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Within the framework of the Born—Oppenheimer approximation questions are considered involving~

application of time-dependent perturbation theory to diatomic heteronuclear molecules. A
potential-energy model of the form V,-(r)=A,. /(r —r, )'—B,/(r —r, ) +Q is proposed which gives a
good representation of the true curves of the ground and excited states of a molecule. The relation

co,x, =6D'/m =3'', "/2m has been obtained between the dissociation energies into free ions D,
vibrational frequencies co„and vibrational anharmonicity parameters co,x, of the ground state of polar
molecules. Analytical expressions are derived for vibration-rotation spectra, wave functions, and
radial matrix elements considered in the first-order perturbation theory. An explicit expression
obtained for the Green's function of the model enables a closed form to be given for matrix elements

appearing in the higher-order perturbation theory involved in calculation of multiphoton molecular
transitions.

I. INTRODUCTION

Perturbation theory is one of the most promis-
ing approaches to molecular quantum mechanics
and particularly to multiphoton processes in non-
linear optical phenomena. Application of time-
dependent perturbation theory ordinarily leads to
multiple infinite summations of matrix elements
over discrete energy states and to integration over

continuum spectrum of the unperturbed Hamilto-
nian. Unfortunately, in most molecular problems,
it is difficult to construct a satisfactory unper-
turbed Hamiltonian for which the complete set of
eigenfunctions and eigenvalues is known. Using,
as a first-order approximation, the usual sepa-
rability of the wave functions (Born-Oppenheimer},
the application of the perturbation theory to molec-
ular problems may be considerably simplified.
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After the selection rules for rotational and elec-
tronic quantum numbers have been established, the
treatment of N-photon molecular transitions within

the framework of the N-order time-dependent per-
turbation theory reduces essentially to calculating
(N-1) sums over vibrational structure of inter-
mediate transitions. Each of these sums is ex-
tended over complete sets of vibrational states of
all electronic states allowed by the selection rules
and for all allowed values of rotational quantum

numbers. ~ The procedure used to evaluate the
sums over vibrational states is proposed. This
procedure is based on the use of the explicit ex-
pression of the Green's functions for the inter-
nuclear potentials of intermediate electronic
states.

It is evident that the construction of the poten-
tial-energy-curve model for a number of electronic
states of a molecule plays the most important part
in these considerations. Such a model must give
a good representation of the true curves of the
ground and excited electronic states. At the same
time it must be simple enough to enable us to write
analytic expressions for vibrational eigenenergies,
eigenfunctions, and Green's functions of all elec-
tron terms.

In the present paper, a model of potential-ener-

gy curves for diatomic heteronuclear molecules is
proposed. This model gives a good representation
of true curves and analyti. c expressions for vibra-
tional and electronic transitions induced by radia-
tion acting on a molecule are able to be obtained.
The presence of closed-form expressions for the
Green's functions of the model gives the possibility
to calculate radial matrix elements which appear
in treatment of multiphoton molecular transitions.
General expressions for cross sections of multi-
photon transitions in a molecule are given in Ref.
1 as well as the Morse-type potential-energy model
for homopolar diatomics.

In their lowest electronic states, the diatomic
heterpolar molecules behave essentially like pairs
of oppositely charged ions. The most successful
model for predicting ground-state properties of the
heteropolar diatomics if the classical ionic model
proposed by Rittner2:

V(r) =Ae " ' —C/r —e/r
—e'(a. + a )/2r' —2e'a, a /r',

where A and p are repulsion constants, ~. and ~
are the polarizabilities of the ions, and C is the
constant of van der Waals interaction. Equation
(1) gives a good representation of the true curve
for large internuclear distance r, however it does
not give a particularly good representation of the
internuclear potential in the region close to

the equilibrium separation. Indeed, a correct
picture of the interatomic forces in this region
evidently plays an important part in the description
of molecular properties for the lowest vibrational
quantum numbers. The calculation within the Ritt-
ne ™delof vibrational frequencies of alkali
halide molecules (which represent the most clearly
defined cases of what is called heteropolar bind-
ing) does not, however, give results in good agree-
ment with experimental data. s It should also be
noted that there are no analytic expressions for
eigenenergies and eigenfunctions in the Rittner
model and the numerical solution of Schrodinger
equation with potential (1) are to be undertaken in

any specific case.
In the present paper the following potential is

proposed as the ground-state potential energy for
the heteronuclear diatomic molecule:
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FIG. 1~ Ground-state potential curve for Nal calculated
from Eq. (2) (D=5.09 eV, wc=1.30 A).

in the region r &r„and V(r) =~ in the region r
&r, (see Fig. 1). Note that V(r) behaves as-Z'e'/r
as y- ~. The Schrodinger equation with potential
(2) allows analytic solutions.

In Sec. II explicit formulas are obtained for vi-
brational-rotational spectrum, wave functions,
and Green's function of the model (2).

An interesting feature of the potential (2) lies in
the fact that any two of three parameters D, (d,
~,g„which determine the vibrational spectrum of
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the problem

E„=—D+ fd, (v+ —,') —to,x,(ft+ —,')'. . .
are mutually connected with each other by means
of simple relations. This gives the possibility to
compare theoretical values with experimental
ones. As an illustration, ground-state dissocia-
tion energies to free ions (D) and vibration-anhar-
monicity parameters (fd,x,) have been calculated
(using the experimental data for vibrational fre-
quencies tc,) for all alkali halide molecules. The
results are presented in Table I. The mean value

In Secs. III and IV the analytic expressions are
derived for matrix elements of one-photon vibra-
tional and electronic transitions within the frame-
work of the developed model. Thus the construc-
tion of the first-order perturbation theory for het-
eronuclear diatomics is achieved. One further re-
mark may be inserted about the part which the po-
tentials (3) play in the higher orders of time-de-

LiF
NaF
KF
RbF
CsF

5 125 910c
10.41 536
12.79 426d
15 59 373d
16.63 352d

7.39 7.82 10.4
6.58 6,55 4.06
6.05 5.90 2.79
5.92 5.68 2.19
5.82 5.55 1.98

7 ec

3.83+ 0.14
2.43d
2a18+ 0.03
1.62d

LiCl 5.806 661
NaCl 13.95 366 + 4f

KC1 18.60 281+ 6
RbCl 25.07 228 + 6
CsC1 28.00 209 + 6f

6.23
5.63
5.19
4.99
4.89

6.51
5.63
4.98
4.77
4.77

6.52
2.21
1.41
0.96
0.83

~ ~ ~

2.OS'

1.30f
o.e2'
o.vs'

LiBr 6.455 563.5g 5.80

NaBr 17.86
KBr 26.26
RbBr 40.91
CsBr 49,53

3O2+ 4'
213~ 6f

169.5c
149.5

5.38
4.84
4.82
4.72

6.24 6.09
(6.os)'
5.38
4.77
4.58
4.59

1.58
0.87
0.554
0.44

3.888

1.Sof

O. 8O'

0.463g
0.36g

LiI 6.582 501~

NaI 19.47
KI 29.82
RbI 50.89
CsI 64.94

258+ 6
186 sc
138.5c
1O1'
(119)g

5.38

5.00
4.52
4.53
4.00
4 ' 45

5.85
(5.57)e
5.09
4.51
4.31
4.29

4.34

1.25
0.70
0.394
0.238
0, 297

3.1g

1.O8'

0.574g
0.335g
0.254C
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TABLE I. Comparison of theoretical and experimental
results for dissociation energy into free ions (D) and vi-
brational anharmonicity (vsgs) of alkali halides. The
theoretical values were calculated from D=g(mtu, )
and coexe = g(tu, /m) ~s using experimental data for vibra-
tional frequencies co,.

~capt ~tbscr Dexpt a (&+ )tbea (~+ )egpt

Salt m (cm ) (eV) (eV) (cm ) (cm )

pendent perturbation theory involved in the calcu-
lation of multiphoton molecular transitions. ' The
cross section of the N-photon molecular transi-
tion contains the (N I-) infinite summations over
intermediate states. Each of these sums is ex-
tended over a complete set of molecular states;
each term of the multiple sum involves the prod-
uct of N of the first-order matrix elements. It is
clear that without explicit expressions for the
Green's functions of all intermediate electron
terms involved in multiphoton transition it should
be practically impossible to calculate the multi-
photon-transition cross sections in molecules.
of the quantity iD/D~t —1 i for 16 alkali halides
(excluding that of Li) is about 2%, and the mean
value of i (fd,x, /fd, x,'mt) —1 i is 12%. It should be
noted that the monoparametric model (2) (the vi-
brational structure of the spectrum does not de-
pend, evidently, on r, ) ensures better agreement
with the experimental data than the Bittner po-
tential (1).'

The rotational structure of the spectrum is de-
termined (for the small vibrational quantum num-

bers) by the internuclear equilibrium distance rc.
(The rotational constant, which corresponds to
equilibrium separation fc, is B,=g /2mrtt. ) For
a given value of D (or for a given value of to, or
op, x,) the difference (ta —r,) has a definite value fc
—f', = Zaea/2D Using rc.from the rotational struc-
ture of spectrum, r, can be obtained.

The true potential-energy curves of excited elec-
tron terms I i) may be described by the following
generalization of Eq. (2):

in the region y&y„and V, =~ inthe region g
& r„B,& 0 for the attractive curves and B, & 0 for
the repulsive potentials (see Fig. 2).

In Secs. III and IV the analytic expressions are
derived for matrix elements of one-photon vibration-
al and electronic transitions within the framework
of the developed model. Thus the construction of
the first-order perturbation theory for heteronu-
clear diatomics is achieved. One further remark
may be inserted about the part which the potentials
(3) play in the higher orders of time-dependent
perturbation theory involved in the calculation of
multiphoton molecular transitions. ' The cross
section of the N-photon molecular transition con-
tains the (N —1) infinite summations over inter-
mediate states. Each of these sums is extended
over a complete set of molecular states; each
term of the multiple sum involves the product of
N of the first-order matrix elements. It is clear
that without explicit expressions for the Green's
functions of all intermediate electron terms in-
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volved in multiphoton transition it should be prac-
tically impossible to calculate the multiphoton-
transition cross sections in molecules.

H. EIGENENERGIES, WAVE FUNCTIONS, AND
GREEN'S FUNCTIONS

Within the Born-Qppenheimer approximation, the
molecular wave function can be expressed as a
product of electronic (g) and nuclear ($) wave func-
tions, 4 = gg. The radial part of g, R(r), satis-
fies the equation

d m
(g

)f (K+ )
V( ), R( ) 0

(4)

where

A BV(r)=, — +q(r-r, ) r-r,
is the internuclear potential of the attractive (B&0)
or repulsive (B&0) electron term, [nA) for r& r„.
in the region r& r, , V(r) =~. E„zis the energy

eigenvalue of the state with vibrational and rota-
tional quantum numbers, v and K, respectively.
The condition of the continuity of R(r) at r =r,
gives R(r,) = 0 [in the region r & r„evidently R(r)
=0].

» what follows, the centrifugal repulsion term is
treated in Eq. (4) approximately, using the effec-
tive potential

A' B
eff

( )s +0 ~

where

)f K(K+1) rs-r~)(""'
2m yo )(

V f f satisfies the relation

V,ff (r,) = V(ro) )+'fK(K +1)/2 mr„

which enables a correct description to be given
for the rotational energy of a molecule in the vi-
cinity of the internuclear equilibrium distance r, .
Introducing the variables r'=r -r„x=rR, the
following equation is obtained:

2m A'
&s+ @ E-Q-~ +—, x=0, (5)

3
O

Ca

L0
Q
CJ

C
I 0-
C

-2-

-3
2 3

6-
l i(l
I

I, l

5 ) ll
l ~)l
l l(l
I ()1

4 ) Il
I

Vo(r)

—V3(r)

5 6 7 8

which reduces to Whittaker's form

x"+f--,'+n/r+[-, ' —(s+-,')']/i/x=0 . (5')

Here r=2)r', L=[-2m(B Q)]'~ /I, -n=mB/ff 0,
and s is the positive root of the equation s(s+1)
= 2mA'/g . Equation (5') has two linea, rly indepen-
dent solutions. The Whittaker function
M„,„,~z(2Lr') is regular when r'-0,

M„»s(2'')=e t" (2fr')" '4 (1 ns+, 2-s+ 2, 2fr'),

(5)

where 4 is the confluent hypergeometric function.
The Whittaker function W„„,~s(2kr')-another
fundamental solution of Eq. (5')—is regular for
r'- ~. Using the fundamental solutions of Eq. (5')
and calculating the Wronskian gives the Green's
function of the radial Schrodinger equation (5),

Internuclear Distance r

FIG. 2. Potential curves for the lower excited elec-
tronic states of NaI. The solid curves show the experi-
mental potential energies taken from Ref. 5. The dashed
curves are calculated from Eq. (3) using the following
sets of parameters: Vt(r): r, =1.30 A; At=0. 83 eV (k;
B~=-0.018 eV A; Q~=-2. 04 eV. Vq(r): r~=1.30 A;
A2=1.51 eV (A); B2= 0.98 eV A; Q-2=-2. 04 eV. V3(r):
r~=1.30 L; A~=3. 08 eV (A); Bs= 0.13 eV A; -Qt= —1.1
eV. V4(r): r~=1.80 A; A4=1.42 eV (A); B4=1.85 eV A;
$4=0.1 eV.

m 1'(1+s —n)
I'C r( 2)

x M„,+,&z(2kr&)W„,+,&z(2gr', ),

where r'& (r&) is the smaller (larger) of the quanti-
ties r', and r~. When B& 0, the poles of the I' func-
tion I'(1+s —n) at 1+s —n = —v, v = 0, 1, 2, . . . ,
determine the infinite discrete spectrum of bound
states,
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m
Sf'(s+1+v}'

2mA/O' = Z'(6t/D) (m/m, ),
Rue= 2DZ 2[(m/m~) (4t/D)] '» (9)

= q —D+lfar, (v+-2') —K(u,x, (v+ —,')'

+B (K+-') +''' (8)

Here v=0, 1, 2, . . . is the vibrational quantum
number (n = s + 1+v), D = B /4A is the bond dis-
sociation energy, ur, =2D(2mA) '/ is the vibra-
tional frequency at v = 0, or~, = 2(SD/mA) is the
vibrational anharmonicity parameter, B,=5 /2Z
is the rotational constant, J= ms~ is the moment
of inertia, and m = m,m2(m, + m2)

' is the reduced
mass of the molecule. The expression (8) was ob-
tained by expanding B m/2Ii2(s+1+v) as a power
series in the small parameter I'(2mA) '

For the ground states I 0) of the heteronuclear
diatomics parameter, B is determined by the
asymptotic form of the potential V2(r) for large r,

V(r) ~ -Z2e2/r +0(1/r'),

B =Z'e', where Z is charge of ions.
When B& 0, the potential (3}has the minimum at

r2=r, +2A/B, V(rp) =-D+Q. The position of the
minimum is connected with the half-width b, of the
potential curve b, = 2 / (r 2- r, ) At B. = Z'e' the
vibrational spectrum of a molecule is determined
by the parameter A which is connected with the
dissociation energy into free ions, D= Z'e'/4A, as
well as with vibrational constants &, and &~,:

%o~, = (3D Z '/6t)(m, /m).
Here m, is the electron mass and 6t =m, e'/21'
= 13.605 eV. In atomic units,

D = —2(m&u'Z )'"
(u,x, =6D /mZ'=2((u', /mZ'}"' (9I)

[r(P +2+,)]'/'
a"'(s + 1+v)I'(2s+ 2)(v I)'/'

xM 2+1+v, 2+1/2 a(&+ 1+v)) (10)

where a =I /Bm = a2/n, /mZ' is the Coulomb unit of
length. According to Eq. (6),

Table I gives the dissociation energies into free
iona (D) and vibrational anharmonicity parameters
(v,x,) calculated from Eq. (9') using the experi-
mental data for vibrational frequencies ~,.

The theoretical values are compared with the ex-
perimental ones for all alkali halides. Excluding
the halides of Li, the mean deviation of ID/D'~

I

from unity is about 2% and the mean value of
I1 —(&u,x, /co~', ~')

I is about 12%. In many cases the
errors are within the experimental ones.

The normalized wave functions of the discrete
spectrum are determined as the residues in the
poles of the Green's function (7),

[I'(2s + 2+v)] '/'
a' (s+1+v) (v!)'/"I'(2s+2) a(s+1+v)) ' ' a(s+1+v)&~

The wave functions (10) satisfy the boundary con-
ditions and are normalized so that f, x„2(2')dr'=1.

Continuum wave functions (E —Q & 0) in the at-
tractive (B& 0) or repulsive fields (B& 0) have the
form of Eq. (6) with

0 = [-2m(E Q)]'/'/R-= iq,

where q is the wave number of particles:

e' / II'(s+ 1+n) I Mx E(+ } (2 )1/2. s+ 1 F(2 2)
+ &+ / f

e""
I I'(s+ 1+n) I ( ~ (~,)„g

(2v)'/' I'(2s + 2)

&'4(1-n+s, 2s+2, 2iqr') .

Here n = mB/ff f = i(mB/ff 2q) —The normal. ization
coefficient in (11) corresponds to the asymptotic

form of x(o ) for large r

x«(r) = (2/v)' sin[qr+inln2q(r- r, )

——2'ws -qr, +6,]

where 6, =argI'(s+1+n).
It is evident from Table I that the potential (2)

at B=e, A = e /4D, gives results very close to the
true values of the ground-state vibrational con-
stants for most of the alkali halide molecules. The
excited-state potential may be well fitted to empir-
ical expressions (3) (see Fig. 2). For this reason
the analytic calculations-within the framework of
the proposed model-of the probabilities of arbi-
trary one-photon transitions in heteronuclear di-
atomics would be of interest so that comparison
with various experimental data related to the spec-
tra of salt vapors may be made.
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III. ONE-PHOTON VIBRATIONAL TRANSITIONS

First consider one-photon transitions which take
place without change in the electronic state of a
molecule, that is, that occur between two vibra-
tional states !n) and !n') (of discrete or contin-
uous spectrum) of the same electron term (s =s'):

I„„.=J R„(r)R„.(r)r 'dr

= f x„(r')x„.(r') (r'+ r, ) dr'

=j x„(r')x„s(r')r'dr' (13)
0

due to the orthogonality of eigenfunctions at n'
4n,' r' =s —r, . Denoting the normalization coeffi-
cients for the initial and final states as N„and N„.,
respectively, and integrating, v

(2r
I1(2,.= NQ„.M„,„ggzi—M„.,„g|z, i

rdr
}an "' un )

0' 2 ' I'(2s+4) (nn')"'
z Nt)N)t. , „z„zF(a + 2) ~

(14)

Here a=ffz/Bm (B)&0), n=s+1+v for the discrete
spectrum wave function (B)0), n = —z(mB/$2 q) for
the continuum wave function (B)&0), q is the wave
number for the state of positive eigenenergy, s is
the positive root of equation

s(s+1)= 2m4/(S z+K(K +1) (r[) —r,)z/rz,

F(a+2)=Fz(a+2; s+1-n, s+1 n'; n-, o.; x, y)
is the generalized hypergeometric series of two
variables, z a = 2s + 2, x = 2n'(n +n') ', y = 2n(n +n') ',
and x+y = 2. The function F(c[+2) is calculated in
the Appendix. Using Eq. (A5) and the normaliza-
tion coefficients from Eqs. (10) and (11), then for
the radial matrix elements of vibrational transi-
tions there are the three following cases.

In this case
A. Bound-Bound Transitions

a[)m, 2 '(- 1)"'(v' —v)""' '[(s+ 1+v) (s+ 1+v')]" ' [I'(2s+ 2+ v)1'(2s+ 2+ v')]'i'
m Zzr(2s+ 2) (v!v'!)"'(2s+2+ v+ v')" ""'"'

2vv'+(s+1)(v+v'),
2 2

4(s+1+v) (s+ 1+v')I

2vv'(s+ 1+v) (s+1+v') 1, 1 2 3
4(s+ 1+v) (s+ 1+v')&i (15)

For two hypergeometric functions, ,F, being the polynomial of degree v and v+1, respectively (assume
v & v'), Eq. (15) is easily calculated for small values of v. For I' functions which appear in (15), one uses
the Stirling-series approximation. The latter ensures high precision for physical values of the parameters
(for alkali halides, 130 &s &600). Thus, for example, for transitions from the v =0 vibrational level,

(v')" ' (I+ s+ v') '(1+s)"'"'
Ott' 0 2) [ ](2 + 2)v']lt(2 ( + 1+~ )Zs+ $+ts' (16)

For v' «2s+2 the second fraction in Eq. (16) may be put equal to unity.

B. Bound-Free Transitions

In this case, n = s+1+v and n' =-zmB/8'q, B)0, where q is the wave number of dissociating particles,
is put in Eq. (A5}:

(2/s)'"az" 2'[I'(2s+ 2+ v)]'I'! I'(s+ 1 —i/aq)! 2s+ 2+ 2v
(aq)"' (v!)'"I'(2s+ 2) 1/a'q'+ (s+ 1+v)')

1
xstct —[- +2ctc cc(s+1+ )]+ '(2v-2)ct q(s ~ 1+ )])Qg

lt'2'' - 4nn'
, —s —1 zF, —v, s+1-n'; 2s+2;, zin+ n n-n'

2nn'(n —s —1}(n' —s —1} ( -4nn'
+

( 1) ( ' — ) zF'I v+1, s+2 —n'; 2s+32 (17)
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recall that a = ff /mB, n' = —i/aq, aq = [(E—Q)/
D]1/2

C. Free-Free Transitions

The radial matrix element for the scattering
which takes place without change in the electron
terms of the particles may be obtained by substi-
tuting Eq. (A5) in (14) and using continuum spec-
trum normalization from Eq. (11). The quantities
n and )2' are defined by the formulas n = —imB/fi'q,
n' = —imB/g q', B && 0, where q and q' are the wave
numbers of relative motion of the particles before
and after scattering.

IV. ONE-PHOTON ELECTRONIC TRANSITIONS

In Sec. IO, the radial matrix elements which in-
volve nuclear wave functions belonging to one and
the same electron term were calculated. Now con-
sider transitions between the ground !0) and ex-
cited I 1 ) electron terms. The potential energies
of combining terms 10) and !1) are described by
Eq. (3) with the following sets of parameters: A,
B&p r @=panda"' B'' p r'' Q' '

spectively. The bound-state function (10) for the
ground term and the bound or continuum wave func-
tions [Eqs. (10) and (ll)] for the excited term shall
be used as the eigenfunctions of initial (n) and final
(t)') vibrational states (which belong to different
terms lp) and !1)).

Since the true curves of repulsive states may be
well approximated by Eq. (3) with r,()) = r (0) (see
Fig. 2}, in this case

I„'„'.= ''r ''rk Ch

= f 2„(2)(r') X9)(2'}(r'+ r, ) dr',

where the new variable k'= k- k, has been intro-
duced and the fact that the integrand in Eq. (18)
vanishes in the region 2 & r, [the continuity of )((r)
at the point r= r,] is used. The functions 2(2) and
g„',"are defined as the functions of the argument
r' = r- 2; in Eqs. (10) and (11). Now take the
ground-state wave function (10') in the form

[v!])/2s-r '/s(s+1ss)
x„„(r'=

[al'(2s +2+v)]'/2(s +1+v)

S+ j+~
x aj a(s+ 1 + v))

where a,'"' are the coefficients of the Laguerre
polynomials of degree v,

I (2S +i)
a(s+1+v)

~

I'(2s+2+ v) @ 2 2
2r'

v!I'(2s+2) ' ' a(s+I+v)ii

(„)~f
2r'

1a(s+ 1+v) ) (20}

Thus, for v=0, ap '=1; for v=1, ap '=2S+2, a&
'

= —1. Then the radial matrix element for the
electronic transition becomes

where

(2) if
[al'(2s+2+ v]"'(s+1+v),.2 +

2 I 't s+ j+1

(a(s+ 1+v)/
p

2r'
X(r'+rs)M„.s.,)/2, , dr' .an

(21)

(22)

2' "(a)2)"' '"'(a'n')'""I'(s+s'+3+ I)
(ON +os+a)s+s'+2+)

x pEg s+s +3+lp s n +12 2s +2y p p ~

(23)

Equations (21) and (23) give the final analytic ex-
pressions for radial matrix elements of arbitrary
electronic transitions in a heteronuclear diatomic
molecule. For the bound final state n' = s'+1+ v',
Eq. (23) reduces to a polynomial of degree v'. The
most important of all possible applications of Eqs.
(21) and (28) seems to be the calculation of the

Here a= 8/Bm &0 is'the Coulomb unit of length
defined for the initial-state term potential a' = )I /
B' )m, B(~) &&0 is the parameter of potential (8) for
the final electronic state. s must be taken as the
positive root of equation

a
s(s+1)= +K(Ks))(

ro j
s' is the positive root of

s'(s'+1)=, + Z'(K'+1) ("'
kp

n= s+1+v,' n'=s'+1+v' for the bound final state
(B' ' & 0); and )2' = - imB("/5 2q for continuum wave
function (B"&&0). The coefficient N9) is defined
according to Eqs. (10) or (11). Integrating2 in Eq.
(22),
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photodissociation cross sections for the salt va-
pors.

APPENDIX'
CALCULATION OF THE FUNCTION F(0,'+ 2)

To calculate the function

F(a) = F—a(a,' s+ 1 —n, s+ 1 -n'; a, a,' x, y)

(I «)n-s -1(I )8 - s-1

xaF&(s+ I -n, s+1-n", a, xy/(I —«) (1 —y)) .
(A2)

Then use the recursion relation

F(a+ 2) =F2(a+ 2—; s+ 1 —n, s+ 1 —n'; a, a,' x, y),
(Al)

1 8 8F(a+1)=—x —+y —F(a)+F(a)e 8x 8y
(AS)

first note that'
to calculate the function F(a+1) -=F,(a+1; s+1 -n,
s+ 1 —n'; a, a, x, y),

1 ' 1F(a+ 1)= (1 —«)" ' (1 —y)" '
i
(1 —x) (1 —y) — x(1 —y) — y(1 —x) i0! Q i

xy r (n —s - 1) (n' —s —1)xzpI s+1-n s+1-n,' 2 +2
1 1 )+ 2 +

xyxxy
( )( )

2Fg 8+2 —n 8+2 —n'28+2'
(1 )(1 ) i

~ (A4)

It may be noted that for x= 2n'(n+ n'), y
= 2n(n+n') ~, and n' 4n, then F(a+ 1) = 0 (the
orthogonality of the wave functions). At n= n' = s
+1+v (v=0, 1, 2, . . .), Eq. (A4) enables the nor-
malization coefficient to be obtained for the dis-
crete spectrum eigenfunctions given in Eq. (10).

Once more using Eqs. (AS) and (A4) and taking into
account that after the calculation of the derivatives
the function F(a+ 1) and the coefficients which
stand before the functions p', in Eq. (A4) and equal
to zero, then

F(a+2)=( ] i [,-s —I[ 2Fg s+l-n, s+I n';2S+-2; p I i

-4nn' i
s+1 2s+3 ),n +n ) n+ n' n-n'

2nn'(n —s —1) (n' —s - 1) -4nn' &

+
( +1)( — )

s+2 + 8+2 n 28+S~
( — ')3)

(A5)
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%'ithin the framework of the Born-Oppenheimer approximation and the theory of multiphoton
molecular transitions, a method is proposed for calculating matrix elements of multiphoton processes in
a heteropolar diatomic molecule. The method is based on the application of the explicit expressions of
the Green's functions of the internuclear potentials. Analytical expressions are derived for the
two-photon transitions. Results for higher-order processes are presented in a form which is convenient
for numerical computation.

I. INTRODUCTION

In a previous paper' general expressions have
been derived for the cross sections of multiphoton
processes induced by radiation acting on a diatomic
molecule.

Within the framework of time-dependent pertur-
bation theory and the Born-Oppenheimer approxi-
mation, a method has been proposed for evaluating
the sums over intermediate states. The method
is based on the application of the explicit expres-
sions for the Green's functions of the internuclear
potentials. The Morse- type model of potential-
energy curves has been used which gives a good
representation of true curves of the ground and

excited electronic states of some homopolar di-
atomic molecules.

It is evident that the description of the interac-
tion of intense electromagnetic radiation with a
heteropolar molecule would also be of interest from
the different points of view. In the most clearly
defined cases of what is called heteropolar binding
all the valency electrons pass over from their own
atoms to other atoms, so that the heteropolar mole-
cule unlike the homopolar one has appreciable di-
pole moment in the ground state.

This gives rise to rich rotation-vibration spec-
tra in ordinary spectroscopy of such diatomics. In
the treatment of multiphoton processes it becomes
necessary to take into account the intermediate
transitions which occur without change in electronic

state. Theoretically, two-photon vibrational transi-
tions in a heteronuclear diatomic molecule have
been considered using the Morse potential and the
Kratzer potential as internuclear potential energy.

The application of the Green's functions of these
potentials obtained in closed forms permits analytic
solution of the problem. However, the potentials
used do not give a particularly good representation
of true curves in the case of heteropolar binding.
At the same time the experimental investigation
of the interaction of heteropolar diatomics with the
electromagnetic field has been the subject of a
large number of works. Terenin first initiated
the study of spectra of heteropolar diatomics.
Actually, such research plays an important part
both for the theory of molecular structure in gen-
eral and for nonlinear optical phenomena in particu-
lar.

It is clear that the possibilities of the theoretical
treatment of the processes induced by radiation
acting on a molecule depend on the presence of the
potential-energy-curve model for the ground and
excited molecular states. Such a model must well
describe the true curves and at the same time be
simple enough to enable us to write analytic ex-
pressions for wave functions and a Green's func-
tion of all electron terms involved in the transition.

In the present paper we shall use the following
internuclear potentials proposed in the paper':

~g(&) = A~
+ Qg

Bg
(&)

(& pg)-


