes
a maximum with respect to Z, in spite of the
factor ~ in &~.

"

1.4 - ~
i I

'
I I i lilt

1.2:—
SENT WORK

1.0

merical values for the Born-approximation total
cross section e~ may easily be found from the
expansions given by Maximon (see the Appendix).

Since the high-energy Coulomb correction ob-
tained by Davies, Bethe, and Maximon3 is only
valid for photon energies down to around 100m,c,
there still remains an intermediate energy region,
10m~' & k& 100m~', where the Coulomb correction
to the total cross section is unknown theoretically.
In order to see whether our results can be extrap-
olated into this energy region we have plotted
o/os as a function of the ratio 1/(k —2), where k
is the photon energy in units of m, c'." For k
~ 6m, c' the curves turn out to be very closely
straight lines, so that we may write

VfI. SUMMARY AND CONCLUSIONS

The results obtained in the present work give
the Coulomb correction for photon energies be-
tween threshold and 10m,, which is the region
where the largest relative deviations between the
exact and the Born-approximation cross sections
occur. From the present results it is possible,
e.g., by one- or two-way interpolation in Figs.
V-11, to find the ratio |r/a~ with an accuracy of
the order of 1% or better for any combination of
k and Z in the region k ~10m,c', 0 & Z & 100. Nu-

09:—

Qg=, &

/

I I I llll&, &, I I I I IIII I . I i I I IIII
5 10 100 ~ 1000

k(mec )

I, I I I I I IF

10000

FIG. 12. Comparison between the ratio 0'/0~ obtained
in the present work [extrapolated by means of Eq. {7.1)]
and the corresponding ratio obtained from the Davies-
Bethe-Maximon {DBM) unscreened total cross section,
as functions of the photon energy', for Z = 68 and Z = 82.
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a/o~ = 1+ a+ b/(k-2), (7 1)

where a and b are functions of (aZ}*, which are
found from our data to be well approximated by

a = -0.488(aZ)' -0.07(cZ)4,

b = 5.06(oZ)2-2. 1(c.Z)~ .
The formula (7.1) fits our results for 6m, c's k&
10m, c' with errors of the order 0.1%. In view of
the straight-line behavior of the curves (7.1),"
it seems reasonable to assume that (7.1) consti-
tutes a good approximation also for photon ener-
gies a little larger than 10m, c', say up to 15m, c
or 2$q, c~. In Fig. 12 we have plotted (7.1) and the
ratio on~gos, where on~„ is the Davies-Bethe-
Maximon unscreened total cross section, as func-
tions of the photon energy k. The curves are seen
to cross each other around k =50m, c', where both
the results are probably incorrect. For Z =82 the
crossing point value is o/os = 0.85. It seems rea-
sonable to assume that the true value of &x/o~ is

above 0.85 so that the curves (7.1) and the DBM
curves will be joined in a smooth manner. " This
question can, however, only be settled by further
theoretical calculations or by accurate experi-
ments.

APPENDIX

The unscreened Born-approximation total cross
section for pair production may be found from the
following expansions given by Maximon~: The
first expansion,

& —aZ r

with

x[1+~2m + P,
.e'+ Pe'+ P«e'+ O(e')], (Al)

2k-4
2+ k + 2(2k}'~'

converges rapidly in the threshold region, while
the second expansion is best suited for high ener-
gies,

os = oZ'r, ' ~ ln2k -~» + — 6 ln2k- ~~ + a, ln'2k-in*2k- —ln2k + —+ 2g (3} ——
p~ ln2k +~

(A2)

with
oo

t.(3) = Q —=1.2020569".
n-1+

If (Al) is used for k s 3.8m, cm and (A2) is used for

k ~ 3.8m, c2, comparison with the results obtained
by accurate numerical integration of the Bethe-
Heitler formula" shows that the relative error is
always less than 10~.
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In a recent paper, the atomic quadrupole shielding factor R 8 has been calculated for the excited
states n p'n 's (n

' = n + 1) of the rare gases, in connection with an experiment of Sandars and
Stewart. The previous calculations included only the first-order term R 8, in the perturbation

e, '(n's d) of the excited n's electron. The values of R , were found to be in good agreement
with experiment. In the present paper, the terms of second order in v, ' have been evaluated. Their
inclusion improves appreciably the agreement of R e~, with the experimental values of Sandars and
Stewart, in particular for the cases of Kr and Xe.

I. INTRODUCTION

a, recent paperi we have carried out detailed
calculations of the atomic quadrupole moments
of the rare gases in the excited states gp'g's
(n'=n+I), where n=2 for Ne, n=3 for Ar, n=4
for Kr, and n= 5 for Xe. These calculations
were performed in connection vgith an experiment
of Sandars and Stewart, ' in which it eras found
that the atomic quadrupole moments e,t, are
always much smaller in magnitude than the values
expected from the np vacancy alone [8(np)], and
in fact for Kr and Xe have opposite sign to 8(np).
The theoretical value of 8(np), in the notation of
Buckingham, ' is -0.2e(r')„~, where (r')„~ is the
expectation value of r' for the np-vacancy wave
function. It was suggested by Sandars' that the
disagreement behveen the observed e,t, and the

calculated 8(np) is probably due to the n's- d
distortion of the n'8 electron charge distribution
arising from the quadrupole potential produced
by the np vacancy. If this induced quadrupole
moment is denoted by 8(n's-d), one can define
a shielding factor &8 by the equation

(fto= -8(n's- d)/8(np),

so that the total 8 for the atom can be vrritten
as follows:

8....=8(np)+8(n'a-d)=8(np)(I-ZO).

Sanda. rs and Stewart' have expressed their
obsexved results for e„, in terms of an experi-
mental shieMing factor go,„~, for each of the
four rare gases.

In the previous paper (Ref. I), we have calculated
the theoretical values of Re, using the same np


