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Dynamic multipole polarizabilities of a number of simple atomic closed-shell systems in their ground states
have been calculated within the coupled time-dependent Hartree-Fock scheme. The systems here investigated
include He, Li+, Be, B'+, C'+, Be, B, and C'+. In order to acquire some feeling about the obtained
results, the dipole polarizabilities have been evaluated either by using a scalar- or a vector-potential
representation for the oscillating external field: these two choices give rise to the well-known polarizability
expressions in terms of "length" and "velocity" oscillator strengths, respectively. Furthermore, a unitary
transformation of the Hartree-Fock Hamiltonian is devised, which allows one to use a perturbation operator
corresponding to that involved in the "acceleration" oscillator-strength expression. Estimates of transition
energies to low-lying excited states have been also obtained from the frequency values at which the various
polarizabilities display discontinuities.

I. INTRODUCTION

At present there is a keen interest for a deeper
and wider knowledge of the response of atomic and
molecular systems to external electric and mag-
netic fields.

Besides the long awareness that the basis for
understanding optical properties of atoms and
molecules is provided by the quantum theory of
the interaction between electromagnetic fields
and matter, a major stimulus for such an interest
has been given by the recognition that long-range
dispersion energy coefficients between atoms
and/or molecules are obtainable, through the Cas-
imir-Polder formula, ' ' after analytic extension
of polarizability data to imaginary arguments. (For
a different, equivalent, approach to this problem,
see Ref. 5.) In this regard, refractive index
measurements appear to be valuable sources of
information at infrared, visible, and near-ultra-

violet frequencies, but their extension to shorter
wavelengths is thus far hindered by vacuum-ultra-
violet technique difficulties. Even though some
clever methods based on powerful mathematical
tools, such as Pads' approximants, ' theory of mo-
ments, ' linear programming, " etc., have been
devised for an optimal utilization of the available
data, it seems manifest that only the isotropic
lowest long-range expansion coefficient (that cor-
responding to the rotationally averaged dipole-di-
pole interaction) can be accurately obtained in
this way, unless dynamic multipole polarizabilities
higher than the dipole one become measurable.
In this regard, it is to be remarked that the know-
ledge of higher interaction coefficients is more
and more required, in view of the increased effort
to provide fairly sophisticated intermolecular po-
tential functions (see, for instance, Ref. 11) and
because experiments seem to be ripe for reveal-
ing the effect of higher than B I terms. ' More-
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over lf anisotroplc conti'ibutlons to the dlsperslon
energy are desired, "a knowledge of the yrincipal
components of the polarizability tensor (or, equiv-
alently, its anisotropies) as a function of frequency
is required; it appears very hard to reach this
knowledge even in the simplest case (dipole-di-
pole contribution). Thus, reliable estimates or,
possibly, accurate and detailed predictions have
still to rely, in general, upon theoretical ab initio
calculations.

At the same time, moderate size many-electron
systems acted upon by weak time-dependent ex-
ternal fields have been shown to be tractable by
either effective perturbative or variational-per-
turbative techniques (for a good review, see Ref.
14), founded on the Hartree-Foek {HF) scheme.
Since the linear response of atoms and molecules
to external fields is individuated once the proper
first-order perturbation equation has been solved,
the reliability of obtained results hopefully de-
pends, to the largest extent, on how well solutions
to such equation may be approximated. This ap-,

pears to be particularly true if the coupled HF
scheme"'" is employed, because it is known that
such an approximation is correct to first order in
the residual potential and contains, moreover,
additional correction terms to all orders in the
same potential (a rather detailed "diagrammatic"
proof can be found in Ref. 15).

This paper is concerned with the evaluation of
various dynamic multipole polarizabilities of
simple two- and four - electron closed-shell atoms
and iona in their ground states, i.e., He, Li+, Be'+,
Bs, C +, Be, B+, and C +, using the time-deyen-
dent HF scheme. No attempts are here made to
utilize such quantities for the prevision of long-
range interaction coefficients; this task wQ1 even-
tuaQy be undertaken in a future payer. Some em-
phasis will be placed on the degree of invariance
of the results under some kinds of unitary trans-
formations of the HF Hamiltonian, such as to gen-
erate perturbation operators which, in the dipole
case, are represented by r ("length" ), V ("veloc-
ity"), and &U ("acceleration" ), respectively.
Moreover, some discussion about transition
energies to low-lying excited states (which here
appear as the frequencies at which polarizabilities
become infinite) will be attempted.

H. THEORY

metric system acted on by an external, inhomoge-
neous, oscillating electric field 8(r, t) H the field
is assumed to be very weak, the equation of motion
for the Dirae density operator p( t}, [H(p), p]
=isp/st, can be linearized, by putting p{t)= pa
+ 5P(t), to give

[H(p,), &pl + [H(OP), po] = t s, (8P) (1)

[atomic units (a.u. ) will be used throughout]. The
unperturbed stationary Dirae density operator
associated to the ground state of the system
satisfies the time -independent equation

IH(Po. ) P01 = 0

H(po) and H(5P) being the unperturbed and the first-
order perturbed Hamiltonian operators, respec-
tively. If ln) denotes a generic one-particle ei-
genstate (spin-orbital) of H(pa) with energy e„, the
representative &nl &pl n') of 5P is seen to satisfy
the equation

8 -( — ') & l8pj '& = (f. -f.)& jH(8P)j

(3)

In deriving Eq. (3) we have used the standard
representation for p„p, = Q„f„jn)&nl, f„being
the distribution function (equal to unity if l n) is an
occupied state, zero otherwise).

if ii'(t) denotes the interaction term between
external field 3P, t) and electrons, it can be
shown"'" that

&njH(8P) jn'} = &nl W(t)jn'&

+ g &nm' ln m}„,&mj8pjm'&,
SS,Nt'

where (nm' l n!m&~ = (nm' l n'm& -(nm' l mn') .
Now ir(r, t) can be represented by a scalar poten-
tial 4, i.e., 8(r, t)= -V4; choosing

@{r,t)= -&(e' '+e ' ') QA, r'P, '(8, q),
r -g 2l +

it is easily seen that the z component of the
oscillating inhomogeneous electric field results:

g (r t) L(eltut + e-i(at)

It is known that the time-dependent HF approxi-
mation can be formulated by a density-matrix
approach. ""-Since the theory involved has been
recently reviewed in some detail, '9 we shall limit
ourselves here to a sketchy presentation of the
main formulas for the case of a sphericaQy sym-

so that A.„A„... are proportional to the values
of the ~ component of electric field, gradient of
electric field s -component, . . . , respectively, at
r= 0, t = 0. Therefore
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(niw(t)in'& = -&niC in')

A, (t)(ni r' F,D(8, y) in' &
l~1

having put 4, (t) = &A, (e'~' + e ' '). The form of
the perturbation term suggests the folloming
O'I/IsQfz for 5p

0P» (t) = ga, [e' ' ~p»'+ e-"' ~p»-],

which defines the new time-independent (but fre-
quency&ependent) operators 6P+&'. (For the mean-
ing of the superscript I, see below. ) The equa-
tions for the unknomn operators 6p+ 'are easily
obtained:

ation" expression of the dynamic polarizabilities
within the HF scheme.

The transformed density operator P = e ~'~ tS
xpe'~'~'~ ~'~ is easily seen to satisfy the motion equa-
tion [If —(I/c)sS/st, p] =isp/st, cbeing the trans-
formed HF Hamiltonian. Assuming the Hermitian
operator S(t) to be of the same order of smallness
as H(5P), the new equation of motion, after lin-
earization, becomes

[ff(p,), t'&Pl + Jf(&0) -(I/c) s Po = i s (&P) (8)
8$ - . 8

where H(5p) = II(5P)+ (i /c)[S, ff(p,)];hence the
(ni &pi n&& representative of 5P satisfies the equa-
tion

[(en -~. )+~] &nil»'ln'&

= (f.-f;) -'
& I

' I"I ')

+ g &nm' in'nI&~&nIi 5PP im'& . (6)
Sliyl

The (linear) induced electric multipole moment
&p, ,& is given by

&v, &
= »[p( &p»],

- -, [ff(p.), s ] - -, —„I In) . (9)
]. 8$

If S(t) is restricted to be an operator diagonal in
the coordinate representation, Eq. (8}can be
transformed into the new one (see Appendix A}

8(e„—e„)-i —&ni 5Pi In&

e 0

= (f„-f„)(n) W-- —+ —(V'S)+ —VS ~ VinI&
e 8t 2c ' e

4~ '~',
P, = —

I
~' F,'(8, &P)

is the operator associated with the 1th multipole
moment. The 2'-pole dynamic polarizability at
the frequency co is defined as

+ 2 Vl &pie&&~el&& .I
which only involves 6p. By choosing nom 8 in
such a way that W - (1/c}SS/& t= 0, i.e.,

(10)

Owing to the form of the perturbation operator
involved, Eq. (7) will be referred to as "length"
expression of the polarizability. The superscript
L mas used just to emphasize it.

As an alternative, the electric field h(r, t) could
be introduced into the Hamiltonian by means of
a vector potential A, through b(r, t) = —(1/c)SX/St.
Since this change of description corresponds to a
gauge transformation (@,0)- (0, A), with X = VX,
0= 4 —(I/c)SX/St, X being the gauge function,
invarianee of physically observable properties
under such a kind of transformation mould be a
desirable feature of any theory, even though ap-
proximate. The coupled HF theory —either time
indeyendent" or time dependent" —actually has
this pleasant attribute; me think it of some interest
to explicitly show such an invariance, even though
the result is already known, 22 because the pro-
cedure mill later permit us to attain the "acceler-

S(r, t) = (c/giv)(e' ' -e ' ')
X/2

2I 1
F (~ 9)f=l

and noting that V28 = 0, the interaction term on
the right-hand side in Eq. (10), (i/c)(ni VS ~ Vim),
takes the same form one mould obtain directly
starting with a description in terms of a vector
potential (}t= -S). Moreover, from &p, , &

= Tr(p, , 5P») and Eq. (AS), it foQows that

(P I &
= Tr(p I t&p ) — Tr(p I [S& Po] }

= »(PI ~p'"'),

from which the equality between ef& (&a&) and
RI ((d) directly aI'1ses. (The superscript V llas
been introduced to mean velocity. )

The "acceleration" expression for o'., (&u) within
the HF scheme mill be derived only for the case
I = 1 (dipole polarizability) and to attain it a Sch-
mxnger-type unitary transformation' ' xs the
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proper one. The starting oint is the equation of
motion for p; if we let + = e'~' r'"pe "k
(the superscript A stands for acceleration), at first
ordex'

5'~ = 5P'+ -'I:r(t), p.].C

Therefore, from Eq. (6)

[ff(p.), 5p' j- -'[[ff(p.), r], p.]+ [N(5pt" },p.]

+- —[r pj=t —(5p' ). (ll}2 a . a
c 8t ' 0 8t

If we let r(t) = -(c/&u')A, (t)p, [so that (1/c}r(t)
= —(I/~')A, (t)P, is the generator of a translation
along z of the amount A, (t)/&u', the classical dis-
placement of a particle of unit charge and mass
due to the electric field A,(t)], Eq. (11) for the
(nl 5p" Im& representative becomes

(e„-e„)-t —&n I
5pt'o

I m&

= (f„-f„)-&nl[r, a(p,)] Im}+ g(nqlmp&~
Py

x 5P(A) 0+2 p T q

(12)
From the identity (see Appendix 8)

g&nqlmp&„e(pj[r, p,] Iq) -&nj[r, a(p,}]Iej}

= (c/~'}A, (t) &nl [P.,U] lm&,

(18)

where U is the nuclea& attraction potential energy
operator, Eq. (12) can be recast in the final form,
only involving 6p~+,

&p,& = Tr(p, 5p'~) —-' Tr(p,[., p,])

= Tr(p, ,5pt+ }——,A,(t),

X being the number of electrons. Thex'efore

~~' (~) = »b, (5S'""+5p'" )] (14)

is the proper expression of the dipole polarizability
in the acceleration" version.

HI. COMPUTATIONAL SCHEME
AND RESULTS

Equation (6) or the equivalent equations for
&n I 5p 'lm& and &n I 5pt+'lm& is not yet in a suit-
able form for actual computations. As a first con-
venient step we pass from spin-orbitals to orbitals,
summing with respect to the spin quantum num-
bersx9; then we get equations for the representa-
tives of (5p+, + 5p, ), (5p+, —5p, ):

(.—.) - —„&.I5d~la

= (f„ f„} —,A,(t) &nl —„lm)
j. BU

+ Z &nqlmp&~(pl 5~'~ Iq&,
pa

'since, in the coordinate representation, P,
i-s/sz. For an atomic system of nuclear

charge Z, 5 U/sz = Zz/r~, so that the well-known
expression for the perturbation in the "accelera-
tion" ver sion" results.

Unlike "length" and "velocity" expressions of the
induced moments, which are form invariant, the
"acceleration" expression is not such; it is easily
verified that in the latter case

o, (~)=4g g (NI5p,'+5p,-lN'&&N'lp, IN&,

(e„-e„)(NI5p', + 5p, IN'& + ~ &Nl 5pf 5pa IN'&-
=(Nl@, Igp& + g g [4(NM'I N'M) (NM'IMN-'& (NMIM'¹-&](MI5p', +5p, IM'&

gt

x(e„-e~)(NI5p,+ —5p, IN'& + cu(NI5p+, + 5p, I N'&

= Q Q[(NMIM'N'& -(NM'IMN'&]&MI5p, -5p, IM'&. (16)

In the two summations above, capital unprimed
(primed) letters denote, respectively, occupied
(unoccupied) oxbitats (assumed to be real).

For each ru value, the inhomogeneous system
(16}c~ be solved for the unknown quantities

(NI5p+, + 5pg IN') by standard techniques, for in-
stance iteratively. In this regard, however, our
experience has been rather negative, because of
lack of convergence as the frequency v gets
closer and closer to the "resonances" of the atom,
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although some proposed expedients~6 to avoid such
troubles were exploited. For this reason we have
preferred to apply to noniterative methods of solu-
tion. If we introduce the column supervectors
6p++ 6p =—U 6p+ -6p =U '- and ply and the
suyermatrices

v„„,„„,= 2(les'(¹M& -(le'jMlq'&,

V»'»e»». = 2(NM'[¹M) (Mf-)M'¹),

is obtained by means of a second identity analogous
to (21). Now the poles will occur in correspon;
dence with any eigenvalues of the different non-
HeTwwtian 111a'tl'1x (e~ + V )(E~ —V )I the adlolllt
of that previously found. On the other hand, Eqs.
(22) and (22') are two fully equivalent expressions
for a(~) at any ~ value, so that it appears phys-
ically sound to require the following eigenvalue
equations to be simultaneously satisfied:

TD5»»', »»' = (&»' -&») ()»»()»'»'+ V»»', »»'I (&m -V')(& +V')C»» = C»»Q»» (28)

Eqs. (15) and {16)can be written in matrix form
as follows:

(~) 4LI(l) I U(1)

(eTD + V~}U(1) ~ U(l) ~f()

(em -v')U(') ~U(') =0

(16)

{19)

The equation system (19) can formally be solved
for U~~'~, so to give

(~) 4p(l)1 [(gTD + Vl)

~2(e TD Vt) 1] I L((l) (20)

All three matrices &~, V, and V' are symmetric
with respect to the simultaneous exchange (%=M),
(¹=M'). e~ is recognizable as the matrix to be
diagonalized in the so called Tamm-Dancoff
approximation"" for singlet excited states. The
matrix V' involves elements corresponding to
double excitations, so that it is usually claimed to
introduce electron correlation effects. ' '

From the identity

[(eTD y VI) (g2 (eTD VI) 1] 1

= [{e -V')(em+ V') -~'I] '(& -V')

(21}

the polarizability a, ((()) can be cast into the form"

(~) 4'(l)+[(eTD VI)(eTD + Vz) (I)21]

X(&TD -V') Ll('), (22)

+ V')(» -V') -~211 't "' (22')

which makes very clear that a, (e) has poles when-
ever the square frequency +2 of the external field
equals any eigenvalues of the goo-Hermitian
matrix (e -V')(em + V'}.

A second, fully equivalent, expression for (2, (s&),

namely,

((g ) 4L((l )t(g TD
V I }

(& + V')(& -V')D»» = D»» Q»» (28')

for the same eigenvalues Q&~ and different eigen-
vectors C„~, D~. It can be pointed out that Eq.
(28) is only another form of the random-phase
approximation (RPA) secular problem, which
follows from the more conventional oneas, so by
simple algebraic manipulations. " Having re-
covered this result is completely to be expected,
since the equivalence between RPA and (linear-
ized) time-dependent HF (TDHF) schemes is a
well-established point&5, xs.32-34 and our present
treatment of the TDHF approximation in the den-
sity-matrix context is fully equivalent to other
ayproaches. "'s'3 3'

If D denotes the matrix whose columns are the
eigenvectors D „„.of Eq. (28'), Eq. (22') can be
recast in the form

(~) 4)I(()T(eTD VI)D[Q2 (021] 1D ltl(l) {24)

+ (~) g +22 t(l)
4=0

the Cauchy moment g~ being given by

gl) 4)1(l)t(eTD Vl)DQ 2(2+OD, Itl(l)

As can be immediately seen, $21) represents the
2' -pole static polarimability.

Expressions analogous to (24) and (26) can be
obtained, of course, in the "velocity" and "accel-
erat1on versions.

For all systems investigated in this paper but
He atom, the occupied HF single-partic1. e states

(26)

which substantially reduces the evaluation of (r, ((I))
to solve the eigenvalue problem (28') taking into
account the orthonormality requirement D~~ Cz&.
= 5»»5N»~ which stems from Eqs. (28) and (28').
The procedure we have followed is that described
by Ullah and Rowe, ' which under sufficiently mild
conditions succeedes to reduce the original problem
to one for a symmetric matrix of half the dimen-
sions.

If the (diagonal) matrix [Q' -uP1] ' is expanded
about v = 0, the polarizability expression, Eq.
(24), can be cast in the Cauchy form"'"
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(r ~ N, L = O, M = 0) have been approximated by
Clementi's analytic representations in terms of
Slater -type orbitals, using in any case the largest
available basis set." For the He atom, we chose
a four Slater -type orbital representation ("com-
promise SCF function" in Ref. 40}. The departure
of this function from the "best SCF function" has
been analyzed by us over a range of 10 a.u., the
largest difference resulting 0.0005 at the nucleus,
to become 0.00001 at a distance of 1.5 a.u. Even
the unoccupied HF orbitals (r ~N', L= l, 0) have
been represented in terms of a basis of Slater-
type functions'~'~ of proper symmetry by merely
orthogonalizing and diagonalizing them with respect
to the HF Hamiltonian since they cannot contribute
to the ground-state wave function for symmetry
reasons. In this regard, we point out that the
radial part of the latter orbitals is a finite linear
combination of the form Q» A» r"& 'e ' . Exten-
sion of the basis set as well as values for the quan-
tum numbers nz and orbital exponents g& are com-
pletely arbitrary and interconnected; in any case
they should be chosen in such a way as to repre-
sent as well as possible the distortion induced by
the external field in the charge -density distribution.
As a result of empirical tests we have found that
once fixed a n& value, orbital exponents &,

' of
importance are approximately located around the
values f' = [(2n'+ 1)/2(s+ 1)+1]g which maximize
the transition multipole moment matrix elements
(n0$~)t, (n'lf') . This is not unexpected, since
an unperturbed orbital ~N, L = O, M = 0) transforms
approximately in )t, ~ N, L = O, M = 0) owing to the
presence of the external perturbation, and
"excited" states of importance to represent it
seem to be those which largely overlap with
p, , ~N, L = O, M = 0). Such a choice for the orbital
exponents leads to reject as rather unimportant
very low f' values which, in principle, could
appear relevant, for they heavily contribute to
generate low-lying unoccupied states. On the
other hand, one is faced also by the necessity
of avoiding too large overlap matrix elements
(nz l L» ~ws if/ which cause troubles in the ortho-
normalization procedure associated with the
determination of the unoccupied orbitals, so that
some compromise between the above requirements
is very often the due toll. In each case the pro-
cedure was tested by enlarging the basis set of
orbitals of proper symmetry. To the aim of appre-
ciating the convergence behavior in a typical case,
in Table I some dipole polarizability values of Li+
are reported at a few frequencies as the extension
of the basis set was enlarged. The convergence is
seen to be quite good and the agreement with the
values obtained for instance by Kaveeshwar et al. '
is excellent [even these authors employed TDHF

theory in its coupled form; their starting point
was the Frenkel's variational principle'6 with
trial functions of the generalized Hassle type
Y, (8) Q, C&, r"&~e «'j. No other convergence
test will be reported in order not to cumber ex-
cessively this paper; we limit ourselves to the
assertion that in any case a rather smooth con-
vergence was found.

In Tables II and III, apart from a few exceptions,
the first five Cauchy moments for the various
multipole polarizabilities of He and Be isoelec-
tronic sequences are presented, along with the
range of frequencies &~ over which they allow
to reproduce calculated values of polarizabilities
with a maximum error of about 0.5@. Values of
comparison from other calculations are also re-
ported. All of these have been obtained by coupled
TDHF theory in its varjational formulation,
with trial functions of the generalized Hasse type.
The only quoted experimental Cauchy moments
(dipole polarizability of He) have been obtained
by constrained least-squares fitting of refractive
index data." The values for He labeled DV have
been obtained by identifying the proper coefficients
in the +' expansion of

TABLE I. Cheek of convergence for the dipole polar-
izability & &(~) of Lx . N is the employed number of
Slater-type functions nP (&) ofP symmetry.

0.00

N=2 N=6" N=8c

0.1823 0.1895 0.1895

KCH'

0.1895

0.25 0.1835 0.1911 0.1911 0.1911

0.50 0.1876 0.1963 0.1963 0.1963

1.00 0.2053 0.2206 0.2207 0.2207

(2P (2.4516); 2P (4.3894)) .
As footnote (s)+(2p(6.0385); sp(3.4322); 3p(o.&452);

3P (8.4539)) .
As footnote (b) +{2p(1.2651); 3p (1.7711)).
See Ref. 43.

given by Dalgarno and Victor44 which should pro-
vide, along with those by Kaveeshwar et al.
(KCH), 4' rather accurate comparison terms; the
values labeled MSM have been analogously obtained
from the simpler interpolating formula ot(&u)

=A/(1 -BuP) used by Mukherjee et al 4' Fram .the
inspection of these tables the agreement between
our values and other calculations appears to be
satisfying; the relatively larger discrepancies
which are manifest in the case of quadrupole and
octopole Cauchy moments of He are at present a
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bit puzzling, and could indicate an imperfect con-
vergence of our procedure in these cases. As a
general comment, however, it seems one may
confirm that using virtual orbitals of HF type as
a tool for representing the distortion caused by
time -dependent external fields is a valuable al-
ternative to the more used procedure in terms of
generalized Hassle type functions. This remark
could be of some value in connection with more
complex systems, especially molecule s.

(He sequence):

Q~ = 342.3Z "
(Be sequence):

2 14X10sZ

g(," = 2g.32'-4-',

g&» = 6gygZ-9'.

~&" - g 64 10'Z-"

$0» = 6.79x 10"Z ~'

(2'1)

Approximate correlations between (,'cvalues
(i.e., 2 -pole static polarizabilities) and nuclear
charge Z are expressed by

TABLE II. Cauchy moments (a.u.) for the He isoelectronic sequence.

He l=2

l=3

This gaper
KCH
LK'
Dv'
MSM &

Expt. "
This paper
Dv'

This paper
Dv'

0.1318(+ 01)
0.1322(+01)
0.1322(+ 01)
0.1322(+01)
0.1293(+01)
0.1384(+01)

0.2286(+ 01)
0.2326(+ 01)

0.9542 (+ 01)
1.0095 (+ 01)

0.1375(+01)
0.1388(+ 01)
0.1386(+01)
0.1386(+01)
0.1435(+ 01)
o.1sso(+ o1)

0.1650(+01)
0.1704(+01)

0.5578 (+ 01)
o.eo2s(+ o1)

0.1708(+ 01)
0.1735(+01)
o.lv3o(+ o1)
0.1729(+01)
0.1593(+01)
0.2066(+ 01)

0.1445(+01)
0.1512(+01)

0.3951(+01)
0.4396(+01)

0.2313(+01)
0.2358 (+ 01)
0.2350 (+ 01)
O.2348(+O1)
o.1ves(+ o1)
o.29s (+o1)

0.1415(+01)
0.1499(+0 1)

0.3165(+01)
0.3654(+ 01)

0.3286(+ 01)

0.3346 (+ 01)
0.3345 (+ 01)
0.1963(+01)

0.1491(+01)
Os1602(+ O1)

0.2760 (+ 01)
0.3362 (+ 01)

0 —: 0.5

0-'0 6

0-: 0.6

l=4 This paper 0.7310(+ 02) 0.3721(+02) 0.2274(+ 02) 0.1582(+02) 0.1207 (+ 02) 0+0.7

This gaper 0.1895(+00)
l =1 KCH 0.1895(+ 00)

MSM & 0.1870(+ 00)

0.2624(-01)
o.263s(-o1)
0.2749(-01)

o.41v2(-o2)
0.418 (-02)
o.4o41(-o2)

0.7086(-03)
0.713 (-03)
o.s94o(-o3)

0.1247 (-03)

0.0873(-03)

O-:1.S

Be2+

p p

This gaper"
KCH
MSM 8

l =3 This a er

0.5186(-01)
Q.5187(-01)
Q.s139(-o1)

o.19o6(-o2)
o.1834(-o2)
0.1994(-02)

o.v92v(-o4)
0.7688 (-04)
0.7736(-04)

0.3494(-05) 0.1589(-06)

0.3002 (-05) 0.1165(-06)

P.1121(+00) Q 0100(+ QP) 0.1066(-02) Q.1246(-Q3) Q.155 (-04)

0.1662(+00) 0.1191(-01) 0.1016(-02) O.D 966(-03) 0.99 (-05)

0—:1.7
O—:1.8

0+2.5

l = 2 This paper 0.153 (-01)
l = 3 This paper 0.116 (-01)

0.353 (-03) Q.95 (-05) 0.3 (-06)

0.213 (-03) 0.46 (-05) 0.1 (-06)

0—:3

0—'3

This paper
MSM g

0.1959(-01)
0.1942(-01)

o.2eev (-o3)
o.2v ss (-o3)

0.4076(-05)
0.3943(-05)

0.6574(-07) 0.1091(-08) 0 —: 5
0.5639(-07) 0.0806(-08)

l=2
l=3

This paper

This paper

o.3426(-o2)

0.1543(-02) 0.101 (-04) 0.1 (-06) 0 —:5

0.2859(-04) 0.2786(-06) 0.2966(-08) 0.3339(-10) 0-: 6.5

C4+

l=2
l=3

This paper
MSM &

This paper

This paper

O.8938(-O2)
0.8879(-02)

0.1046(-02)

0.309 (-03)

0.5497 (-04)
o.ss2s(-o4)

o.38 (-os)

o.9 (-oe)

0.3780 (-06) 0.2737 (-08) 0.2037 (-10) 0 —:7
0.3821(-06) 0.2507 (-08) 0.1644(-10)

0—:4

0—:5

~ is the frequency range (a.u.) over which the tabulated Cauchy moments allow to reproduce calculated polariz-
ability values with a maximum error of 0.5%.

These Cauchy moments correspond to polarizabilities evaluated in the "length" version.
0.1318(+01)= 1.318.
See Ref. 43.
See Ref. 6.
See Ref. 44.

I See Ref. 45.
See text and Ref. 37.
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TABLE III. Cauchy moments (a.u.) for the Be isoelectronic sequence.

This paper
/ =1 KCHc

Ed

0.4562 (+02)
0.4562 (+ 02)
o.44s6(+ o2)

0.1434(+04)
0.1427(+04)
0.1354(+04)

0.4591(+05)
0.4508(+ 05)
0.1664(+05)

0.1474(+07)
0.1427(+07)
0.3103(+07)

0.4736(+08) 0—:0.1

Be l =2 This paper

l =3 This paper

l =4 This paper

0.3426(+ 03) 0.4095(+ 04) 0.5346(+05) 0.7357(+06) 0.1047(+10) 0—:0.15

0.5624(+ 04) 0.4714(+05) 0.4441(+06) 0.4512(+ 07) 0.4828(+ 08) 0+ 0.1

0.1641(+06) Q.1114(+Q7) 0.8558(+ 07) 0.7164(+08) 0.6383(+09) 0—: 0.2

B+

This paper b

KCH c
0.1140(+02)
O.1139(+O2)

0.1150(+03) 0.1214(+04) 0.1288(+05) 0.1369(+06) 0-:0.15
0.1132(+03) 0.1180(+04) 0.1238(+05)

1=2

2=3

This paper

This paper

0.2868(+ 02) 0.5886(+02) 0.1270(+03) 0.2821(+03) 0.6372(+03)

0.1851(+03) 0.2423(+ 03) 0.3455(+03) 0.5243(+ 03) 0.8317(+03)

0—:0.25

0 —:0.25

C2+

This paper
KCH c

0.4512(+01)
0.4506(+ 01)

0.2323(+02) 0.1279(+03)
0.2299(+02) 0.1253(+03)

0.7092(+ 03) 0.3934(+04)
O.6SS5(+O3)

0—:0.25

l =2 This paper

E =3 This paper

0.5250(+ 01) 0.3348(+01) 0.2211(+01) 0.1489(+01) 0.1016(+01) 0—:0.7

0.1799(+02) 0.7019(+01) 0.2939(& 01) 0.1287(+01) 0.5797(+00) 0—:0.8

See footnote (a) of Table II.
b See footnote (b) of Table II.

The exponent -4.5 for gP in the He isoelectronic
series is very close to that found by Natori et al.
(-4.4); some extrapolations by means of Eqs. (27)
up to & = 10 (Ne'+) provided reasonably accurate
estimates for (o0) when compared with values by
Tuan et al.~' and Cohen~' [the largest discrepancy
(Ne'+) is about 10%]. It may be pointed out that
the coefficient 29.32 a.u. , which should be inter-
preted as dipole polarizability of H, is actually

c See Ref 43
See Mf, 42.

very far from the coupled HF estimate. ~'

In order to appreciate in some quantitative way
the degree of completness of the basis sets used
in this paper, a number of dipole Cauchy moments
obtained in the three versions "length, ""velocity, "
and "acceleration" are presented in Table IV,
together with two other quantities of related inter-
est, $, and Q„~f/~ If Eg. (.14) is manipulated
along lines similar to the development leading to

TABLE IV. Comparison of some dipole Cauchy moments in the "length" (L), "velocity" (V), and "acc'eleration" (A)

versions.

He

&o

0.1318(+01) 0.1375(+01) 0.1708(+01) 0.2313(+01) 0.3286(+ 01)

V 0.1320(+01) 0.1381(+01) 0.1719(+01) 0.2331(+01) 0.3314(+01)

0.1319(+Ol) 0.1380(+01) 0.1721(+01) 0.2336(+01) 0.3323(+01) 1,9995

Z k».'
arar'

1.9998

Li+

Be2+

L 0.1895(+00)

0.1895(+00)

A 0.1893(+00)

0.5186(-01)

Q.5109(-01)

0.5184(-01)

0.2624(-01)

0.2624(-01)

0.2624(-01)

0.1906(-02)

0.1899(-02)

0.1902(-02)

0.4172(-02)

0.4171(-02)

0.4178(-02)

0.7927(-04)

0.7903(-04)

0.7904(-04)

0,7086(-03)

0.7083(-03)

0.7096(-03)

0.3494(-05)

0.3482 (-05)

0.3482(-05)

0.1247(-03)

O. 1247(-O3)

0.1248(—03)

0.1589(-06)

0.1583(-06)

O.1583(-06)

1.9998

1.9961

1.9999

2.0044

Be

0.4562(+ 02) 0.1434(+04) 0.4591(+05) 0.1474(+07) 0.4736(+ 08)

V 0.4559(+ 02) 0.1433(+04) Q.4588(+ 05) 0.1473(+07) 0.4733(+ 08)

A 0.4509(+ 02) 0.1413(+04) 0.4548(+ 05) 0.1461(+07) 0.4697(+ 08) 3.9923

4.0004
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Eqs. (24}-(26}, the result

(y(A ((d) — (4p(n (gTD V' }

xD[Q' -(u'I] 'D '(VU} -Xj

= —(++(u'/++&a $" +'' -Xj

is found, (VU) being the (column) supervector of
components (VU)z» = Z(zlr'}N». Thus it is clear
that

4~(ot(qm —Vr)D(I-2D-~(VU)

must equal the number of electrons 'X [Kuhn-
Thomas sum rule in the "acceleration" version]
in order that n(P (&u) approaches a finite limit
(g, }as &o- 0.' Q„»ff„ is the analogous sum
rule in the length version. It can be shown that

the sum rule g
~ = X is verified if the basis set

of expansion includes z(N) and P, (N) for each
occupied single-particle state (N), while in order
that Q„»f„j= X it is sufficient that the basis set
contain z (N) for all occupied (N)'s." Moreover,
this second condition is sufficient for the equality
P~ = g,",~k. The departures of Q„» J„—» and $,~) {~) (+
from X are therefore a measure of how much our
basis sets are capable to represent z (N) and P, (N)
in the form g&(y)(y(z (N) or Q&(y)(y(P, (N), i.e.,
how much the projection operator Q& (y)(y( is close
to the identity and, of course, the requirement
g, = X is more severe than gz» f„»= X .{s)

The inspection of the values for Be makes clear
that the discrepancies $P —P~ =

P~ —t~" are
mainly imputable to an inperfect representation of
P, (2s), so that some improvement could be carried
out along this line.

TABLE V. Transition frequencies (a.u.) from dynamic polarizability calculations for He sequence.

He

Li+

Be2+

B3+

C4+

Transition

ls «1s2p
1s2 1s3p
1s «1s4p
1s 1sGp

1s «1s3d
1s4d

1s2 1s5d
1s2 1s4f
1s~ 1sGf
1s2 ls5g
Is «1s2p
1s «1s3p
1s «1s3d

1s2 1s4f
1s2 1s2p
1s «ls3p
1s «1s3d
1s2 1s4d
1s ls4f

1s «1s2p
1s «ls3p
1s «1s3d
1s 1s4d
1s2 1s4f

1s «1s2p
1s «1S3p
1s «1s3d

1s4d
1s2 1s4f

This
paper

0.7969
0.8636
0.8877
0.9041
0.8624
0.8867
0.9007
0.9024
0.9998
0.9082

2.3051
2.6724
2.5830
2.8776
2.7118

4.5641
5.3749
5.1675
5.3859
5.4704

7.5729
8.6609
8.6548
9.1916
9.1880

11.3336
13.4691
13.0846
14.6827
13.8602

MSM ~

0.797
0.863
0.887
0.898

2.304
2.573

4.562
5.172

7.572
8.661

11,331
13.038

MMS b

0.8624
0.8867
0.8979
0.8867
0.8979

2.5702
2.6674
2.6673

5.1671
5.3857
5.3856

8.6532
9.0419
9.0417

KCH c

0.7966

Expt. d

0.7798
0.8485
0.8726
0.8838
0.8480
0.8724
0.8837
0.8724
0.8837

2,2866
2,5597
2.5576
2.6549
2.6549

4.5451
5.1596

7.5549
8.6492

11.3150
13.0288

~ See Ref. 45.
b See Ref. 51.
c See Ref 43

d See C. E. Moore, Atomic Energy Levels,
Natl. Bur. Stds. Circ. No. 467 (U. S. GPQ,
Washington, D. C., 1949).
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TABLE VI. Transition frequencies (a.u.) from dynam-
ic polarizability calculations for Be sequence.

This
Transition paper KCH AG Expt.

2S ~2s2p
2s2 2s 3p
2s ~2s4p
2s ~2s5p
2s2 2s3d

Be 2s2 2s4d
2s ~2$5d
2s2 2S4f
2s ~2sGf
2S ~2S5g
2s2 ~ 2s2p
2s ~2s3p

B+ 2s2 2s3d
2S2 2s4d
2s2 2s4f

2S ~ 2S2p
2S 2s3p

C'+ 2s'- 2s3d
2s2 2s4d
2s2 2s4f

0,1764
0.2490
0.3211
0.4881
0.2548
0.3003
0.3998
0.2856
0.3430
0.2943

0.3068
0.6228
0.6583
0.8920
0.7489

0.4246
1.1420
1.1977
1.4134
1.4151

0.1758 0.188
0.266
0.292
0.311

0.1940
0.2742
0.3063

0.2936
0.3134
0.3235

0.3344
0,6566
0.7048
0.7999
0.7970

0.4664
1,1798
1.2598
1.4773
1.4704

a See Ref, 43.
b See graf. 29.

See footnote (d) in Table V.

Tables V and VI contain transition frequencies
for He and Be isoelectronic sequences, respec-
tively, along with comparison terms. The values
there reported are, of course, the same obtainable
in the random -phase approximation"'"' in
terms of the employed basis sets. For the He

sequence, besides experimental values, we have
selected several values from Mukherjee et al.~'

(1s'- 1snP} and from the very extensive (and
accurate) tables in the paper by Moitra et af."
(column labeled MMS) (1s'- lsnd, ls'- lsnf). As
far as the Be sequence is concerned, we are
aware only of a few estimates for the Be atom
(columns labeled KCH, AG}. The RPA calculations
by Altick and Glassgold (AG) compare fairly well
with experience, even though more approximate
orbitals of Hartree-type were employed as a
basis set. It may be observed that, unlike the He
sequence, the calculated frequencies are generally
smaller than the experimental ones. This finding
was ascertained by performing calculations of the
same frequencies also in the Tamm-Dancoff
approximationzs. 27.ss. In this new scheme the
computed values already resulted lower than the
observed ones. Since it is known"" that 0)Q~", one has to conclude that the various
singly excited states of the Be sequence are
affected by the lack of electronic correlation at
a smaller extent than the corresponding ground
states.

We propose to investigate the problem of fore-
seeing both transition frequencies and oscillator
strengths, in the various approximations, in a
future paper.

ACKNOWLEDGMENT

The Authors are indebted to A. Biagi for
his invaluable help in executing numerical calcu-
lations at the IBM 7090, C.N.U.C.E., Pisa.

APPENDIX A

For any operator S which is diagonal in the coordinate representation, it can be verified that

Sr -Sr'
&vl[»(S,), S)im& = -&vl-,'(v'S)+vs vlm&+By, v» ','

(m};r -r' (A1)

from E&ls. (4) and (Al), E&l. (7) transforms as follows:

8 18S t(e„—e ) —i —(nl &Plm& = (f„-f ) s W ———+ —(PS)+ —VS ~ V m
ag c Bt 2c c

+Z(»)svlv&( vl S&*--Zf &v»l -:,)' Ipm&I.
Pa C p i.r -r'

From

(pl Sp Iq& = (pI apl q& (pl is» p, l (q&—=—(pl npl q& — (f, -f )(plsl q&,

(A2}

(AS}

after using the completness property of the single-particle states [q&, we finally get, from (A2), the lin-
earized equation

8 188 i Z ~(v„-v„)-( —
&v I »S)m) = &f„f„(I(v- -—+ —(ms-)+ -vs vl & +r&sl »S)v&&vs)ms&

Pa
(A4)
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APPENDIX B

In order to derive the result (13), we work out the matrix element &n[ [7( f },ff(po)] ~m& using the defini-

tion of 7( t):
&sl[T'(f), &(p.)] IW = ——.&,(f)&~l[p., ff(p.)1 14

= ——,A,(t) fdrdr'dr"n*(r)(&r[p, [r"&&r [H(po)fr'&-&r[ff(po)fr"&&r IP, lr'&] m(r') p

where a(r}=&r[a&. Since the kinetic term in H(po) commutes with P„ from

&r[p, (r"& = -i(s/sz)5(r -r")

and the definition of H(po) it follows that

&nl(r(r), &&(p&](m) = ——,a(r)I(nl(p. , rrj(m) &f pr
-pr'n" (r)

r.()(p(r', r')m(r)-p (r, r')m(r'))

(8l)

From the completness of the single-particle states ~P& we can write

&& &p~[T'«»p. ]~q& =Z
Pe

0

Since
( (.)&-"I[~(f),p.] lq& — (-")&-.I[q(t), p.] lq&}.

I

& 'I(r(r&, p.lip) = —.r(,(r) r~ f p p( )p&"")—", p"'"'p.( "")p..p( "), .
K&I. (82) becomes

E &primp&. (p((r(r), pJ(p& = —„.&,(r) r f p rp"rn'p(r)p(r') (-

x'm{ r) —,p,(r', r') -m(r}p,(r', r")

-m(r') —po(r', r")+m(r')po(r, r') & q(r') .

After exploiting again the completness of the states ~P& and integrating by part the second term on the

right-hand side, we find

g& ql p& &pl[ad(f), p.]lq&

= —,&,(f) dr dr' n*(r)m(r) - -, —p,(r', r") + &&Po(r' r')
ill~ gt r"~ I'-

rem~ r m r p r~r + p r x[r -r') sz ' ' sz' '

= —.&,(r) f ppp ' '( ) ( ) - -, p ( r—,. "'

dr@&'n+ r m r' - -, —p, r, r' + ~~p, r, r' (83)
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From Eqs. (Bl) and (B3) one easily obtains

g&ml~p&~&pll2'(f), ae] I((& -&sll2'(f), ff(ue)] Int& = ——'s&,(f) &stl&., &] Ittt&
Pe 4P

e

+ —sA, (f) dr sfr'ne(r) tts(r)~ (B4)

from which the result (13) follows since the integral on the right-hand side in Etl. (B4) vanishes.

~Work performed by the financial aid of Consiglio Nazionale delle
Ricerche through its Laboratorio di Chimica Quantistica ed
Energetica Molecolare at Pisa.

'H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
2C. Mavroyannis and M. J. Stephens, Mol. Phys. 5, 629 (1962).
3A. D@garno and W. D. Davison, Adv, At. Mol. Phys. 2, 1

(1966).
A. Dalgarno, Adv. Chem. Phys. 12, 143 (1967).
G. P. Arrighini, F. Biondi, and C. Guidotti, J. Chem. Phys.
55, 4090 (1971).

For a clear review, see, e.g., P. W. Langhoff and M. Karplus in
The Pade Approximants in Theoretical Physics, edited by G. A.
Baker, Jr. and J. L. Gammel (Academic, New York, 1970),
p. 41.

'R. G. Gordon, J. Chem. Phys. 48, 3929 (1968).
'G. Starkshall and R. G. Gordon, J. Chem. Phys. 54, 663 (1971}.
P. %'. Langhoff, Chem. Phys. Lett. 9, 89 (1971).

- ' R. P. Futrelle and D. A. Mc Quarrie, Chem. Phys. Lett. 2, 223
(1968).

"D. E. Beck, Mol. Phys. 14, 311 (1968).
'2D. E. Beck and H. J. Loesch, Z. Phys. 195, 444 (1966).
'3R. G. Gordon, W. Klemperer, and J. I. Steinfeld, Ann. Rev. Phys.

Chem. 19, 215 (1968).
'4A. Dalgarno, in Perturbation Theory and Ets Applicationsin

Quantum Mechanics, edited by C. H. Wilcox (Wiley, New York,
1966), p. 145.

' M. J. Jamieson, Ph. D. thesis (The Queen's University of Belfast,
1969) (unpublished).

' J. Frenkel, 8'ave Mechanics, Advanced General Theory

(Clarendon, Oxford, England, 1934}.
' J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 (1959).
' A. D. McLachlan and M. A. Ball, Rev. Mod. Phys. 34, 844

(1963).
' G. P. Arrighini and C. Guidotti, Mol. Phys. 24, 631 (1972).' M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 1493 (1963}.
"S.T. Epstein, J. Chem. Phys. ¹2,2897 (1965).
"R. A. Harris, J. Chem. Phys. 50, 3947 (1969).
23E. A. Power, Entroductory Quantum Electrodynamics

(Longmans, Green and Co. Ltd. , London, 1964), p. 124.
2 A. E. Hansen, Theor. Chim. Acta 16, 217 (1970).

S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
6M. H. Alexander and R. G. Gordon, J. Chem. Phys. 56, 3823
(1972).

2 A. Herzenberg, D. Sherrington, and M. Suveges, Proc. Phys.

Soc. Lond. 84, 465 (1964).
'T. H. Dunning and V. McKoy, J. Chem. Phys. 47, 1735 (1967).
P. L Altick and A. E. Glassgold, Phys. Rev. 133, A633 (1963).

3 D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
"C. W. McCurdy and L C. Cusachs, J. Chem. Phys. 55, 1994

{1971).
'H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
"D. J. Rowe, Nucl. Phys. SO, 209 (1966).
34M. J. Jamieson, Int. J. Quantum Chem. Symp. 5, (4) 103

(1971).
"A. Dalgarno and G. A. Victor, Proc. R. Soc. Lond. A291, 291

{1966}.
N. Ullah and D. J. Rowe, Nucl. Phys. A. 163, 257 (1971).

"P. %'. Langhoff and M. Karplus, J. Opt. Soc. Am. 59, 863
(1969).' K. T. Tang, Phys. Rev. A 1, 1033 (1970).

3 E. Clementi, IBM J. Res. Develop. Suppl. 9, 2 ()965).' C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

4'I. R. Epstein and W. N. Lipscomb, Chem. Phys. Lett. 4, 479
(1970).

"I.R. Epstein, J. Chem. Phys. 53, 1881 (1970).
"V. G. Kaveeshwar, K. T. Chung, and R. P. Hurst, Phys. Rev.

172, 35 (1968).
'A. Dalgarno and G. A. Victor, Proc. Phys. Soc. Lond. 90, 605
(1967).

"P. K. Mukherjee, S. Sengupta, and A. Mukherji, J. Chem. Phys.
51, 1397 (1969).' M. Natori, M. Matsuzawa, and T. %'atanabe, J. Phys. Soc. Jap.
30, 518 (1971).

'D. F. Tuan and A. Davidz, J. Chem. Phys. 55, 1286 (1971).
"8H. D. Cohen, J. Chem. Phys. 43, 3558 (1965).
4'A. Dalgarno, Adv. Ph s. 11, 281 (1962).' The quantity 4@~"+(s —V')DQ D (VU) can also be

recognized as the so-called (static) dipole shielding factor, usually
denoted P, times Z [see for instance, V. G. Kaveeshwar, A.
Dalgarno, and R. P. Hurst, J. Phys. B 2, 984 (1969)].In view of
the way g ", arose in our treatment, we have preferred to
emphasize its sum-rule character.

"A. Dalgarno and S. T. Epstein, J. Chem. Phys. 50, 2837 (1969).
"R. K. Moitra, P. K. Mukherjee, and S. Sengupta, Int. J.

Quantum Chem. 4, 465 (1970).
~3N. Ostlund and M. Karplus, Chem. Phys. Lett. 11,450 (1971).


