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%'ithin the framework of the Born-Oppenheimer approximation and the theory of multiphoton
molecular transitions, a method is proposed for calculating matrix elements of multiphoton processes in
a heteropolar diatomic molecule. The method is based on the application of the explicit expressions of
the Green's functions of the internuclear potentials. Analytical expressions are derived for the
two-photon transitions. Results for higher-order processes are presented in a form which is convenient
for numerical computation.

I. INTRODUCTION

In a previous paper' general expressions have
been derived for the cross sections of multiphoton
processes induced by radiation acting on a diatomic
molecule.

Within the framework of time-dependent pertur-
bation theory and the Born-Oppenheimer approxi-
mation, a method has been proposed for evaluating
the sums over intermediate states. The method
is based on the application of the explicit expres-
sions for the Green's functions of the internuclear
potentials. The Morse- type model of potential-
energy curves has been used which gives a good
representation of true curves of the ground and

excited electronic states of some homopolar di-
atomic molecules.

It is evident that the description of the interac-
tion of intense electromagnetic radiation with a
heteropolar molecule would also be of interest from
the different points of view. In the most clearly
defined cases of what is called heteropolar binding
all the valency electrons pass over from their own
atoms to other atoms, so that the heteropolar mole-
cule unlike the homopolar one has appreciable di-
pole moment in the ground state.

This gives rise to rich rotation-vibration spec-
tra in ordinary spectroscopy of such diatomics. In
the treatment of multiphoton processes it becomes
necessary to take into account the intermediate
transitions which occur without change in electronic

state. Theoretically, two-photon vibrational transi-
tions in a heteronuclear diatomic molecule have
been considered using the Morse potential and the
Kratzer potential as internuclear potential energy.

The application of the Green's functions of these
potentials obtained in closed forms permits analytic
solution of the problem. However, the potentials
used do not give a particularly good representation
of true curves in the case of heteropolar binding.
At the same time the experimental investigation
of the interaction of heteropolar diatomics with the
electromagnetic field has been the subject of a
large number of works. Terenin first initiated
the study of spectra of heteropolar diatomics.
Actually, such research plays an important part
both for the theory of molecular structure in gen-
eral and for nonlinear optical phenomena in particu-
lar.

It is clear that the possibilities of the theoretical
treatment of the processes induced by radiation
acting on a molecule depend on the presence of the
potential-energy-curve model for the ground and
excited molecular states. Such a model must well
describe the true curves and at the same time be
simple enough to enable us to write analytic ex-
pressions for wave functions and a Green's func-
tion of all electron terms involved in the transition.

In the present paper we shall use the following
internuclear potentials proposed in the paper':
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for r&p& and V~(r)=~ for r «p&. Equation (1) gives
a good representation of the true attractive (B& &0)
and repulsive (B& & 0}curves of heteropolar di-
atomics. The Schrodinger equation with potential
(1) allows analytic solution.

The main difficulty in calculating the cross sec-
tion of multiphoton molecular transitions lies in
the correct evaluation of the radial parts of the
matrix elements. (We shall use the general ex-
pressions derived in Ref. 1 for cross sections of
multiphoton transitions in a diatomic molecule. )
A method of calculating radial matrix elements
being available, the problem of multiphoton transi-
tions in diatomic heteropolar molecules may be
considered as resolved in principle. The method
used is based on the application of the internuclear-
potential Green's functions obtained in closed form.
In Sec. II the results are presented in a form
which is convenient for numerical computation. In
Sec. III analytic formulas are given for some two-
photon transitions in heteropolar diatomics.

II. METHOD OF EVALUATING RADIAL MATRIX
ELEMENTS

Within the framework of time-dependent per-
turbation theory and the Born-Oppenheimer approx-
imation the treating of the multiphoton molecular
transitions reduces essentially (after selection
rules for rotational and electronic quantum num-
bers have been established) to evaluating radial
matrix elements of the form

(ot 1 2 s 4-l~ ~flEP)

= J Xy(r„)D+(r~)dr„j D„,(r„,)0 0

x gN 1(rN 1 r. IEo+ (N 1)En) dr„

D, r, g, r„r2 Eo+Ep Xo r, dr,

[see Eqs. (2), (8), and (14) of Ref. 1]. Here Eo
denotes the energy of the initial state of a molecule,
E& is the photon energy, and Xo(r) and Xt(r) are
the radial functions of the initial lio} and final li&}
states, respectively. g„g2, . . . , g„,are the
Green's functions of potentials V~(r), V2(r), . . . ,
Vz, (r) of the intermediate electronic states li,),
li2}, . . . , li„v}, respectively. li}= In, A, R) de-
notes a state with definite values of the absolute
value K and z component M of the total angular mo-
mentum of the molecule and a definite value A of
the component of the electron angular momentum
along the axis of the molecule; n denotes the as-
sembly of the remaining quantum numbers which
determine the molecular state.

The functions D,(r), D2(r), . . . , D„,(r) in Eq.

(2) denote the dipole moments of the first, second,
. . . , (N —1)th intermediate electronic transitions
calculated in the system of coordinates which ro-
tates with the molecule; Dz(r} corresponds to the
transition from li& g into li&}

The Green's function of the radial Schrodinger
equation

d' 2m t' }t
dr' h I( 2m

—V (r) rR(r) =0,r3 y p

with the internuclear potential V&(r) of Eq. (1) and
the centrifugal repulsion term treated approxi-
mately, is given by'

m I'()+ sq —nq)
I'(2sq+ 2)

where ro is the equilibrium internuclear distance
in the ground state l0}. When B& &0 the poles of
the I' function I'(1+s&-n&) at 1 s+& nz= —-v

(v=0, 1, 2, . . . ) determine the infinite eigenenergy
spectrum of bound states,

B~m/5
2(s&+ 1+v)' ' (6)

where v=O, 1, 2, is the vibrational quantum num-
ber. The normalized wave functions of the dis-
crete spectrum (X= rR} are determined as the res-
idues in the poles of the Green's function (4) and
are given by

[mB, I'(2s, +2+v)]'~'
R(s&+ 1+v) (v l)'i'I'(2s&+ 2)

2rl
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where a&= fi/B&m (B& &0).
Continuum wave functions (E —Qz &0) in the

attractive (B& &0) or in the repulsive (B& & 0) field
have the form

& M„„„„(2I q r&) W„„~„(2(2 I) r&) .

(4)
Here the functions M and W are the Whittaker func-
tions; r~& (r&) is the smaller (larger) of the quan-
tities r', and r2, r' =r —p&, I& = [- 2m(E —Q&)]'
h ~, n& mB&/5 g-&, s& is the positive root of the
equation

2mA~ Z~(K~+ 1) (ro p~)3-
sg san+1 = y + Z

o



F. V. BUNKIN AND I. I. TUGOV

~ ftng /2

Xq( ) (2»)1/2(. )a~1
I r(s/+ I+n~)!

I'(2 s/+ 2)

x M„, „/o(2iqr'), (8)

where 5/ = sr g1 (s/+ 1+n/).
Radial functions of the initial 10) and final (/)

states are determined as the functions of their'ar-

where

n/ = mB&/I I&= —imB&/I q,

I/ —[- 2m(E —Q/}]'/o//K=iq;

q is the wave number of the relative motion of the
particle. The normalization coefficient in (8) cor
responds to the asymptotic form

X.(r) = (2/v)"'

x sin[qr+ in& ln2q(r —p/) —o» s/ —qp&+ 5/],

guments r'=r- p0 and r'=r- p&, respectively, by
Eqs. (7) and (8) [parameters po, p„.. . , p»» p/
determine the positions of the singular points of
potential-energy curves (1) of the gound 10), in-
termediate lip, lio), . . . , [i„,), and final g)
electronic states]. The Green's function g„go,
. . . , gN. f of the internuclear potentials of the in-
termediate electronic states have explicit expres-
sions (4) as the functions of the variables (r —p,),
(r- p,}, . . . , (r- p„,), respectively

Let us introduce in Eq. (2) the new variables of
integration

Po &

I

I I+2 +2 PO ''' +N +N l 0 ~

Taking into account that the wave functions and the
Green's functions vanish to the left of the singular
points of corresponding potentials (continuity of
wave functions), we obtain

M(io, i, , . . . , i„„i&1E~) = j x/(r» a&)D»-(r»+ po)dr» j D», (r» f+ po)
(hN f o hy&) (hN 2thN-f)

x g», (r„-a»» r», —a»-ilEo+ (&- I)Ep)«»-g".

D2(r2+ po)g2(rS +2r r2 +21Eo+ 2E~)dro
(hfoh2)

xf Dl(r1+ po) g1(r2 +1 ri —+s IEo+Ep) xo(r, )dr, .
(h0, h&f)

'
(9)

In Eq. (9) the primes on the variables of integra-
tion have been omitted, hz = p/ —po (j = 0, 1, 2, . . . ,
N). The expressions (b,„b,,)), (h„bo)), . . . denote the
larger of two quantities in the bracket as the lower

limit of integrations. The explicit expressions for the
functions g and x in Eq. (9) are now these of Eqs.
(4), (7), and (8). Substituting these equations into
(9) we obtain

(-1)"-'[B,r(2,+2+,)]' 'x„l - ' -' r(1. .
(s +1+v ) (v !)' 1'(2s +2) li8 . g I'(2s +2)

DN rN drN M„&„&f/2 2 g&. r N
- A&

(hN fahg)

DN 1 &N 1 d&N 1 MnN„f eN 1+1/2 @N-1 &N +N-fy &N-f +N-

&hN-2shN-1"

x~ » g s» )+1/o [2I»-1(r» +»-1 r»-1» x))] ~ ~ . -

Mt51 1+ / 2~f 2 fy f + ~ fsef+ /2 ~f 2 +1y f,

(o,hf&)

& 2rfx Di(ri)M. ...i/o I"0"0' !, an0
(10}
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Here parameters A&, B&, Qj, and p& are those of
the potentials (1) of the electronic states involving
a given multiphoton transition; Ep is the energy
and vp is the vibrational quantum number of the
initial bound state, np= sp+ j.+vp,.

n( ——mB)/I f),
g) = [- am(EO+jE~-Qq)]'~ h ';

Nf is the normalization coefficient of the final
state:

[B,mr(as, + 2+ v,)]"'
I(sy+ 1+vy) (vy!)'~'r(as~+ 2)

for the bound-bound transitions; vf is the vibra-
tional quantum number of the final state;

Ir(s~+n~+ 1) l

r(as, + 2)
(12)

for the N-photon dissociation, where n&= —imB&/
I q and q is the wave number of dissociating par-
ticles.

The functions D& in Eq. (10) describe the transi-
tion dipole moments and are defined according to
relations D~(r~) =D&(r&+ po). The functions
M„„„g,(Q~(r)„- 6), r~ —b~)) and

W„, „„(a)~(r~+,—a&, r& —b,~)) are the functionsn~, sg+ 1/2

of the smaller and larger, respectively, of the
two quantities ag,.(r~„—z, ) and ar„,(r~ —a,).

Note, that the multiple integral in Eq. (10) may
be represented as the sum of integrals of the
Whittaker functions of the form

1 M t, t 1/2[@t(rs f)]Ds(rs)drNM s g, s ) llalaLN-1(rs Ã-1)1
(&~ g

&&f)

x f W„„,~&2[@„,(r„~-a„,)]D„,(r„,)dr„,M„„„„,«&[2)„z(rs, a„—2)]
«g-&N g&

x. . . f" li'n, s .isa [2 ti(ri- &i)]&i(ri)driMn, .s .ila(2 tori) ~~ ~ ~ fl ~s3) ~+ npsg p+
2 1

(13)

Since each inner integral in (13) has a single-vari-
able limit, an integration with a constant interval
makes (13) actually equivalent to a simple integral.
The Whittaker functions in Eq. (13) may be cal-
culated using the expansions into power-series
and integral representations given in Ref. 6.

The application of numerical methods to the
problem of integration of Eq. (13) seems to be
straightforward and will be considered in following
papers. Without going into this problem, it may
be noted that the cross sections of some two-pho-

ton transitions can be expressed in analytic form.
Analytic expressions for one-photon matrix ele-
ments have been obtained in Ref. 5.

III. TWO-PHOTON TRANSITIONS

Let us consider two-photon transitions in the
case when the potentials of states involving transi-
tion may be described by Eq. (1) with one and the
same value of the parameter p(p&= p~= po). We
shall use the integral representation of the Green's
function (4) in symmetric coordinates,

E 2m(r, r,)"' "'+' t "& ' 1+t 4(,(r,r, t)'g(» 21 i =
(1

',*g„. ..&) J exp —g,(r,+r,)
+

I~,„'' ' dt,
l

(14)

where g, =[-2m(E, +E~-Q,)]'~'5 ', n, =mB, /tf'g, , and s, is defined in Eq. (5).
Then using the known:. elation' between the Whittaker functions M and the confluent hypergeometric func-

tions, let us write the wave function of the final (bound or continuum) state in the following form:

)ty(r) = [(1-n&+s&) (2 n&+ s&)M„-4, ,s&2 (2)&r)Nf
f sf+ sf+ flf ~ sgf+

+ 2(1 n&+ s&)(1+n&+ s&)M-&„&s&3(2&&r)+ (1+n&+ s&) (2+n f+ sf) M„,,„,gga(2)~'r)] .

(15)

Here gz
= [-2m(E, +2E~ -Qz)]'~'tt ', nf =mBI/g'gz, and Nz is the corresponding normalization coefficient

(11) or (12). Substituting Eqs. (7), (14), and (15) in (9) and integrating, ' we obtain, for example
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yp(r, )rpdr f d, (rp, r ~)E,PEplyp(rp)r, 'drp
0 0

NNpap( 2)"'2""-(;"2;'"y(2p+2) 2"
2 2 2

)s=m g+ 1 g-4 I ~3 ~EWE+ 1 4+1 . 0&2 + t5 Pl@ Q ((y gag

x
~

—+ g, Q 5 )2 'a2~ —E(a; P, P'; a+ 1; X Y) — E(a+ 1; P, P; a+ 2 X Y)
i O, ~g

b2
+

2 E(a+2; p, p'; a+3; X, Y)at+ 2 tf= Q+g+v0 ~-1 (16)

Here

a.,= (1—n&+ s) (2- n&+ s),

ao = 2(1-n&+ s) (1+n&+ s),
a~ = (I+n&+s) (2+n&+s);

b = (z —ags)/(s+ag, );
X = —5(z —a/~)(a+ad~) ', Y=-P/5;

n =-n~+s+1, p=-n&-E+s+2,

p' = nq+I+s+2, &= (g, +t;g)/(g, —gy);

and the functions E are the Appell functions of the
first kind. To obtain Eq. (16) we have supported
that s =s, =sz. ' TheAppell functions in Eq. (16)
reduce in the case of bound-bound transitions (that
is, for n&=s+1+e&, @&=0, 1, 2, . ~ . is the vibration-
al quantum number of the bound final state) to ordi-
nary hypergeometric functions. In some specific
cases the functions F can be calculated using the
asymptotic methods. Generally, the function F in

Eq. (16) may be evaluated with the help of the fol-
lowing relation which can be obtained using the
known relations for the Appell functions given in
Ref. 11:

E(a, P, P', y z y)=(1+t) Z ~" ( —t) E I-2N, P, P', y; z, y=(1+t) 5 s„,
NnO N~O

where s „=0, so=1, and

(17)

(N+1)(y+N)(y+N 1)p „~(a+N)(y-+N 1)P(2N+y —(N+-2) r —(N+2') y )p„—(a+N)(a ~ N 1)d-1+I 1+t
t g ) N

x 3 —2y-3N+(y+ p-2+2N) «+(y+ p —2+2N) y+(1 —p- p —N) xy s„„,
1+t t 1+t 1+I

1+t 1+t
+ (a+N)(a+N- 1)(a+N 2) t 1 —-z ) 1 — y s„~=0.t t (16)

It should be noted that the presence of two alter-
native approaches to the calculation of two-photon
processes gives us the possibility of comparing the
results obtained within the general method of cal-
culation (10) for N=2 with those of Eq. (16). The
application of the formulas derived in the present
paper to real multiphoton transitions in heteronu-

clear diatomic molecules will be given in following
papers.
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A calculation of higher-order relativistic contributions to the combined Zeeman and motional Stark
eA'ects in positronium is presented. These contributions are necessary for the determination of the
fine-structure interval in the ground state from the Zeeman effect and may be important in future
experiments on the first excited states of positronium. The contributions to the g~ factors have been

calculated to order a for all the 5 states and for the 2P states. The energy levels and the
higher-order corrections to the motional Stark effect in the first excited state are also presented.
Relativistic contributions are obtained from the matrix elements of a Hamiltonian containing the Breit
interaction, a Pauli Hamiltonian, and the virtual annihilation interaction. For all n S states the
relativistic contributions to the Zeeman effect may be accounted for by the replacement of g, by

g, (1 —5a'/24n' —T/2mc'), where T is the kinetic energy of the atom and g, is the gyromagnetic
ratio of the free electron.

I. INTRODUCTION

Higher-order contributions to the combined Zee-
man and motional Stark effects in positronium are
needed for the determination of the fine-structure
interval 4v in the ground state from the Zeeman
effect and may be important in future experiments
on the first excited state. The measurement of
M is an important test of quantum electrodynamics
and of the Bethe-Salpeter equation for the bound-
state lepton-antilepton system. ' In this paper
the contributions to the Zeeman effect are calcu-
lated to order u p~H for all the 8 states and for
the 2I' states of positronium. Also the energy
levels and the higher-order corrections to the rno-
tional Stark effect in the first excit d state are
computed.

The fine-structure interval in the ground state
of positroniurn has been calculated to terms of or-
der e lna. '8, . The e 8 contributions to L4 were
first determined by Pirenne, ~ Berestetski, 8'9 and
Ferrell. Karplus and Klein have computed

terms of order 0. 8 that contribute to 4v. The
0. lno'. 8, contributions to hv were calculated re-
cently by Fulton, Owen, and Repko. ' In the first
excited state of positronium the fine-structure in-
tervals have been calculated to order 0. S. Fulton
and Martin have computed all the contributions
of order e 8 to the energy levels of a bound two-
fermion system. These values are to be added to
the a {R contributions calculated by Ferrell.

The relativistic contributions to the Zeeman and
notional Stark effects are obtained from matrix
elements of the positronium Hamiltonian X. The
three terms in X are the Breit interaction, a
Pauli Hamiltonian' introducing the anomalous mag-
netic moments of the electron and positron, and
the virtual annihilation interaction. A transforma-
tion of two-body equations' is used to decouple the
positive and negative energy states. A unitary
transformation is used to reduce the dependence
of the positronium Hamiltonian on the center-of-
mass coordinate.

Margenau, Lamb, ' and Breit have calculated


