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Within the framework of time-dependent perturbation theory and the Born-Oppenheimer
approximation, general expressions are derived for the cross sections of multiphoton processes induced

by radiation acting on a homopolar diatomic molecule. A Morse-type model of yoteritial-energy cerves
of excited electronic states is proposed which gives a good representation of true curves. The procedure
used to evaluate the sums over intermediate states is described. The method is based on the use of the
internuclear potential Green's functions obtained in closed form. Analytic expressions are derived for
one-photon and two-photon cross sections. The results for higher-order processes are presented in a
form which is convenient for numerical computation. As an illustration, the cross section for
one-photon dissociation of H from the +=0 vibrational level is calculated as a fIunctioa of
wavelength. A comparison of cross sections calculated using the Morse-type model of potential curves
with those using accurate wave functions of H ' shows a good precision of the model.

I. INTRODUCTION

The interaction of laser radiation with atoms
has been the subject of a large number of recent
theoretical papers. Most of these concern the
multiphoton atomic transitions corresponding to
simultaneous absorption or emission of several
photons by the atom and are generally treated
within the framework of time-dependent perturba-
tion theory.

In this paper, we shall present an approach for
the treatment of many-photon problems in a homo-
polar diatomic molecule. Sections II and III con-
tain explicit formulas for the multiphoton-dissoci-
ation and -excitation cross sections obtained with-
in the Born-Oppenheimer approximation. The
angular parts of the Nth-order matrix elements
have been calculated and the selection rules for
electronic transitions are given. The chief diffi-
culty in calculating the radial parts of the N th-
order matrix elements stands in the correct evalu-
ation of the N —1 summations over intermediate
states. Each of these sums is extended over com-
plete sets of vibrational states of all intermediate
electronic states allowed by the selection rules.

For a given electronic state the summation over
its complete vibrational spectrum may be explicit-

ly carried out through the Green's &rection of the
internuclear potential. In a yrevious paper' a
method has been presented fer calculating radial
matrix elements of two-yhohw vibrational transi-
tions. This method can be generalised to calculate
the sums over coxnplete sets of vibrahenal states
in the matrix elements of multiyhoton electronic
transitions.

Thus, we may deduce that the construction of
the potential-energy-curve model for a number of
electronic states of the molecule must play an im-
portant part in these considerations. E is common
for the true potential curve to be fitted to empiri-
cal expressions and we shall use the Morse poten-
tial

V (&) I& (&-ae(r-ro& 2 -e(rmo&)

for the potential curve Of the ground electronic
state I0). For the potential-energy curves of ex-
cited electronic states I i) let us use the potentials

This potential-energy model gives a good repre-
sentation of the true repulsive (t, & 0) and attrac-
tive (t, & 0) potential curves for some homopolar
diatomics (see Fig. I).
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I'IG. 1. Potential curves for isa~ and 2po.„states of
H2' and 1so~ 2pa„ transition dipole moment. The solid
curves show the true potential curves of H2' (Ref. 13) and

the iso+-2po„ transition dipole moment calculated in Ref.
14 using accurate wave functions. The dashed curves for
Vo(r) and for V~(r) represent, respectively, the Morse
potential (17) with r0=2ao, e =O. 72ao, DO=2. 79 eV, and

the potential (18) with D& =DO, t= —1.11, Q=O. The
dashed curve for dipole moment d(r) is calculated from
Eq. (33) with d(rz) =1.07eaa, d'(ro) =0.396e, x= —0.055.

sums over vibrational states of each intermediate-
electron term may be carried out through straight-
forward integrations of expressions involving the
Green's functions of corresponding potential
curves. Generally, this procedure requires nu-
merical computations and will be treated in follow-
ing papers. Without going into the problem of nu-
merical integration it may be noted that one- and
two-photon cross sections are obtained in analytic
forms.

In Sec. VII, simple formulas are given for the
cross sections of one-photon vibronic transitions.
An interesting feature of the result lies in the pos-
sibility of analytically revealing the dependence of
the cross section on the electric anharmonicity of
the transition. In order to check the precision of
the model developed in the paper, the photodisso-
ciation of H&' from the v=0 vibrational level is
considered. The results obtained are compared
with those using accurate wave functions and show
a high precision of the model.

In Sec. VID an analytic expression is derived for
two-photon transition cross sections. In this case,
the final expression is more complicated and re-
quires the calculation of slowly converging gener-
alized hypergeometric series. However, the nu-
merical operating of these series causes no difQ-
culty.

Section IV contains vibrational wave functions
and Green's functions obtained in closed form for
this Morse-type model. Section V gives the sim-
ple model describing the electronic-transition di-
pole moment. The latter enables a correct de-
scription of the dipole moments to be given in the
vicinity of the internuclear equilibrium distance ro
as well as for large z.

The evaluation of the Nth-order radial matrix
elements containing many infinite summations over
intermediate states is described in Sec. VI. The

II. MULTIPHOTON-DISSOCIATION CROSS SECTION

In the dipole approximation the nonrelativistic
interaction Hamiltonian between the plane electro-
magnetic wave and a molecule has the form
$0 f d cosset, where 80 is the amplitude, & is the
frequency, Z is the unit polarization vector of the
radiation, and d = pe, r, is the total dipole-moment
operator for the molecule. The multiphoton-disso-
ciation probability per unit time may be determined
in the Kth-order perturbation theory and is given
by

2g '

~b
" ~ (f 1«dl i„ t) (i„ tl cdli„g) ~ ~ ~ (itl cdlo)

dK=
)i 2 q, q, „;„[EO-E„.t+(N —1)fi(o].. .(Eo —Et+If(o) dp

The final density of states dp appearing in Eq. (1)
is dp = mpdA/(2'), where m and p are the re-
duced mass and momentum, respectively, of the
dissociating particules, and dO is an element of
the solid angle. In Eq. (1), Eo and E, denote the
energies of the initial state 10) and intermediate
state li), respectively; 1 f) is the final-state wave
function. Summation over each intermediate state

1 i) in Eq. (1) is carried out over the complete set
of molecular states.

Dividing the transition probability (1) by the pho-
ton flux density F=I/II+, where I= cba/8v is the
intensity of the incident radiation, and summing
over the initial M degeneracy we obtain an ex-
pression for the differential cross section,

do o. I " '
z 1 p (fl edli& q)(i& tl tdli& t). . (ill edl ).

dQ 2v Ie 2IC+1 e- ~ q, q ) [Eo —E» g+(N —1)Ep]. . . (Eo —Et+Ee)
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Here do/dO is in cm~/sr, n = e~/Ke is the fine-
structure constant, ao is the Bohr radius, I is the
incident intensity in W/cm~, and Io is 14.038x 10'8
W/cm~. The photon energy E~, the wave number
of separating particles q P/g, and the remaining
quantities in Eq. (2) are expressed in atomic units.

We assume the usual separability of the wave
functions (Born-Oppenheimer), so that the molec-
ular wave functions can be expressed as a product
of electronic (y) and nuclear ($) wave functions
4 = y f. For singlet terms of a diatomic molecule,
we have~

@vAv»»(rl t r} 9 nL»~(l t 4 s ~i v r)

gNy

xR„„(r)0 „„(8)
(2 ),Iz,' (3)

4(r, , r) is the wave function of a state with definite
values of the absolute value K and z component M
of the total angular momentum of the molecule, and
a definite value A of the t; component of the elec-
tron angular momentum; v are the vibrational
quantum numbers and n denotes the assembly of
the remaining quantum numbers which determine
the state of the molecule. The variables r,. in
Eq. (3) are the radius vectors of the electrons rel-
ative to the center of mass of the molecule and r
is the radius vector between the nuclei. The polar
angle 8 and the azimuthal angle y of the axis of the
molecule are determined relative to a fixed sys-
tem of coordinates x, y, and g. Besides the fixed
system we have introduced a moving system of co-
ordinates g, g, and g, with the same origin, the f
axis directed along the axis of the molecule.

The function q„~ in Eq. (3) is the electron wave
function, depending on y as a parameter, and

R„„„»(r)is the radial part of the nuclear wave func-
tion which satisfies the one-dimensional Schro-
dinger's equation with the InA}-electron-term po-
tential energy. The functions O~~„»(8) are

(2K+ 1) (K+ M)!
(K+A)! (K —A)! (K —M}!

(1 —cos8}'
X

(1+cos8) ' '"'

xP» (cos80)R,» (r),f pe (4)

where P»(cos8p) are ordinary Legendre polynomi-
als, cos80= q. r/qr, 8O being the angle between the
direction of the axis of the molecule and the mo-
mentum of the relative motion of separating par-
ticles. The function R,» (r) in Eq. (4) is the regu-
lar solution of the Schr'ohinger's equation with the
potential energy of the final electronic state le&A&)
and for the positive eigenenergy. The asymptotic
expression for R„when r is large, is of the form

R,» (r) = (2/n') ~ (1/r) sin(qr ——,
'

»K&+ 5» ), (5)

where 5» is the phase shift; R,(r) are normalizedf
by the condition

f R, (r}R,(r}r =8(q' q). —

Use of the addition theorem for spherical har-
monics gives us

( )
(3» ) Q Q ()»y id»

gy N= Ey

x Y* (8, y) Y»+(8, 4) R,» (r), (6)

where O is the polar angle and 4 is the azimuthal!
angle of the wave vector q of the dissociating par-
ticles relative to the fixed axes.

Using in Eq. (2} the molecular wave functions of
the initial, intermediate, and final states in the
form of the products of electronic (y) and nuclear
($) wave functions, let us first consider the matrix
elements of the dipole moment d of the molecule in
the system of coordinates $, g, and f, which ro-
tates with the molecule (the g axis coinciding with
the axis of the molecule). It is known that the ma-
trix elements

(d)"„A = f q'„*.~. dP„~derv

an incoming spherical wave. The proper boundary
conditions for scattering being satisfied, the con-
tinuum wave function may be expressed

&q(r)=(~») q 2 (2Kq+1)i ~ e
E

( 8 )KN
x!,s(cos8}, (1 —cos8) (1+cos8)»'

that are not zero are

(dc);A; (di+&dv) JL-i v' (dg —&dv)n li ~ (7)

For A= 0, the angular parts of the nuclear wave
functions become ordinary normalized spherical
harmonics Y»„(8, y).

The nuclear wave function $z(r) of the final state
If) of the molecule describes a stationary state of
dissociating particles, there being at infinity a
plane wave propagated in a definite direction and

(We denote by n the assembly of quantum numbers
for the electron term, with the exception of A. )

It is seen from Eq. (7) that there are matrix ele-
ments diagonal with respect to A only for the com-
ponent along the axis of the molecule ("parallel"
transitions); where A varies by one unit, only the
components perpendicular to the axis will not be
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zero ("perpendicular" transitions). ~

The matrix elements ( f) are related to the ma-
trix elements (sAKM I e . d In'A'K'M'} of the com-
ponents of the same vector d in a fixed system of
coordinates (we assume that the polarization vec-
tor e is along the z axis).

Substituting Eq. (3) for the initial- and interme-
diate-singlet-state wave functions and using the
continuum wave function (6) as the nuclear wave
function of the final state, let us represent the
sums over intermediate states li,}, li,), . . . , li», }
in Eq. (2) in the following form:

( fl cdli» g}(i» gl edli„m) ~ ~ ~ (apl eZIO) (2w)"'( .)»y „» y~ (O @)
[Eo E» ~ + (N 1)Ep] (Ea E~ +Ep) {f I

(tfgg) ) ~ ~ (flag )N
(5(A), A) [A(K) 5(K), K) +A, (K) 5(Kq, K+ 1)+A (K) 5(Ki, K —1)]

+5(Ag, A —1) [B(K)5(Ki,K)+B,(K) 5(K),K+ 1)+B (K) 5(K),K —1)]

+5(Aq, A + 1) [C(K) 5(Kg,K)+ C,(K) 5(K),K+ 1)+C (K) 5(K),K —1}])

x (5(A~, A, ) [A(K,) 5(K» K,)+A,(K,) 5(KI, K, +1)+A (K,) 5(K» K, —1)]

+ 5(A~, Ag —1) [B(Kg) 5(KI, Kg) + B(Kg) 5(K]],K)+ 1)+ B (K() 5(KI, Kg —1)]

+ 5(Aq, Aq+ 1) [C(Kq) 5(KI, Kg) +, C,(Kg) 5(Kq, Kg+ 1)+ C.(Kg) 5(Kg, Kg —1)])

~ ~ ~ (5(Ag, A» g) [A(K» g) 5(Ky, Kg») +A, (K» g) 5(Ky, K» ) + 1)+A (K» g) 5(Kg, K» g
—1)]

+ 5(Ay, A» ~
—1) [B(K».g) 5(KI, K» g) + B,(K»g) 5(Kg, K» g+ 1)+ B (K» ~) 5(K~, K» g

—1)]

+5(AI, A» q+1) [C(K» g)5(K~, K» 1)+C,(K» q)5(K~, K» )+1)+C (K» g) 5(K~, K». g
—1)]]

xM (sgAgKg, sIA])K& ' ' ' sf AiKil&. ) . (8}

Here Az =0; 5(A, A'}, 5(K, K') are the Kronecker symbols, which express the selection rules AA = 0, al; AK
= 0, +1 for each intermediate transition. Each of the N-1 summations in Eq. (8) is carried out over all elec-
tron terms I sA} allowed by the AA = 0, a 1 selection rule and (for a given electron term} over rotational
quantum number K, allowed by the AK=0, a 1 selection rule. The coefficients A, B, and C in Eq. (8) rep-
resent the results of the N integrations over angular variables 8 and y and can be obtained using the stand-
ard relationships between the matrix elements in the rotating and fixed systems of coordinates:

AM i ([(KA))'-M'][{Km))'-A']1,"'
A K

i '({K —M')(K —A'))'i'.
K(K+1) ' A K+1 ( 4(K+1}~—1 I ' K ( 4K~ —1

B(K)= [(K+A) (K —A+ 1)]ifI, 1 ((K+1-A)(K+2 —A) [(K+1) -M»] l]
I~

2(K+1) ( (2K+1)(2K+3) i

1 ((K+A) (K+A —1) (K -M )
2K [ 4KB —1 t

C(K)=
M

[(K+A+1) (K —A)P/a C ( )
1 (K+A+2)(K+1+A)[(K+1)™]

2K(K+1} ' ' 2(K+1) (2K+1)(2K+3)

1 ({K-A—1)(K—A)(K'-M'l)
C (K}=2Kl 4K'-1
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In the case of parallel transitions (AA = 0) only terms with the coefficients A remain in Eq. (8}. If A = 0,
only transitions with ddsc= +1 are possible for 4A = 0.

The main difficulty in calculating Eq. (8) stands in the evaluation of the radial matrix elements:

»(222+2+2 2+ +2 ' '' 22~2&21&2)= 22( (. (2)( &
Z 22 22 ( Z )

( I v» g) ( v»., I

"NA 0 1+ p]
(10)

Here d, (r} (i = 1, 2, . . ., N) is the dipole moment
of the i th intermediate electronic transition, i.e.,
the matrix element (7) in the system of coordinates
which rotates with the molecule:

d (r) = (d)"~-~"~-~;
nihi

E1, E2, . .. , E„1are the energies of the successive
intermediate states, each of which belongs to a
definite electron term with a given value of rota-
tional quantum number K, .

Each of the N-1 summations in Eq. (10) is ex-
tended over the complete set of vibrational states
of a corresponding virtual electronic state includ-
ing integration over the continuous spectrum. The
matrix elements ( v Id I v) are computed over the
radial parts R(r) of nuclear wave functions of two
electronic states between which the intermediate
transition occurs. The function R~„,(r) satisfies
the equation

d R 2 dR 2m (~ K K(K+1)
dry r dr I l~ 2m rl

where 8„~(r) is the potential energy of the I nA)
electronic state.

The matrix element M may be expressed in
terms of the Green's functions of the internuclear
potentials,

+ l dE, I v|r (r)) ( vs, (r') I

E E (12)

which satisfy the nonhomogeneous equations

d 2 d K(K+1)&l
2- d '.dy: )" ' '.

I}(r-r')
x g„. . .(r, r lE)= „, . (13)

With the Green's functions g1, g2, . . . , g„1for the
internuclear potentials of the intermediate-elec-
tron terms liq), li3), .. ., i«q, respectively, Eq.
(10)becomes

M(n&A&Kq, nNA3K3, . . . , n&A&K&lE~)= f R,N&(r»)d»(r«) r„dr«

x f,
"

d«-~(r»-~) g»-&(r» & "«IEO+(N -1)Eo]r» ~«N—-i ~ 'f c4(ri)e(r~ ralEQ+Eo)R. N(ri)r| dr| (14)

where R„«(r}is the initial-state wave function normalized by the condition.

g2~ y2dy

III. MULTIPHOTON-EXCITATION CROSS SECTION

Within the framework of time-dependent perturbation theory, the cross section o, in cm', for the ab-
sorption of the N photon by a diatomic molecule may be derived in the nonrelativistic-dipole approxima-
tion

o= 2«'— (fl e dl i»g) ~ ~ ~ (i)I cdl 0) (15)

Here r, is the classical electron radius, g(ED+ NE~)
is the line shape of the final bound molecular state
lf), and J g(E}dE=1. We assume the final state

has a Gaussian shape with the half-width I'q'.

&'E}=~~ r '"'"'".
f
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Generally speaking, 1& depends on the external
field intensity; in the energy difference between
the molecular levels in the absence of an external
field (E/ Ep—), allowance may also be made for the
level shift tBE. [Equation (15}is obtained on the
assumption that the half-width I' of the spectral in-
tensity of the radiation is I' «1'/. ] The summa-
tions over the intermediate states in Eq. (15) are
defined by Eq. (8), the factor (22)2/pq (-i) /eiP»/
x F» Je, C ) being neglected, while the radial ma-Ey
trix elements M are calculated by means of Eq.
(14) where the bound-state function R„»(r) replaces
the continuum wave function for the final state.

IV. POTENTIAI ENERGY~RVE MODEL: WAVE
FUNCTIONS AND GREEN'S FUNCTIONS

The true potential curve of the ground electronic
state of a homopolar diatomic molecule can fre-
quently be satisfactorily described by the Morse
potential which has the form

Vp(r) = D, (e "'"-"'—2 e-""-"o') (17)

where Dp is the quantity shown in Fig. 1, rp is the
equilibrium internuclear distance, and a is the an-
harmonicity constant which depends on the half-
width b, of the potential curve e = 1.76~/h '.

Using the Morse potential as the ground-state
potential curve, let us describe the potential curves
for the excited electronic states I i) by means of
the following expression:

y (r} D (e-2a(r-&P& 2 t e-a(r-rP&)+ Q (18)

When t, & 0, we have the Morse potential

V, (r)=t'D, (s-"'"-"i'-2e- "-"i')+Q,

where r, = rp —n ' lnt, . For t, & 0, Eq. (18) gives a
good representation of the true repulsive potential
curves (see Fig. 1). The radial Schrodinger's
equation (11), with Eq. (18) as V(r) and with the new
variables y=2p g '" "o' and W=y rR, reduces
to the standard Whittaker form (we put K= 0)

W + [-4+ t P/y+ (—,
' —i')/y']W= 0, (19)

where the parameter t; is (nS) l [-2m(E —Q)]l/2;
the subscripts have been omitted for the parame-
ters D, t, and Q and the variable y; P, = (nw} '
x (2»BD,}"'.

Equation (19) allows two linearly independent
solutions. The Whittaker function M, B p(y) is regu-
lar for y-0 and the Whittaker function W,s p(y), the
other fundamental solution of Eq. (19), is regular
for y ~oo

The Whittaker functions are defined as

M, B,i(y) = e "y""C (-,
' —tp+ t;, 2g+1, y) (20)

(where 4 is the confluent hypergeometric function')

r(-2L)
gip, p(y}=F(&

g tp)
MiB, C(y}

+
F( g tp)

Mts -pb) (21)

where f —tP+ —,'= —v; v=0, 1, 2, . . . . In this case,
the confluent hypergeometric functions in Eq. (20)
reduce to the polynomials, and the wave functions

rR(r) =y Mip is „ l/2(y)

satisfy the boundary conditions. 2 The normalized
wave functions of the discrete spectrum have the
form

[n(2tP -2i/ —1)r(2tP - i))"'
( I)"'r(2tp-2 )

"'
Mtp, tp o 1/2(-y-) ' (22}

The continuum wave functions (E —Q & 0) in a re-
pulsive (t&0) or attractive (t&0) field are repre-
sented by the Whittaker functions W, s „/ (y),
where q= [2m(E —Q)]'/2S ' is the wave number of
the dissociating particles. Such solutions of Eq.
(19) are regular at the origin of the coordinates,
i.e., for y-~. The asymptotic expression for
R,(r) when r is large (y- 0) may be obtained from
Eq. (21),

( )
(2vy)-i/2

R, r= 1'(-,' -tP+iq/n)
F(2i /n) ts, ia/ N(y}

[e '"M,s „/ (y)+ c.c.],(2 y)"'
(23)

and is of the form

R,(r) = (2/2) / (1/r) sin(qr+&ip),

qp = x+ —,
' 2 —qr, —(q/n) ln2P,

r(2iq/n)
g r (-,' tP+tq/n} '-

The Green's function for the potential (18) which
satisfies Eq. (13) and the necessary boundary con-
ditions may be expressed by means of two funda-
mental solutions R"' and R'~' of the homogeneous
Eq. (11):

The Whittaker functions M, @p(y) are the bound-
state eigenfunctions for the attractive potential
(t & 0) with the vibrational energy eigenvalues equal
to

E„-Q= Dt'[1 -(.+'2) (t to ']'&0.
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I 2m
g(rt r IS) =- R'B'(r )R( 1 (r )/«2 R(B (r) -R(a)(r)

gm dr dr

Here A"' and R"' are regular for the two singular
points a and b of the potential (a & r & b); r& (r&) is
the larger (smaller) of the two quantities r and r .
Using Eqs. (20) and (21) as the fundamental solu-
tions and calculating the Wronskian gives

g (rt «'I E}=
ak rr

Equation (27) enables a correct description to be
given for the transition dipole moments of some
homopolar diatomics for large r, as well as in the
vicinity of the internuclear equilibrium distance rp.

d(r)=d(rp)+ (1-e '"'" "o')d'(rp)
QX

= d(rp) +d'(rp) (r —rp)

„r(L —tp+ ,')-
~(2~, 1)' ta. a(y&} Wtga(y&}

d'(rp) nx a(r —rp) + ~ ~ ~ .
21

(28)

Re(g+2 —tp) &0. (28)

V. ELECTRONIC-TRANSITION DIPOLE MOMENTS

Let us describe the electronic-transition dipole
moments by the functions

d(r) =d1y*1+day*a+ ~ ~ ~ . (27)

(2S)

where y&(y&} is the larger (smaller} of the quanti-
ties y and y'. It is sometimes convenient to use
the integral representation of the Green's func-
tion (25) ub symmetric coordinates, '

1
-tS-1/ 2

nK rr„o

To obtain the latter expression, we have put in
Eq. (27) d(»=0, N, =O for the sake of simplicity
and have expressed the parameters d1 & d2 &0 in
terms of the values of the dipole moment d(r, ) and

its derivative d'(r, ) at r =r,. The nonlinear terms
in Eq. (28) correspond to the electric anharmo-
nicity of the transition.

VI. METHOD OF EVALUATING RADIAL MATRIX
ELEMENTS

The chief difficulty in calculating the
M(i~ i„... , iN „if I EB) functions (14) stands
in the correct evaluation of the N-1 summations.
Each of these N- 1 summations is extended over
the complete set of vibrational states v/ (discrete
plus continuum) of the given intermediate electron
term I 1, ).

With Eqs. (22}, (28), and (25), the radial matrix
elements (14) for the bound-free multiphoton tran-
sition can be written (we use the atomic units)

~(ttl~l 1t tta~af~at ~ ~ t rtf ~f +f)

(-2m)"-'( n "' [(2p-2v —1)Z'(2p-v)]1/2 r(-', -t„p+iq/n) +' r(g,. —t, p+-,')
a'" ' I(2(t (v!)"'r(2p —2v) r(2iq/n) t., 1'(21'(+1)

dN(yN}yN WtNB, (&/O (yN)dyN
~

dN 1(yN 1)yN (WBtN 1, (N 1(yN 1t yN&)
I" -2

0 Jo

B(N 1,2N 1 (yN lt yN ) 'AN--1 ' ' '
i

1(yl) y1 ~at1 ~ 21 ( ayt yl ) WB(1,21 (yat yl } B B y 1/2(yl)dye '
4o

(29)

Here d, (y1), da(ya), . . . , d„(y„) are the first, sec-
ond, . . . , Nth intermediate electronic-transition
dipole moments; the quantities ft = n 'h ' [-2m
x (Ep Qt + iEp)]'/ 2 determine dependence of the
Green's functions on the energy; the parameters t,
and Qt determine the internuclear potentials (18)
for the N - 1 intermediate and the final electronic
states &p & For the sake of simplicity we assume
that P, = p, = = p. The Whittaker functions

I

!!f(y,. y'„,) and W(y, y', ,) 1„Eq.(29) aze the functions

of the smaller and of the larger, respectively, of
the two quantities y, and y„1, v is the vibrational
quantum number of the initial state. Expression
(29) may be represented as the sum of integrals
of the Whittaker functions of the form

2 WtNBI t&/ a( yN) MtNB, 2N 1(yN}dyN
dN(yN)
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dN-1(3 N 1) -gpX
J

2 tN 1B CvN1(yN 1}
JN-1

&N

X M1 2Bv qN 2(yN-1) 3 N 1' '-'

d1(y1)
+211 21(y1) 2 MB 8-(v 1/2(y1} 3 1 ' (30)

Since each inner integral in (30) has a single vari-
able limit, integration with a constant interval
makes (30) actually equivalent to a simple integral.
The Whittaker functions in Eq. (30) may be cal-
culated using the expansions into convergent power
series and known integral representations. '

Without going into the problems of numerical
integration of the expressions (30) it may be noted

that results can, in the case of one- and two-photon
transitions, be expressed in an analytic form. This
relates in the first instance to the one-photon tran-
sitions, which play an important part in diatomic
molecular spectroscopy.

VII. ONE-PHOTON VIBRONIC TRANSITIONS

Let us first consider a one-photon bound-bound
transition which occurs between two vibrational
levels v and v' belonging to discrete vibrational
spectra of the two electronic states 10}and 11},
respectively. A transition that involves both elec-
tronic and vibrational transitions is referred to as
a vibronic transition, and the combining terms are
referred to as vibronic terms. Using expressions
(22) for the nuclear wave functions of the initial
(t = 1) and the final (t& 0) vibronic terms and inte-
grating, we get (for p+tp+x —v —v'&1)

(2(( —2v —() ((t(( —2v' —1)v(2(( —v)

)
'iv

I dy* = R„' ' r dy*R„'. ' r r dr= —1 " d

m=O

(-v)„I'(x —1+ P - v+ tP —v + m) I'(x+ P - v -tP+ v'+ m)
m! I'(2P —2v+m) I'(x+ P- v —tB+m) (31)

Using the asymptotic expansion (Stirling series) for the I' functions which appear in Eq. (31) (this approx-
imation ensures high precision for 2p —2v»1, p+ tp —v —v' »1), the matrix element I can be written

I=(-1)" v 1/2 [2P —2v —l)(2P —2v —1)] / e "' "'
(P —P +x —v)~(v! v'!)"' (2pv ~)Bv-(('/2 1/4-

X (2p 2 )
2Bv2((v1/2 (p-p( ( 1}BvBvv(( (v (vv ~/2 Q ( V)vvv (P+ P + X —V —V 1)m (P+ X P V V )vvv

m! (2P - 2v)„(P- P'+ x - v)„

(31'}

d(r) = d((+ dy", (32)

when the coefficients dB and d behave as dB= d(rB}
+n x d (rB) and d=-d (rB) n x (2P) as x-O,
giving rise to fixed values of d(rB) and d'(r(() in Eq.
(32):

I x

d(r) =d(r(()+ —n x d (rB) ~

where P =tP, (a) =a(a+1). . . (a+m —1). When

t= 1, Eq. (31) describes the vibrational transitions
which take place without change in the electronic
state. In this case, for x=O, we have I(d)=d5(v, v )
owing to the orthogonality of the vibrational wave

functions belonging to one and the same electronic
state.

The linear approximation for the dependence of
the transition dipole moment on the internuclear
distance can be obtained from

= d(r(() +d (1 (() (r —r(() — (r rB) + ~ ~ —~I nxd'(rB)
21

(33)

Owing to the orthogonality of the wave funct1ons at
t= 1, the integral (31}as the function of the first
term in Eq. (32) (which increases infinitely as
x- 0) is equal to zero f(d, )= 0.

To calculate (31) as the function of the second
term in Eq. (32) we have the known relationship

lim [xr(x —v+m)]=
(-1)" (-1)"(- v)

x 0 (v —m}! v!

and the Gaussian summation theorem for hyper-
geometric series F1(a, I(, c;1). Finally, we ob-
tain the expression (we assume that v' & v}
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(, (-1)"'" [(v'}.(2P —2v —1) (2P —2v' —1)I'(2P- v'}] /

Jp
" n(v - v') (2P - v —v' -1)[v! r(2P -v)]"' (34)

which makes it possible to evaluate, in Eq. (31),
the effect of the electric anharmonicity on the prob-
ability of the vibrational transitions.

Let us now turn to the analysis of one-photon
bound-free transitions (photodissociation}. Let us
write the initial wave function, defined by Eq. (22),
in the form

where

Lp() pv )
( )

(2P —2v)v
C, ( 2p —2 „}vt y 3

P a(v) yv-)
1=0

(86)

(p)
(

(av! )"'(2P —2v —1)"'
r[r(2P - v)]' '

X ~/2 8-v-1/2 L88-2o 1 (
V &35)

are the Laguerre polynomials. Using Eq. (23) for
the continuum wave function of the final vibronic
term I 1) and integrating, "we get, after some
transformations,

I(d *)=J tt d *It d «q ')"'(2p —2 —1}"*i~"'(2 q/ }~r(l -&p+ q/ )I
0 av[r(2P -v)]"'

I r(iq/n+ P+ x -
p

—l) I

r(p+x-tp-t) (87}

Excluding vibronic transitions from high vibrational levels in the vicinity of the photodissociation threshold
and some transitions to bound electronic states (t &0), the arguments of the r functions in Eq. (37}are
large. With the corresponding asymptotic expressions, Eq. (37) can be written

1/2 2 1/4 I / I I 5 - 2 - -&8/2
I(d *)= — (2P-2v-1)'/' ' ' ". " '"' (+ +(-.'-tP)'

e (2p )()-v/ p-l/ p

n n( ,' —tP), .()
' (P+x--tP-t)' -"-"'' n a(P+x--.' —l)

(38)

To reveal analytically the dependence of the matrix
elements of one-photon vibronic transitions on the
electric anharmonicity of the transition dipole mo-
ment, let us use in Eq. (37) the following approxi-
mation:

)r(av/a+v+x —( —)))' (ql )'+(v--'. —t)')'
r(p-tp+x-I) p-tp

I r(tq/n+ p --', —l) I

'
r(p-t-tp)

(39)

obtained with the help of the asymptotic expres-
sion

r(z+ x) „x(x-1) (,
r(x)

Thus, for v=O, using Eqs. (33), (37), and (39), we
get

"d(
)

d'(r()) d'(r()) )(~
x ]I, 2p

d'(rp) d'(rp) (q/a) +(P —~p)' *

nx nx(2p)* p(1 t)-
(40)

where I(1) is the function (87) for x=O, d=1. Ex-
panding the expression on the right-hand side in
inner parentheses in Eq. (40} in a power series of
the small parameter x (usually x& 0. 1), we have

I (dp+dy ) = d(rp)—
d'(r, )

(X

ln () x 1)1 ()
(1)

(41)

where a= [(q/n) +(p- —,')p] [2p(p —tp] . In the lin-
ear approximation we have d(r) = d(rp)+d'(rp) (r —rp)
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I I I I I I I I I I I I I I I

I(d(ro) + d'(ro) (r —ro))
10

d( )
d ( o) ( / )'+(p--,')'

~I(1)2p'(1 t)-
(42)

Thus, the term in Eq. (41), which is proportional
to x, describes, as a first approximation, the ef-
fect of the electric anharmonicity of the transition
dipole moment.

The expressions obtained in this section may be
used to evaluate the one-photon transition proba-
bility in real homopolar diatomics. As an illustra-
tion we shall consider the photodissociation of Hz'
from the v= 0 vibrational level. Furthermore, this
example allows us to compare the cross sections
calculated from Eq. (41) with the cross sections
calculated in Ref. 13 using accurate wave functions.

Using general Eqs. (2) and (8) in the case N= 1,
summing over initial M degeneracy, and integrat-
ing over the solid angle, we have for the one-pho-
ton dissociation cross section, "

2 l']
o'y=i

~

4, 08x10 pig I (d(r)}

(43)

Here E„ is the eigenenergy of the vibrational level
from which the dissociation occurs, mH ~ is the
reduced mass of H&', and the radial matrix element
I is defined in Eq. (37); o„ is in cm, all other
terms are in atomic units.

Relevant potential curves (18) for Hz' are shown
in Fig. 1 as well as the accurate curves. ' Tran-
sitions considered are from the v= 0 level of Hz'
in the 1scr~ electronic state to various parts of the
vibrational continuum of the 2po„state. The 1so~
-2pg„ transition dipole moment calculated in Ref.
14 using accurate wave functions of H~' is also
shown in Fig. 1 as well as the function (32) with
d(ro) = 1.07, d'(ro) = 0.396, and x = —0. 055. The
matrix element I is calculated from Eq. (41}and
I(1) from the asymptotic expression (38). The
contribution of the terms describing the electric
anharmonicity proved in this case to be negligible.

The solid curve in Fig. 2 shows the cross sec-
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FIG. 2. Photodissociation cross section of H2' from
v = 0 vibrational level. The solid curve shows the cross
section as calculated in Ref. 13 using accurate wave
functions. The dashed curve shows the results, calculated
from the analytic expression (42) using the model of
Vp(r), Vj(r), and d(r) presented in Fig. 1.

tion as the function of wavelength for photodissoci-
ation of H&' from the v=0 vibrational level as cal-
culated in Ref. 13 using accurate wave functions.
The dashed curve shows the results calculated
from Eq. (42). It is evident from Fig. 2 that in this
case the model of internuclear potentials (18) and
that of transition dipole moments (32}give results
very close to the true values.

VIII. TWO-PHOTON TRANSITIONS

Using the integral representation (26) for the
Green's functions of the intermediate states, the
radial matrix element (29) for any two-photon
transition can be represented in an analytic form.
Thus, in the case of bound-bound transitions, we
find, after integrating over y„' the following ex-
pression for the radial matrix element (14) cal-
culated for the value N = 2:

1 2

M(v, v ~Ep)= 2 dq d~ M "f'*y,
&sS

M "&'"f= t R„'(r)yq& rqdr~g~(r~, r2~!Eo+EI)@Rg (rz)rzdrz
0

2m v! ~ (2p —2v —1}'~ (2t —2v' —1) I'(2t p —v )
v'! r(2t'P 2v') r(2g+1) r(2P —v) 5=0
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x I'(P--,' +x, +f —l)
! (1 —s) i ~a»n ( sy, '!)

dyaye' '!!f2 a~ ~.uaba) ds ~, '2 e"' '
-o a-* &2. al I ) .s -sj

(44)
Integrating over y„and using the standard integral representation for the B function, we get

~Xfo Xj 2m(22 —2v —I}'t' v!(2t'2 —Iv' —1)I'(2t 2 —v''))ttv
v'! I'(2P —v)

( II ) I (vt+m+Il)I (v +m)I tmvv)I(v ttl)
)&=o -o =o m!n! I'(bq+ m+n) I'(ba+ m) I'(ba+n) (45)

where
I Iaq=t P+g+x& —v —2,

aa=P(1 +t') +&x+&x—v —1 —l,
1a3= P+ f+x] —l —p,

1a&= f —t&P+~;

bi = &+ 4, ; b, .= 2t p —2v, . 53 = 2/+ 1 .
Here e and v are the vibrational quantum numbers
of the initial and final vibronic states, respectively;
P is a constant related to the parameters of the
Morse potential (17) of the ground state,
p= (2mD) I a (c(h) The pa. rameters t, and t' de-
termine the potentials (18) for the intermediate and
the final electronic states, respectively, t;=P
&& [- (Eo —Q, +Eo)/D] I determines the Green's-
function energy dependence.

The (v+1) generalized hypergeometric series
aFa(a, b, c;d, e; 1), which appear in E(l. (45) for the
fixed values m = 0, 1, . . ., v', converge very slowly.
However, the numerical operating of these series
is straightforward, since the terms S„ in the ex-
pansion

aFa(a, b, c; d, e; 1)=Z S„
n~0

are related by a simple recursion relation S„.,
= B(n) S„.

Note, finally, that in the case of two-photon
bound-free transitions the radial matrix elements
(14) can also be reduced to the form analogous to
EQ. (45).

IX. CONCLUSION

In performing the calculations described in Secs.
I-VIII our purpose was to demonstrate that using
the Born-Oppenheimer approximation and explicit
expressions for the Green's functions of empirical

internuclear potentials, which give a good repre-
sentation of true curves, one gets a constructive
approach to the consideration of multiphoton tran-
sitions in diatomic molecules. The main difficulty
of the problem stems from the complexity of the
molecular structure: Whereas the spectra of atoms
are due to electronic transitions, the molecular
spectra can be related to electronic, vibrational,
and rotational transitions. Furthermore, these
modes are not independent of each other and the
complexity of the spectra may be compounded by
the possibility of interaction between them. Dy-
namic -coupling phenomena-autoionization and pre-
dissociation of a molecule-play an important part
in some multiphoton transitions in H~. ' On the
other hand, the use of separability of wave func-
tions and then of the Green's functions of inter-
nuclear potentials obtained in closed form do give
the possibility of treating the multiphoton transi-
tions in the molecule. After the selection rules
for rotational and electronic quantum numbers have
been established, the problem is reduced essen-
tially to that of calculating radial matrix elements
which contain the Green's function of internuclear
potentials of corresponding intermediate electronic
states. There are reasons for hoping that further
development of methods of experimental ' and
theoretical research into multiphoton transitions
in molecules will play an important part in both
nonlinear molecular spectroscopy and more ex-
tensive investigations of the interaction of laser
radiation with matter.
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Within the framework of the Born—Oppenheimer approximation questions are considered involving~

application of time-dependent perturbation theory to diatomic heteronuclear molecules. A
potential-energy model of the form V,-(r)=A,. /(r —r, )'—B,/(r —r, ) +Q is proposed which gives a
good representation of the true curves of the ground and excited states of a molecule. The relation

co,x, =6D'/m =3'', "/2m has been obtained between the dissociation energies into free ions D,
vibrational frequencies co„and vibrational anharmonicity parameters co,x, of the ground state of polar
molecules. Analytical expressions are derived for vibration-rotation spectra, wave functions, and
radial matrix elements considered in the first-order perturbation theory. An explicit expression
obtained for the Green's function of the model enables a closed form to be given for matrix elements

appearing in the higher-order perturbation theory involved in calculation of multiphoton molecular
transitions.

I. INTRODUCTION

Perturbation theory is one of the most promis-
ing approaches to molecular quantum mechanics
and particularly to multiphoton processes in non-
linear optical phenomena. Application of time-
dependent perturbation theory ordinarily leads to
multiple infinite summations of matrix elements
over discrete energy states and to integration over

continuum spectrum of the unperturbed Hamilto-
nian. Unfortunately, in most molecular problems,
it is difficult to construct a satisfactory unper-
turbed Hamiltonian for which the complete set of
eigenfunctions and eigenvalues is known. Using,
as a first-order approximation, the usual sepa-
rability of the wave functions (Born-Oppenheimer},
the application of the perturbation theory to molec-
ular problems may be considerably simplified.


