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The formalism developed by the authors for the variational determination of the expectation value of
single-particle operators W = X, W(r, ) via Delves's principle in the Hartree approximation is extended
here to the Hartree-Fock approximation by employing a Slater-determinant-type trial wave function and

an appropriately antisymmetrized auxiliary function. A set of coupled integral-differential equations for
the components of the auxiliary function are obtained by a subsidiary variational minimization of a
functional involving the trial wave function, the auxiliary function, the Hamiltonian, and the operator
W, Owing to the antisymmetric nature of both the trial and auxiliary functions, an exchange term

involving the specific single-particle operator in question appears in these equations. Decoupling
approximations are discussed and the equations solved exactly for single-particle operators that depend
on the radial distance only. Employing a single-parameter appropriately antisymmetrized product of the
1S and 2S hydrogenic functions as the trial wave function, the formalism in this Hartree-Fock
approximation is then applied to both the helium 2'S and 2 'S isoelectronic sequences to obtain
analytic expressions for the expectation value of the operators r", n = 2, 1, -1, and 5(r). The results
of these calculations are observed to approximate closely the results of a 2300-parameter calculation due
to Accad et al. and in the orthohelium case to be also equivalent to those due to Hartree-Fock.

I. INTRODUCTION

in two recent papers" (hereafter referred to as
I and II) we have developed and applied' varia-
tional techniques for the calculation of single-
particle expectation values employing a Hartree-
type approximation for the wave function of the
system. Since such an approximation is useful
only in those systems in which exchange effects
are of little importance, we present here an ex-
tension of our formalism by employing a Slater
determinant as the approximate wave function of
the system.

'Ihe variational determination of the expectation
value of an arbitrary Hermitian operator W cor-
rect to second order' depends on two functions, a
system trial wave function f,r and an auxiliary
function f,r which is obtained via a subsidiary
minimum principle. " This involves the varia-
tional minimization with respect to the auxiliary
function P,r of a functional M' containing $0» P, »
the Hamiltonian, and the operator W whose expec-
tation is to be determined, derived via a Green's-
function expansion of the first-order perturbation
correction to P,r due to the perturbation W. Incor-
porating the Pauli exclusion principle by emplpying
a Slater-determinant-type trial wave function g, r,
we minimize the functional M'[go» g,» H, W],
subject to certain orthogonality constraints, with
respect to the auxiliary function and obtain as in
the Hartree approximation2 a set of coupled inte-
gral-differential equations for the components of

the auxiliary function. In this case, however,
owing to the antisymmetric nature of both the trial
and auxiliary functions, an exchange term involv-
ing the specific single-particle operator in ques-
tion appears in the coupled integral-differential
equations. Decoupling procedures are discussed
and the method in this Hartree-Fock approximation
is then applied to the simplest inequivalent two-
electron system, viz. , the triplet 2'8 state of the
helium atom. Employing a single parameter
appropriately antisymmetrized product of 1S and
2S hydrogenic wave functions as the trial wave
function g~» analytic expressions for the expec-
tation values of the single-particle operators r",
n = 2, 1, and —1, and 6(r) are derived for the
He 2'S isoelectronic sequence and the results
compared to those of an analytic Hartree-Fock
calculationa and a 2300-parameter Hylleraas-type
wave-function calculation due to Accad et al.'
Finally, by again employing a single-parameter
determinant of 1S and 2$ hydrogenic functions as
the trial wave function $0» the formalism is then
applied to the singlet 2 'S state of the helium iso-
electronic sequence to obtain analytic expressions
for the expectation values for the same set of
single-particle operators and the results again
compared with those of the highly accurate values
due to Accad et ul. ~ The high accuracy of these
results in comparison with the results of the
many-parameter variational calculation suggests
that the techniques developed here may prove use-
ful in the calculation of expectation values of other
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interacting many-electron systems.

II. VARIATIONAL PRINCIPLE

According to Delves, ' the expectation value of
an arbitrary Hermitian operator W correct to
second order is given by the functional

(9)

where

As the trial wave function for the N-particle sys-
tem we choose a Slater determinant of single-
particle states:

0o =
(Ht)''All's&

&W) = W+2Re&tt, iH-E[y, &, I Ar& = + tt ~ ( x&), (10)

where

8'= (y„[w iy„&,

and p, r and f,r are the system trial wave function
and auxiliary function, respectively. These func-
tions are approximations to the exact functions

g, and ij, which satisfy the SchrMinger equation

Hfo= Ego

and a subsidiary equation

(H E)g, = (W-- W)$0,

(3)

(4)

with E being the associated eigenenergy andH being
the Hamiltonian of the system Equ.ation (4) is anal-
ogous to the expression in perturbation theory for
the energy correction to first order and we may
thus interpret P, as being aperturbational correc
tion to $0 due to the perturbation W. Having
assumed a parametrized p, r with the parameters
being determined by various criteria such as
energy minimization or orthogonality conditions,
we now derive a systematic procedure for the
determination of the auxiliary function g,r involv-
ing the same set of parameters by employing a
subsidiary minimum principle. This involves
the variation of the functional

A = —Z (-1)~P,j.
Nt p

(13)

where P is the permutation operator and P is the
parity of the permutation. The permutation oper-
ator P is a unitary operator,

PW = P~P= 1 (14)

and the antisymmetrizer A is a Hermitian oper-
ator,

A = A t satisfying A' = A.

For a system composed of identical particles,

and r and g are the configuration space and spin
variables, respectively. The single -particle states
Qq(x, ) are chosen to be orthogonal to one another:

&0 (x) I 0 (x)& = 5 (11)

and to be a product of an orbital function f,(r, ),
and a spin function X,(f,):

el(xl) = kl(rl)XI(&l) (13)

where the spin function Xt may be either a or P
corresponding to S, (the z component of the spin
angular momentum) being plus or minus ~S.

The antisymmetrizer A is defined as "

M'[g„, y„,H, W] = (q„)H h) y, r&+&y-„[W W( q»&- [P, H] = 0, (16)
+ (g r ( W —W( ttI, r& + N,

where 8 may be taken as h = (P,r ~ H[ g, r&, and
either

(5) and thus, from Eq (13).
[A, H] = 0. (17)

&S;IH-

-&V;I tt..&& V..IH - ~ ltt,.&

or N= 0 and M' is evaluated subject to

&f,r~tror& = o

(6)

(7)

If, as in I and II, we restrict ourselves to opera-
tors which may be written as a sum of single-
particle operators,

(18)

then the antisymmetrizer must commute with W:

~' [for ~ tt'n i » W] =&In' I H h I Acr & + & 4xr I W I 40r &

+(tt- IWItt, „&. (8)

in the latter case.
Since the exact functions $0 and g~ are orthogo-

nal' to one another, we consider the variation
of the functional M' subject to the orthogonality con-
straint of Eq. (7). The functional M' is thus given
by

[A, W] = 0.

The choice of the form of the auxiliary function
t/r, r is again governed by the interpretation given
to it as a perturbational correction to $0& due to
the perturbation W. Thus our choice of an anti-
symmetrized single-particle product for P,r leads
to nonvanishing matrix elements for the perturba-
tion only if we choose P,r to be of the form
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(20)

Including the orthogonality constraint of P,r to )l),z.

by the introduction of a Lagrange multiplier A, , we
may as in II obtain the differential equations for the

individual f~(rl) by minimizing the real function

(21)

for arbitrary variations in the fz{rz) T. he varia-
tional minimization leads to

))M 0==))) Q 5f(rq)g A(H —SM Qf (r ) )(+A~( )) X)(( )+Ca. ,
k

(22)

which on use of Eqs. (15), (17), and (19) may be
written

Nlg 5f (r, )( (II —8)( Qf (r,)(z)+ (IV -X)(( )f k

+ c.c.= 0. (23)

As in the Hartree case, since the &f&(rl) are all
independent, Eq. (23) is satisfied for each parti-
cle, provided

e &-& krk e+~-&

j= 1, . . . , N (24)

where the symbol ( &l' means integrate over all
variables except the jth.

The Lagrange multiplier may be determined by
integrating Eq. (24) over the jth variable, which
gives the N identical equations:

(25)

right-hand side of Eq. (28) is simply

&pl(xl) I W(rl) I &1(xl)& = &pl(rl) I W(rl) I (1)1(rl)& =-Wl

(29)

as integration over spin space gives unity. The
second matrix element on the right-hand side of
Eq. (28) is the exchange integral for each oper-
ator W(r, ) This t.erm arises strictly as a con-
sequence of the inclusion of the Pauli principle
and exists only if (t), (x,) and Ql(x;) have the same
spin functions whether they be a or P. We may
therefore write the exchange term as

Q &Pl(xl) I w(rl) I gl(x()&Pl (xq)gl(xq)

Xg' &p, (r, ) lw(r, )I/i&(r, )pf(xl)(t), (xl}.
i

spiei = spin j (3o)

Equation (28) is then

N l&)I)s I WA I (l)s&l
——Q' Wl (I))l~(xl)(pl{ xi)

or since &g,r I P,r& = 0,

Performing the indicated integration for each term
of Eq. (24) we have

+ (g (xl)W(rl)(tl~(x~) .
Employing the Hermiticity of A and the unitarity
of P we find that the next term in Eq. (24) is
simply

N) &(!tsl AA I Qs&q
= X(t)p(xl)Qq(xq) . (32)

Finally, defining (I)„' =ps/$1(xl) we have for the
1'enlallllllg tel'nl 111 Eq. (24)

= Z' [&y,(x,) I w(r, ) I y, (x, )& y, {x,)y, (x,.)
krk g

+ 4P(x, )W(r, )4,(x,) . (28) + &J(flj'(xl ) &(I)s I (ff &}A Ify( rg)ks&l— (33)

Since the operator 8' is by hypothesis only spa-
tially dependent, the first matrix element on the

Equation (24) for each particle may thus be re-
written



68 V. SAHNI AND J.B. KRIEGER

g'W, 4j(xj)yj(xj) — g' &|I,(rj) ( W(r, ) ( yj(rj)& yj (xj)y, (xj) + Pj)(xj)[W(rj}-X]yj(xj)

I
+Nlgj(x&)(g )H —)i)A Q'f)r )j +N!P j(x&)(@)(ll—g)A)f&(r&)j )) = 0. (34)

k f

Again using the property of Hermiticity of the
antisymmetrizer and the unitarity of the permu-
tation operator it is easily seen that since the
operator W is only spatially dependent,

therefore

W=QWj (35)
On substituting the above value of X and dividing by

QP(xj), Eq. (34) reduces to

[W(rj) Wj b]Pj (xj) Q' ()!),(r, )~ W(r, )~ Pj(rj)& Qj(xj)

I
+Nt ~ H —8 'q r~ ~ +N/ g H —4 f Zf Jff 0. 36

Since the antisymmetrizer commutes with the Hamiltonian, we may write the last term of Eq. (36) as

N!&hajj I!(H —b}jiIf((rj)ts&j = N!&y» IA'(H —&)14&jfj(rj)4j(rj)Xj(&j) .

Writing the nonrelativistic Hamiltonian as

(3'!}

Eq. (37}reduces to

H = Z —Vj '+ ~( re . r j)) ) (36)

N!(!ts(A (H —)!))) gs&jfj(rj)gj(rj)X (&j)= N![-)1)j(rj)Vj'fj(rj)-2Vjfj(rj)'Vj)1)j(rj} fj(rj)Vj')1)j-(rj)]
I

xXj(fj}(41A lgjj&j +N! 4 A g'V, + V )I)jj fj(rj}gz(rj)Xj(fj},
f f

and since Nl()Ijjj(A (!!)jj&j= 1, Eq. (37) further reduces to

N!()!)jj(A (H —8) ~)!)„'&jfj(rj)gj(rj)Xj(fj) = [ )I)j(rj)Vj'f—j (rj) —2Vjfj(rj) Vj]j(1j)]Xj(fj}
+ N!fj( r j)()!)jjIA'(H @)I )I)jj&j—')I)j( rj)Xj(Lj) (39)

The argument as in II, that only the redl part
of fj(rj) contributes to the correction to 8,
remains unchanged so that on using fj = fP we
obtain on adding the last term of Eq. (39) to the
next-to-last term of Eq. (36}

+ Nlf~(rj)()!)jj]A (H —8) ( hajj&j Qj(xj)

= N! Qfj(r~))!)Ij (H —b}A )!)jj )I)j(rj)Xj(Lj) .
f

(40)

Equation (36}may therefore be written

[W( )rj~j ] )Ij( j)Xj(fj)

Z' (!tj(r,) IW(rj) I)!')j(rj}&&j(xj)
3I!)~i = V~

+ [ )I)j( 1j)Vj fj( 1j) 2 Vjfj('1j) «Vj)!)j( 1j}]Xj(kj)
I

+N! Zf(r.)4 (H-@8 g„fj(rj)Xj(L,)=0.

(41)

We may now divide out the spin function Xj(fj)
in each term. Note that since for the exchange
term to exist, spini = spin j, the spin function
of the P& must be the same as in all the other
terms. The coupled integral-differential equa-
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tion for the fj(rj) in the Hartree-Fock approxi-
mation is thus

[W( rj) —Wj —6] (l)j( rj)

differential and nondifferential operators W. The
second-order differential equation [Eq. (43)] may
be solved exactly for radially dependent operators
of the form

&gj(rj) I W(r j) I gj(r j)& gj(r j)
qdni = spinf

—gj(rj)Vj'fj(rj) —2 Vjfj(rj) ~ Vj(1)j(rj)

+N) krk ~ H-8
I

~ & r& =0. 42

W(rj) = W(«)

if we choose P, (r, ) and f,(r, ) to be of the form

A(rj) = A(«)y')"(8j 4i)

and

fj(rj) = fj(«),

(45)

(46)

(47)

The above equation is similar in form to that
derived in the Hartree approximation except for
the presence of the exchange term and the fact
that appropriately antisymmetrized trial wave
functions have to be employed in dealing with the
coupling term. The coupled equation may also
be derived on the basis of the self-consistency
argument discussed in I. In order to obtain the
single-particle equations we now uncouple Eq. (42)
in the two different approximations.

1

(, = (&()~'& Zfg(~, )4).
f

The solution to Eq. (43) is

fj(rj) = ', dr+ C„' g' (&)

(48)

(48)

where

respectively, so that the auxiliary function is now
defined as

I. First Decoupling Approximation

In this approximation, as in the Hartree case,
for an N-particle system, we replace the coupling
term by its value averaged over Pj(rj), i.e., by

Nt pf(r, )g A~(H —I) ()(~(r~)=a()(r~).
k

Therefore Eq. (42) is

Vj fj(rj)+2Vjfj(rj) ~
- .Vjk(rj)

j rj

1 S(r)W(rj) -Wj —
( )

fj(rj), (43)
j

where S( rj) is the exchange term

S(rj) = Z' &(l)j(rg)lW(r, )l(l)j(r, )&)l),(rj).

(44)

Equation (43), of course, includes the case of both

(5o)

The constant of integration C, is chosen on the
basis of the perturbative interpretation given to
the auxiliary function and is determined by requir-
ing that P,r vanish at infinity. The constant C, is
chosen to orthogonalize g» to )1),r in order to
eliminate the unknown energy E of the system
from Eq. (1). The expectation value (W)0 of the
operator 8' may then be obtained by substituting
the g, r of Eq. (48) into Eq. (1).

g. Second Decoupling Approximation

The treatment of the coupling term in the sec-
ond decoupling approximation is also similar to
that discussed in the Hartree case. For two-
particle systems we initially neglect the coupling
term. The coupled integral-differential equation
[Eq. (42)] therefore reduces to

Vj(l)j(rj) 1 — (W) —F S(rj)
vj fj(r, )+ 2v, f (lj), , =, , W(rj) Wj pj( 1 )jjj (51)

which for nondifferential operators has the solution v'f'(r )+2V f'(r ) ' ' ' = W(r )-Wj j j j j j ii(r) j j g(r)
f,(r, ) =f; (r,)--,'(&W& P)f j(rj), - (52)

and
(53)

where fjo( rj) and fj'( rj) satisfy the second-order
differential equations V ~f'(r )+ 2V f~(r ).j j j rj y(~&) (54)
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respectively. For the same ehoiee of the form of
W, /or, and f as in Eqs. (45)-(4V), the solutions to
Eqs. (53) and (54) are

f() f ()()g (55)

(56)

where

(5'I)

t2 I
g~ (r) =, , rag~(r') dr' + 8„ (58)

(rr= (rr() '& Efr'(rr)()r) (60)

(lr = (rr)) '& Z f)(rr)t)r) (61)

so that on substitution of g, r into (1) we obtain
the expectation value (W) for two-particle systems
in the second decoupling approximation to be

(W) 'p 2Re41TlH +I Kr) (62)1+Re($',r( H-E( for)
'

Equation (62) is similar to Eq. (38) of II with the
exception that the auxiliary function gr now

incorporates exchange terms involving the oper-
ator W. As in I and II P', r is again independent of
W and thus the denominator expression of (62)
remains the same for all operators. In addition,
the arguments developed in II for dealing with the
coupling termforamany-particle system (N~ 2) in
the second decoupling approximation are equally
valid in the Hartree-Pock case, so that for a
system of N interacting particles we may in gen-
eral write the denominator of Eq. (62) as
[1+ (2/N)Re(g~~r(H -E ) for) ]. Finally, although
the solution to the differential equation [Eq. (54)]
may be singular at the origin, the Hamiltonian
never operates on the auxiliary function ((t)',r and all
that is required of the singularities in P',r are that
they be integrable.

where the constants of integration C„C„B„and
&, are again obtained by the same considerations
as discussed earlier. The auxiliary function is
therefore

(59)

HI. APPLICATION TO 2 S HELIUM

ISOELECTRONIC SEQUENCE

In this section we apply the above procedure to
the simplest inequivalent two-electron atomic
system, viz. , the excited 2'8 state of the helium
atom. The requirement of the subsidiary condi-
tion" that the eigenfunction of the excited state be
orthogonal to the eigenfunction of the ground state
is automatically satisfied in this problem since
the total spin 8 has different values for both states.
Thus for this lowest state of orthohelium we
employ a single-parameter antisymmetric product
of the 18 and 28 hydrogenic wave functions as the
trial wave function /or, i.e.,

3/2
1 -Zg

~i(rx) =
xsa e

(w)

/2

0 (r ) =
2(2' )~.(I 'Z, r—.)-s ' " ~'

Since we are using hydrogenic-type functions, the
choice of a single parameter for (rather than at
least a two-parameter trial wave function to
describe the inner and outer electrons) is dictated
by the requirement of orthogonality of the single-
particle states to one another [see Eq. (11)]. The
value for the parameter Z, may be obtained as in
the case of the ground-state calculation by either
the energy-minimization condition, in which case
Z, = Z -0.1503, or by treating it as a variational
parameter in (W) . The choice of different screen-
ing parameters for different physical properties
has been previously discussed by others. '~

The an(alytic expressions for the expectations
values of the operators x", n= 2, 1, and -1, and
5( r) in the two decoupling approximations are
presented in Appendix A.

In Table I we present the results of (i) a 2300-
parameter wave -function treatment due to Accad
et al. ; (ii) an eight-parameter analytic Hartree-
Fock calculation due to Carlton'; (iii} W employing
the trial wave function g,r for the value of Z,
which minimizes the energy (Z, = Z -0.1503}; (iv}
the results' (W), of the first decoupling approxi-
mation with Z, = Z —0.1503; (v) the results (W) of
the second decoupling approximation with Z, = Z
—0.1503; (vi) the results (W}~ of the first decou-
pling approximation for the Zx value obtaine
extremizing the analytic expression (W), with re-
spect to Z~ and finally (vii) the results (W), of the
second decoupling approximation for the Z, which
extremizes (W) .

With the exception of the results for the operator
r ', trends similar to those of the ground-state
calculation'0 are observed in the results for (W)~
and (W), . For the exterior of the atom these are
again the best results, with (W), being superior to
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TABLE I. Expectation values of the operators r", e =2, 1, and -1, and 6(r) for the 2~S helium isoelectronic se-
quence. Here

W f=gpr Wgprdp', for the Z& value

(W)p= W + 2 Refgi~r(H E)gprdv, which minimizes

(W) = W + 2 Ref gtr(H —E)l/I prdTI[1+ Ref ggr(H —E)PprdT] the energy.

&W) p, and &W), are the expectations for the Z
g value obtained by extremizing &WP())p and &W(Zg)).

Calculation r2

Operator

Accad et al.
Hartree- Fock

&w&,

&w&

&w&„
&w&,

Accad et al.

&w&,
&w&

&w&„
&w),

Accad et al.
w

&w)p
&w&

&w&„
&w&,

22.928
23.093
13.153
18.196
17.589
20.131
22.930

7.5472
5.5415
6.9204
6.8080
7.2277
7.4558

3.7636
3.0365
3.5958
3.5613
3.6838
3.7366

5.1010
5.1185
4.0548
4.6897
4.6133
4.8076
4.9511

2.9878
2.6319
2.8994
2.8776
2.9296
2.9556

2.1273
1.9482
2.0948
2.0858
2.1067
2.1159

2.3093
2.3087
2.3121
2.3121
2.3121
2.3121
2.3097

3.5621
3.5621
3.5621
3.5621
3.5605

4.8121
4.8121
4.8121
4.8121
4.8109

2.6408

2.2661
2.5881
2.5496
2.6039
2.5483

9.1276
8.2867
9.0516
8.9892
9.0754
8.9879

21.926
20.430
21.826
21.740
21.858
21.738

Accad et al.
w

&w&,
&w)
&w&„
&w&,

2.2558
1.9133
2.1931
2.1792
2.2271
2.2454

1.6543
1.5465
1.6389
1.6343
1.6447
1.6489

6.0621
6.0621
0.0621
6.0621
6.0611

43.184
40.845
43.060
42.950
43.100
42.949

Accad et al.
w

&w&,
&w&

&w&„
&w&,

Accad et al .
w

&w&,
&w&

&w&„
&w&,

1.5030
1.3151
1.4745
1.4679
1.4903
1.4982

1.0732
0.9591
1.0584
1.0549
1.0667
1.0707

1.3541
1.2821
1.3456
1.3430
1.3489
1.3512

1.1464
1.0949
1.1412
1.1396
1.1433
1.1447

7.3121
7.3121
7.3121
7.3121
7.3113

8.5621
8.5621
8.5621
8.5621
8.5614

75.050
71.679
74.903
74.769
74.951
74.767

119.67
115.08
119.50
119.34
119.56
119.34

Accad et al .
W'

&w&,
&w&

&w),

See Ref. 9.

0.804 70
0.730 32
0.79629
0.794 23
0.801 04
0.803 27

0.994 10
0.95546
0.990 71
0.989 61
0.992 06
0.992 94

See Ref. 8.

9.8121
9.8121
9.8121
9.8121
9.8115

179.20
173.20
179.01
178.83
179.07
178.82
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(W&„as before. The expectations &r'&, and (r), for
He are only in error by 0.009% and 2.9%, respec-
tively, as compared to errors of 12.2% and 5.7% in

(H)0, and (r)0,. The improvement over the results
of the first-order terms are quite substantial since
W(W= r' and t) are in error by 42.7% and 21.5%,
respectively. As was the case for the ground-
state calculation, the results for (5(r})~are better
than those of (5(r})„ the errors being 1.4% and
8.5%, respectively.

W(W = 5(r)) in this instance is in error by 24.2%.
The expectation (r ), in this case is slightly better
than (r ')O„whereas for the ground-state calcula-
tion the reverse was true. It is interesting to note
that the value for the screening yarameter Z,
obtained by extremizing (r '), is slightly higher
(Z, = 1.V299} than the energy-minimized value for
the ground-state calculation" (Z, = 1.68V5) and
slightly lower for the excited-state calculation
(Z, = 1.8196 as compared to the energy-minimized
value of 1.849V). The trend therefore seems to be
that for powers of r& —1 and 5(r), (W)~ is supe-
rior to (W)„ the opposite being true for powers of
t' & 1. The fact that these results are also equiv-
alent to those of the Hartree-Fock calculation are
again easily understood on the basis of the Bril-
louin-Moiler -Plesset theorem. "

For the energy-minimized Z, results it is
observed that the results of the first decoupling
approximation are superior to those of the sec-
ond decoupling approximation (W) for all opera-
tors except r ' in which case they are equivalent.
As in the ground-state calculation, the results for
(r ')0, (r '), and (r ')o, all reduce to the value of

The a,ccuracy of this result (an error of
0.1V%}is due to the fact that the energy-minimized
trial wave function employed in either case satis-
fies the virial theorem so that lV is automati-
cally correct to second order, "thereby leading to
the vanishing of the correction term to P.
Finally, we note that with the exceytion of the
results for (r'), for which the error for Li+ in-
creases to 1.2% and then decreases for each
increase in the atomic number, the results of all
the other expectations improve for each heavier
element of the isoelectronie sequence as expected.

IV. APPLICATION TO 2 'S HELIUM

ISOELECTRONIC SEQUENCE

In this section we apply the yrocedure of See. II
to the excited 2 '8 state of the helium isoelectronie
sequence. As in the orthohelium ease we employ
a single-determinant-type trial wave function where
the spatial parts are again assumed to be the 18ancR
28 hydrogenic functions with the same parameter.
This approximation is rather severe since the

trial wave function is then not an eigenket of 8',
the square of the total spin operator 5= 8, + 5,.
And this is reQected in the errors of the first-
order expectation values being large. An appro-
priate approximate wave function g,r would of
course be one represented by a linear combination
of determinants. The extension of our formalism
to include configuration-interaction-type trial
wave functions is currently being investigated.
The motivation for the present set of calculations,
however, is twofold. Firstly, with this choice
for the trial wave function we note that the expres-
sions for the first-order expectation values F
remain unchanged for both the ortho- and para-
helium states. The "exact" results, ' however,
especially for the exterior of the atom for the
expectations of operators such as r' and t' are
quite different for the two states. It is of interest,
therefore, to determine how well the formalism
distinguishes bebveen these states and to what
extent the error of the first-order term for the
2 'S state is made up by the addition of the correc-
tion terms to W with this similar choice of trial
wave function. As it turns out the results are
surprisingly accurate. Secondly, since in the 2 '8
state of parahelium the electrons have opposite
spin, there are no exchange terms present in the
differential equations for the components of the
auxiliary function and thus the expressions for the
f, ' s are the same as those obtained in Sec. III but
in this case without the exchange components.
The absence of the exchange terms together with
the orthogonality of the spin functions thus leads
to the elimination of a number of matrix elements
thereby simplifying the calculations considerably.
The analytic expressions for the expectation
values of the operators ~", n= 2, 1, and —1, and
5(r} in the two decoupling approximations are
presented in Appendix B.

The final consideration in this calculation con-
cerns the choice for the value of the parameter
Z, employed in the trial wave function P»."" In
this case the subsidiary condition of orthogonality
of the excited-state wave function to the ground-
state function is not automatically satisfied as for
the 2'8 state. This subsidiary requirement thus
leads to a first choice for the parameter as being
Z, = Z —,e, which value ensures the orthogonality
of the approximate excited-state wave function to
the approximate ground-state function. A second
criterion for determining Z, is the energy-minimi-
zation condition. For this condition Z, = Z -~~~.
And finally one may treat the parameter Z, as a
variational parameter and employ the value of
Z, obtained by extremizing the analytic expres-
sions for the expectation values in both decou-
pling approximations.
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TABLE II. Expectation values of the operators t'", I = 2, 1, and -1 and 5(r) for the 2 S helium isoelectronic
sequence.

Calculation 72

Operator

Accad et al. '

~a) (w&,
&w&

A) &-&.
&w&

&w&„
&w&,

Accad et al.

~a) (w&,
&w&

y) &w&,
&w&'

&w&„
&w&,

Accad et al .

(a) (w&,
&w&

e» &w&,
&w&

&w&,

Accad et al .

(a) (W &p

(w&

g) (w&,
&w&

&w&p,
(w&,

Accad et al.

~a) &w&,

e) &»p
&w&

&w&„
&w&,

Accad et al .

&a) &w&,
&w&

) (w&,
&w&

&w&„
&w&,

32.1782
15.8025
22.1142
22.8316
13.4065
20.4548
19.5743
24.6733
29.2931

9.3902
6.2304
7.7929
7.8999
5.6104
7.5186
7.3572
8.1451
8.4508

4.4156
3.3094
3.9143
3.9439
3.0644
3.8346
3.7854
4.0086
4.0750

2.5576
2.0480
2.3425
2.3537
1.9273
2.3114
2.2917
2.3776
2.3998

1.6666
1.3911
1.5560
1.5611
1.3230
1.5415
1.5321
1.5719
1.5814

1.1716
1.0062
1.1076
1.1103
0.9641
1.0100
1.0950
1.1158
1.1205

5.9461
4.4444
5.0962
5.1702
4.0937
4.9697
4.8602
5.2081
5.4010

3.2884
2.7907
3.0476
3.0652
2.6482
3.0148
2.9838
3.0737
3.1060

2.2795
2.0339
2.1704
2.1771
1.9572
2.1574
2.1446
2.1802
2.1910

1.7459
1.6000
1.6845
1.6877
1.5521
1.6780
1.6715
1.6892
1.6941

1.4152
1.3187
1.3761
1.3778
1.2860
1.3724
1.3687
1.3787
1.3813

1.1900
1.1215
1.1630
1.1641
1.0978
1.1608
1.1584
1.1646
1.1661

2.1094
2.2901
2.3107
2.2901
2.2901
2.2901
2.2901
2.2864

3.3594
3.5401
3.5525
3.5401
3.5401
3.5401
3.5401
3.5377

4.6094
4.7901
4.7990
4.7901
4.7901
4.7901
4.7901
4.7883

5.8594
6.0401
6.0470
6.0401
6.0401
6.0401
6.0401
6.0387

7.1094
7.2901
7.2958
7.2901
7.2901
7.2901
7.2901
7.2889

8.3594
8.5401
8.5449
8.5401
8.5401
8.5401
8.5401
8.5391

2.6189
1.7208
2.4535
2.5367
2.2022
2.5443
2.5016
2.5624
2.4920

9.0376
6.9510
8.8093
8.9365
8.1344
8.9521
8.8830
8.9798
8.8695

21.722
17.956
21.454
21.625
20.152
21.649
21.553
21.686
21.536

42.823
36.883
42.536
42.752
40.403
42.783
42.661
42.830
42.640

74.485
65.882
74.204
74.464
71.036
74.503
74.354
74.560
74.329

118.86
107.10
118.61
118.91
114.20
118.96
118.78
119.02
118.75
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TABLE II (Continued)

Calculation r2

Operator

Accad et al .
W

~a~ &W),
&w&

w),
&w)

&w)„
&w),

0.868 43
0.761 45
0.828 21
0.829 74
0.733 59
0.823 81
0.820 90
0.832 87
0.835 45

1.0267
0.9756
1.0070
1.0077
0.9576
1.0055
1.0040
1.0081
1.0091

9.6094
9.7901
9.7943
9.7901
9.7901
9.7901
9.7901
9.7892

178.10
162.69
177.89
178.24
172.04
178.30
178.09
178.37
178.06

~ Sse Itef. g. The sets (a) and (b) correspond to the results with Z~=Z-hand Z&=Z —+&, respectively. (W)&, and

&W), are the expectations obtained by extremizing the expressions for &W)p and &W), respectively, with respect to the
parameter Z &.

Together with the results due to Accad et al.'
we present in TableII our results for W, (W)„
and (W) for Z, = Z ——,', and Z, = Z —~~ [designated
by the brackets (a) and (b), respectively] and the
results (W)oe and (W), obtained by extremizing the
expressions for (W), and (W) with respect to the
parameter Z, .

With the exception of the operator r ' for which
the results of Accad et al. are unavailable, it is
observed that the results for (W) are superior to
those of (W), for the Z, obtained via the orthogon-
ality requirement and is slightly less accurate
than (W)o for the energy minimized value of Z, .
It is also interesting to note that a better result
for (5(r))o is obtained with the choice of Z, which
minimizes the energy and which thus leads to a
good approximate wave function in the region of
greatest interaction, viz. , the interior of the atom,
than with the Z, obtained via the orthogonality
constraint. In this case the error for helium is
only 2.8%. As was the case for both the ground
state and the 2'S state, the results (W), are ob-
served to be better than those of (W)~ for the
exterior of the atom, the reverse being true for
the deep interior. Here for He the errors in the
first-order terms W(W~ r2 and r with Z, = Z-~~~)
of 59% and 31%, respectively, are reduced to
errors of 9% in both (r'), and (r), and an error of
34% in W(W= 5(r)) is reduced to an error of 2% in
(5(r))~. As may be observed from the analytic
expressions for the expectation value of the oper-
ator r ', the correction term to W again vanishes
for the energy-minimized value of Z, . This is
again due to the fact that the trial wave function

f,r satisfies the virial theorem and consequently
r ' is automatically correct to second order. Also
the results of the first decoupling approximation
for Z, = Z ——„reduce to the results obtained by
energy minimization. On the basis of the accura-

cy of the results for (r ') for both the ground and
2'S excited state it is reasonable to assume that
the results presented here for the 2 'S state for
the expectation value of r ' is a close approxi-
mation to the exact result. And finally, the results
for all the expectation values are observed to
improve with each increase in the atomic number
as should be the case.

Although it is not clear at present why one or
the other of the decoupling approximations leads
to better results for a particular property, it is
observed that no matter which decoupling approx-
imation is used or what criterion for obtaining the
parameter value is employed, the results closely
approximate the "exact" results and are in every
instance a significant improvement over the first-
order results of W.
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APPENDIX A

In the following subsections we present the ana-
lytic expressions for the expectation values of the
operators r", n =2, 1, and -1 and ()(r) in the sec-
ond decoupling approximation (W) for the helium
2'S isoelectronic sequence together with the cor-
responding functions fo&(r&) and f,'(r&) of the auxilia-
ry functions f',~ and gyp The constants C, and C~
in the expressions for the f's are chosen so as to
orthogonalize ter and ((,'r to ((,„. The first terms
on the right-hand side in the equations for (W) as
usual correspond to W and the second to the cor-
rection terms. The results of the first decoupling
approximation ( W)o are obtained by setting the fac-
tor B to unity in these equations.
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For the denominator of Eq. (62) we have

1 r, 1f', (r,) = 4, —
2

' —2, lnr, +C, ,1r1 1 1

4(1 -Z, r,} r, 4
Z'r, (2-Z r, ) Z, Z' lnr, +C„

1 2

B ' =- 1 + ~1r H -E ~or dv'

355 Z1-Z
81 Z,
2 2605 53 296
Z, 2916 81 729

g. W'= rg +rg.

f'(,) =-
6g

—2g, +f„,(,)+C„
1 1

fscc(r,) = -(2048/729zsi)(l —2Z,r,)e i'i"
16 8r2 3r', r,'

Z'(1 —-'Z ) Z' Z' 3Z

+ fs*c+Cs,

8192 ~-z, r2]2f:-'"'=729Z 1 --.g,,1 2

45 Z1 Z 8049574 1(W) = —2+B 90 s +
729 243 s

Here, the fs„,(r, ) are the exchange contributions to
the f', (ri). The extremum of ( W), occurs at

Z, =Z -8049574/270x 729x81.

b. W=rg +rg.

f', (r,) =-r*,/4Z, + f'„,(r,)+C„
f»c(ri) = -(64/243 Zi)(l —2Ziri)e i'i *,

2

f2(r2} =-
2Z

+ gs gs.l g )
+f2.,(rs}+Cs

0 512 ~ -z, r2I2

fscc( 2} 243 Zs(1 t
Z } t

15 15 Z, -Z 4811 1
2Zi 2 Z, 1458 Zs

The extremum for (W), occurs at

Z, =Z -4811/15x 729.

c. W=rg +rg .
f,(r,) = sr, +f„,(r,)+C, ,

f'„,(r,) =(8/81Z, )(l —2Z, r,)e i"i",
fc(rs) = crs+1/2Z, (1 —2Z, rs)+ fs„(rs)+Cs,

64 g -21'/2
go

8lz, (1 —sz, r,) '

(W}= —Z +B[-—(Z, —Z) ——] .

In this case the expression for (W)s is not a func-
tion of the variational parameter Z, and the result
is the same as that obtained by the variational
principle which minimizes the energy.
d. W=6(r, )+ 5(r,).

f', (r,}=
2 (Z, r, +lnr, - 1/2Z, r,}+f'„,(r,) +C, ,

f„,(r,) = (Zi/62)(1 —2Z, r, )eei"2",

2 4r, (1 —szirs) (1 —sz, r, )

+ 8Z', r, +2Z, lnr, +,'„r, +C, ,

0 14 Z e -S1r2/2
fs.,(rs) =—

(w) = '+B ——(z -z}z'9Z31 27
8g 8I

Z'——' ('"' — tnt " tnt})
7r

2187 1458 729

The extremum of (W), occurs at
8 2201 2549 1184

27 ( sis7 i452 ln3 + 722 ln2)

APPENDIX B

In the following subsections we present the ana-
lytic expressions in the second decoupling approxi-
mation for the expectation values of the operators
r", n = 2, 1, -1 and 6(r) for the helium 2 '$ iso-
electronic sequence. The results of the first de-
coupling approximation (W}c are obtained by set-
ting the factor B equal to unity.

The denominator expression in Eq. (62) is

B =1+ zg H E ~ord7

=1+3 + —(———ln3+ —ln2) .1 233 5 32

Z 324 9 81
1 1

a. ~'= r,'+ r~.

( )
45 Zi-Z 42614 1

The extremum of (W)c occurs at

Z, =Z -42614/270 x 243 .
b. S'= rg +rg.

15 15 Z1 Z 2041
2Z 2 Z' 486 Z'1 1 1

In this case the extremum of (W)&& occurs at
Z, =Z —2041/243 x 15.
c. W=rg +rg
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(w) =-,' z, +B[--,'(z, -z) —,—",].
Here again (W), is not a function of the variation-
al parameter Z„and the result reduces to that
obtained by the variational principle which mini-
mizes the energy.

w=&(r, )+ &(r,).

(W) = +B ——(Z -Z)Z
9Zsj 27
S~ 8&

2

The extremum of (W), occurs at
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