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The heat capacity at constant volume C, and the pressure coefficient (0P /0T), were measured near
the superfluid transition on six isochores. This work also yielded new results for the derivatives

@V /0T), and (@S/dT), along the A line (¥ is the molar volume and S the entropy). An essentially
complete and detailed description of the thermodynamics of the superfluid transition at all pressures is
provided by the data. In particular, the results were used to derive the heat capacity at constant
pressure C,, the compressibility k, the thermal expansion coefficient a, the ratio y=C,/C,, and the
isentropic sound velocity u, along isobars. The heat capacity C, was examined carefully for its
asymptotic behavior near T,. Although several interpretations of the data are possible with different
assumptions about singular correction terms, it is clear that the exponents a anda’ are near zero, and
that the ratio 4/4' of the amplitude above T, to the amplitude below T, is greater than unity and
pressure dependent. The results are compared with the predictions of scaling and universality. The
assumption of a pure-power-law singularity in C, results in asa’ at some pressures, and thus yields
disagreement with scaling. The inclusion of singular higher-order contributions to C, in the analysis
increases the uncertainty in the exponents derived from the data, and the prediction a=a’ of scaling
falls within these larger uncertainties. The amplitude ratio remains greater than unity, and thus only
nonzero exponents are consistent with scaling. The pressure dependence of 4 /A’ is not removed by the
type of correction terms considered in the analysis, and is contrary to universality. When recent
calculations for the exponent of the correction terms are assumed valid, then only a negative leading
exponent is permitted by the data. This implies a finite C, at T,. If a=a’'<0, then the data permit a
continuous C, at T, and at all pressures only if, contrary to universality, a 'and o' depend upon the

pressure.

I. INTRODUCTION

In previous publicationsl'2 the results of detailed
measurements of the heat capacity at saturated
vapor pressure C, have been reported. Those data
were compared with recent theories of critical
phenomena, =% and it was shown that certain simple
interpretations of the results were in conflict with
the Widom—Kadanoff scaling laws.** The heat-
capacity measurements have now been extended to
higher pressures in order to provide further data
for comparison with scaling. Some of these re-
sults already have been presented briefly else-
where.®”® Considerable latitude has to be allowed
also in the analysis of these new data in order to
obtain consistency with theory.

Near the superfluid transition, the pressure P is
not a field conjugate to the order parameter. For
this reason one expects the transition to remain
“sharp,” as P is varied. Indeed, the transition is
known to exist at all pressures less than the freez-
ing pressure (~30 bar), and even the highest reso-
lution measurements® show no evidence of “round-
ing” of the transition. Furthermore, a change in
P is expected not to alter the symmetry of the or-
der parameter. Therefore, one might expect the
scaling parameters to be universal in the sense
that changes of an “inert” variable like P would

|

have no effect upon them. The additional motiva-
tion for the measurements to be reported here was
a desire to test this principle of universality.

The scaling predictions that will be of interest
here pertain essentially to the heat capacity at con-
stant pressure C,. However, for P greater than
the saturated vapor pressure it is experimentally
inconvenient to measure C, directly. Therefore,
the heat capacity along an experimental path which
was very nearly an isochore was determined; i.e.,
the measurements yielded approximately the heat
capacity at constant volume C,. In addition, the
pressure coefficient 83P/8 T was also measured
along the same experimental path. This variable
is, of course, very nearly equal to (8P/87),. It
will be demonstrated in this paper that sufficient
experimental information was obtained to calculate
essentially any desired thermodynamic response
function, including C,, with high precision.

The remainder of this paper is divided into sev-
eral parts. In Sec. II those aspects of the experi-
mental apparatus and procedure are described
which differ from the description given previously!
when the results at vapor pressure were presented.
This section has the same structure as Sec. II of
Ref. 1, and only jointly do the two publications
yield a complete discussion of the experimental
aspects. Section III contains some additional in-
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formation about corrections to the primary data,
and about probable errors in the measurements.

It complements Sec. III of Ref. 1. Sections IV and
V are by far the major parts of this paper. Sec-
tion IV contains the primary and the derived ther-
modynamic results. The analysis in terms of
scaling is presented in Sec. V. The reader who

is not interested in the thermodynamics for its own
sake, and is willing to believe that C, can be ob-
tained reliably from the primary data, may pro-
ceed immediately to Sec. V. Section VI is a sum-
mary of the main results of this work.

A great deal of space has been allocated in Sec.
IV to a detailed discussion of the thermodynamics.
This was done in part ot establish beyond any doubt
the reliability of the derived results for C, which
were used in the scaling analysis. In Sec. V the
data are analyzed in terms of scaling with several
assumptions about higher -order contributions to
C,. Since at some time it might be desirable to
make other assumptions besides the ones pursued
here, the results of individual measurements are
quoted in Table II.

II. EXPERIMENTAL

A. Apparatus

The apparatus used for the measurements to be
reported was, except for minor modifications, the
same as that described previously.! In this sec-
tion the modifications which were necessary to
facilitate work under pressure will be reported.

1. Sample-Preparation System

Figure 1 is a schematic diagram of that section
of the sample preparation system which was
modified for the present work, and may be com-
pared with Fig. 1 of Ref. 1. The He* purification
system and the gas volume measuring system
(GVMS) remain unchanged. Valves labeled 1-4
are the same as those in Fig. 1 of Ref. 1. The
modifications consisted of the addition of an auxil-
iary sample supply, a second Texas Instruments
(TI) quartz-bourdon-tube pressure gauge, and a
reference pressure.

The auxiliary sample supply was used only in
connection with measurements on He®-He* mix-
tures, and will not be discussed here.

The two pressure gauges were both Models 145
with micron gearing. One of them (serial No.
1344) contained a type 3 (serial No. 3880) quartz
bourdon tube, had a pressure range from 0 to
0.846 bar (0-635 torr), and could be used as a dif-
ferential gauge with reference pressures up to 32
bar. It is identified as LPTI in Fig. 1. The other
(serial No. 1776) contained a type 1 (serial No.
3798) quartz bourdon tube, had a pressure range

from 0 to 34.4 bar, and was used only as a direct
reading gauge. It is identified in Fig. 1 as HPTI.
It could be used either to monitor the sample pres-
sure, or to measure the reference pressure for the
LPTI gauge. At pressures less than 1 bar both
gauges were calibrated as described previously.!
The LPTI gauge had a resolution of 2x108 bar.
For the HPTI gauge the resolution was about 104
bar. Since no facilities for calibration were avail-
able at pressures greater than 1 bar, the manu-
facturer’s calibration was used for the HPTI gauge,
and it was assumed that the sensitivity of the LPTI
gauge to pressure changes was independent of the
reference pressure and dependent only on the
bourdon-tube deflection.

During the course of this work it became ap-
parent that a measurable time dependence of the
HPTI gauge reading existed after a rapid large He*
gas pressure change in the bourdon tube. In order
to characterize this effect, the HPTI bourdon tube
was pressurized to 24 bar with He* gas for 20 h,
and thereafter both reference and tube pressure
were reduced to zero within 1 min. The gauge
reading after pressure reduction is shown in Fig.
2. The relaxation effect was not troublesome for
the present work because after initial pressuriza-
tion large system-pressure changes generally did
not occur.

The reference pressure consisted of a 3-liter
volume, filled to the desired pressure with puri-
fied He* gas, and thermostated in a stirred water
bath. A Tronac Model 1040 precision temperature
controller was used to maintain the water bath at
constant temperature. With constant pressure ap-
plied to the bourdon tube of the LPTI gauge!? and
the reference pressure connected to the reference
port of the same gauge, it was established that the
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FIG. 1. Schematic diagram of the sample preparation
system.
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reference pressure had a short-term (=1 h) stabil-
ity of 1 ppm. Long-term drifts were not detectable
with the HPTI gauge. One ppm stability in the
pressure corresponds to a thermal stability of the
controlled bath of 3x10-*°C.

2. Calorimeter

Minor changes from the original designl were
made in this system after the measurements with
P, equal to vapor pressure, 1.65 bar, and 15.03
bar were completed.

The length of the probe was reduced from 0.95
cm to 0.09 cm, Whereas prior to this modifica-
tion the probe volume was 1% of the total sample
volume, the probe contained only 0.1% of the sam-
ple after the change. Thermal relaxation times in
the short probe when filled with HeI were less than
1 min, and thermal gradients could be kept
extremely small. Nonetheless, sufficient sensi-
tivity for the detection of T, was maintained, and
the transition temperature could still be measured
to +10°" K.

An auxiliary capillary was added to the system.
The bottom end of this capillary was thermally
attached to, but did not connect with, the sample
volume. When helium was introduced to this
capillary, it served as an additional superfluid
heat leak for cooling the system. When this helium
was removed, virtually perfect thermal isolation
was still attainable. The addition of this capillary
made it possible to cool the sample without appre-
ciably disturbing the thermal gradients in the
main capillary,3:#

The heat leaks from the cell to the isothermal
platform and from the isothermal platform to the
bath were increased to 10-° and 10-* W/K, respec-
tively. This was done to permit certain other ex-
periments®® which will not be discussed here, and
which required greater power dissipation in the
sample than had been possible with the previous
design. Even after this modification, conduction-
heat leaks were more stable than parasitic power
inputs, and the thermal stability of the apparatus
was as reported previously.1

B. Thermometer Calibration

The thermometer was calibrated against the
sample vapor pressure before the sample chamber
had been completely filled, as described previous-
ly.! It was discovered, however, that pressurizing
the sample chamber subjected the thermometer
to sufficient strains to slightly change its calibra-
tion. This was the case even though the thermom-
eter was mounted on the outside of the heavy walled
sample container and must have been caused by
the elastic deformation of this container. Less
precise calibrations against the bath vapor pres-

sure, using exchange gas in the main vacuum, in-
dicated, however, that shifts of the thermometer
calibration due to the sample pressure did not ex-
ceed 3x10-3K, and that systematic errors in C,
and (8P/87), due to uncertainties from this source
in the temperature scale did not exceed 1%. The
resulting relative errors in a set of data at a given
density are of course constant, and scaling param-
eters (see Sec. V) such as a, o', and A/A" are not
affected.

C. Procedure

In addition to C,, it was desired to measure si-
multaneously also the pressure coefficient (8P/87),.
This was accomplished by adjusting the reference
pressure of the LPTI gauge to a value slightly less
than the sample pressure, and by leaving valves 1
and 3 (Fig. 1) open, thus connecting the LPTI
gauge to the sample. Under these conditions, there
is a small system volume at room temperature
(3.5 cm®) connected to the sample volume, and ap-
propriate corrections (see Sec. III A) have to be
applied. By means of the LPTI gauge, the sample
pressure change resulting from the same tempera-
ture change used for the determination of a heat-
capacity point could be determined. Otherwise,
the procedure was rather similar to that described
for the measurements at vapor pressure.!

D. Performance

The general performance of the apparatus was
described previously! and only those aspects pecu-
liar to the measurements under pressure will be
discussed here.

1. Thermal Stability

When the sample was superfluid, its thermal
stability was not as great during the C, measure-
ments as it was at saturated vapor pressure. Typ-
ical sample temperature drift rates were given in
Table II of Ref. 1. Nonetheless, for T, - 7<10-2
K, it was possible to make measurements nearly
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FIG. 2. Apparent pressure indicated by the HPTI
gauge with zero applied pressure, after pressurization
of the bourdon tube to 24 bar with He® gas for 20 h,
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as precise as at vapor pressure. For T>T,, the
system functioned as well during the C, measure-
ments as it did at saturated vapor pressure.

2. Constancy of Sample Mass

During the measurements of C;, there was no
reason for any appreciable change in the sample
mass. During the measurements of C, and (3P/
97),, however, the sample mass could have
changed for two reasons. A time dependence of
the temperature gradient in the capillary would re-
sult in a change of the distribution of the helium
between the capillary and the sample chamber. As
pointed out in Ref. 1, this effect was minimized by
controlling the thermal gradient in the capillary,
and by establising a large temperature gradient
immediately above the point where the capillary
entered the main vacuum (see Fig. 2 of Ref. 1).

In addition, a continuous loss of sample had to be
expected when the quartz-bourdon-tube gauge was
used to monitor the sample pressure because of
diffusion of helium through the quartz. In order
to establish experimentally the magnitude of this
sample loss, the transition pressure P, near 2.15
K was determined several times over a two-hour
period with a 1, 6-bar pressure differential across
the bourdon tube. The results are shown in Fig.
3. The transition pressure dropped at a rate of
9x10~" bar/min, corresponding to a transition tem-
perature change of 910" K/min. The change in
T, was too small to be separated experimentally
from the time dependence of the thermometer re-
sistance.! From the time dependence of P, it can
be estimated that the rate of change of the sample
mass was 3.4x10°8 mole/min, or 0.011 ppm/min.
Clearly this is insignificant provided that the time
dependence of 7, is determined and considered in
the data analysis. It corresponds to a helium dif-
fusion rate through the quartz bourdon tube of 1.0
x10® cm3/sec torr D, which is within the pressure-
gauge manufacturer’s specification. Independent
measurements of this diffusion rate yielded 1. 2
x10-% cm3/sec torr D, indicating that the change in
sample mass deduced from P, was indeed caused
primarily by diffusion through the bourdon tube.
The scatter of P, about the straight line in Fig. 3
is about +2%10% bar or 1 ppm of P,. This is in
agreement with the expected resolution of the pres-
sure gauge. The results indicate that any sample
redistribution due to changes in the temperature
gradient in the capillary was negligible.

III. DATA ANALYSIS
A. Corrections

The curvature correction discussed in Ref. 1
was applied to all data.
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The measurements have been corrected for the
effect of gravity“ which was discussed extensively
in Ref. 1. Since none of the present measure-
ments are extremely near T,, this effect is small,
and we thought it preferable to correct the mea-
surements to zero gravity. At vapor pressure,
where measurements were made for which the ef-
fect was large, the data had not been corrected,
and instead were fitted to functions which included
the gravity effect.!

The experimental measurements designed to
yield C, and (3 P/87T), do not give these quantities
directly. The small quantity of gas at room tem-
perature (about 3.5 cm®; see also Sec. IIC and
Table I of Ref. 1) is compressible, and the pres-
sure changes associated with sample temperature
changes cause flow along the capillary, and result
in a small dependence of the molar volume V of the
liquid upon the temperature. Thus, for instance,
the quantity measured is not C,= T(8S/97T),, but
rather C,= T(85/87T),, where x indicates the ex-
perimental path. However, it can be shown that

C,-C,=T(dP/37T),(8V/07T), . (3.1)
Using the relation

(8P/87T),=(88/9V), - T-1C,(8T/3 V), (3.2)
where ¢= T~ T,, one obtains

c,,:c"' T(85/8V),(dV/87T), (3.3)

1-(37/3W), (8V/a 1),

Near T,, (8S/8V), and (8 7/8 V), may for the pres-
ent purpose (see also Secs. IVC and IV D) be ap-
proximated by (8S/8V), and (87/8V),. For the
change in molar volume of the liquid along the ex-
perimental path one has

1.64940 T T T T T T

de .
3| F 72 =-9x10°7 bar/min

1

dT, .
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FIG. 3. Time dependence of P,. This effect is caused
by the sample loss due to He? gas diffusion through the
quartz bourdon tube used to monitor P,.
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( (nngR;T 121 Vr) <:_1;) (3.4)

if the vapor can be treated as an ideal gas. Here
Tg is the room temperature, Vj the volume at Ty,
n the total number of moles of sample, V, the vol-
ume of the sample chamber, and R the gas con-
stant. Evaluation of C, from the measured C, and
(3P/37),, and from the known volumes of the sys-
tem, revealed that C, never differed from C, by
more than 0. 3% over the temperature and pres-
sure range of interest. A sufficiently accurate

correction for this effect therefore could be applied.

There are two additional effects which at least
in principle should be considered. During the C,
measurements the number of moles of helium in
the sample chamber is temperature dependent be-
cause of the pressure change in the room-tempera-
ture volume. However, the ratio between the num-
ber of moles of helium at room temperature and
that in the cell is no greater than 10-® at the pres-
sures used in this experiment, and changes by less
than 10™* because of pressure changes along an
“isochore.” Thus the amount of sample used for
the measurement may be regarded as constant.
The second effect is a consequence of the negative
thermal-expansion coefficient of liquid helium in
the temperature range of interest. As the sample
temperature is increased, additional material
enters the calorimeter, and this additional materi-
al, although it has a negligible effect on the total
amount of sample, introduces energy into the sys-
tem because it is approximately at a temperature
T'>T. However, it can be estimated that under
the experimental conditions used here the resulting
error in C, is always less than one part in 10%,

For the pressure coefficient, a correction simi-
lar to Eq. (3.3) for C, applies, and is given by

(92 _(ap/87), - (8V/87),(8P/8V),
aT),,_ 1-(av/a7),(87/8V), :
The difference between (8P/37T), and (8P/0T),
never exceeds 0.8% of (8P/87), over the tempera-
ture and pressure range of interest, and a correc-
tion is readily applied.

(3.5)

B. Errors

The discussion in Ref. 1 of errors at vapor
pressure is applicable to the present results for
C,, except that random errors for HelIl are per-
haps slightly larger because of the larger sample
temperature drifts (Table II of Ref. 1). Since it
was desirable to make measurements at several
volumes, fewer data could be obtained at any one
volume in a reasonable length of time than at sat-
urated vapor pressure.1 Primarily for this rea-
son, the random errors for derived parameters

such as the exponents a and o’ or amplitudes A,
and Ag (see Sec. V) are in most cases slightly
larger than they were at vapor pressure. We al-
ready discussed (Sec. II B) the larger uncertainty
in the temperature scale for the present work.
Systematic errors in addition to those discussed in
Ref. 1 of about 1% which may be different at differ-
ent densities must be expected from this source.
The random errors in (8P/8T), are determined
by the pressure resolution, and are estimated to
be about 1% of (8P/87T),. Systematic errors of
about 1% due to possible systematic errors in the
pressure scale! may also apply to this variable.

IV. RESULTS
A. Heat Capacity at Constant Volume

Measurements of C, were made along six iso-
chores. The molar volumes and corresponding
temperatures and pressures at the A point are
listed in Table I. Of the entries in Table I, the
pressure P, was measured directly, and 7, and
V, are derived from the equations given by Kier-
stead.!” Direct determinations of 7,, although they
differ from those given in Table I by not more than
2x10-°K, are considered less reliable because of
the effect of the sample pressure on the tempera-
ture scale which was discussed in Secs. IIB
and IIB. No direct determination of the molar
volume was made. The results of individual mea-
surements along each isochore are listed in Ta-
ble I, and some of the results have already been
shown in Fig. 2 of Ref. 6 as a function of
logye! T~ TI.

It is well known that C, is finite at 7,.!® None-
theless, the data in Fig. 2 of Ref. 6 suggest that
the function

C,==Agn|t| +B,,4, t=T-T(V) (4.1)

which diverges at 7,, is a good approximation to
the experimental results over a considerable range
in . We have fitted the data with 10 K< |#| <3
x10- K for each phase along each isochore sepa-
rately to Eq. (4.1), and list the resulting coeffi-
cients in Table III. Here, a distinction between

TABLE 1. Parameters for the A points on the experimental
isochores.

By T 14}

(bar) (K) (cm®mole™)

1.646 2,157 26.81

7.328 2.095 25.31
15,031 1,998 23.95
18.180 1.954 23.51
22.533 1.889 22,97
25,868 1.836 22,60
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TABLE II. Results of individual measurements of the heat capacity and the pressure coefficient.
10%[T - T, (V)] c, (9P/87), 10%[T - T, (P)] (o8
(K) (3 mole’! K} (bar K™) (K) (3 mole™! K1)
P, =1.65 bar
0.4990 35.85 —-2.438 0.4843 36.25
1.268 31.03 -1.717 1.239 31.24
2.078 28.41 -1.334 2,037 28.53
2.954 26.54 -1.083 2,902 26.62
5,112 23.72 -0.6893 5,042 23.74
8.045 21.37 -0.3195 7.959 21.37
9.499 20.55 ~0.2007 9.408 20.55
11.13 19.74 -0.0821 11.04 19.74
12,55 19.15 0.0101 12,45 19.14
16.83 17.77 0.2287 16.73 17.77
70.5870 35.01 -2.203 0.5703 35.37
0.7985 33.33 -1.994 0.7775 33.62
0.9462 32.58 -1.854 0.9224 32.84
1.147 31.50 -1.737 1.120 31.72
1.455 30.25 -1.574 1.423 30.43
-23.35 36.46 -2.652 -22.62 37.02
-21.70 36.93 -2.681 -21.01 37.50
-20.09 37.33 -2.735 -19.44 37.92
-18.49 37.77 -2.822 -17.89 38.38
-16.87 38.30 -2.899 -16.31 38.93
-15.23 38.83 -2,934 -14.71 39.49
-13.60 39.43 -2.,989 -13.13 40.11
-11.98 40.14 -3.075 -11.56 40.85
-10.36 40,94 -3.175 -9.984 41.69
—-8.717 41.78 -3.279 -8.391 42,59
-17.088 42,83 ~3.442 -6.814 43.69
—-5.949 43.66 -3.549 -5.713 44.58
-5.294 44.16 -3.618 -5.080 45,11
-4,639 44,97 -3.689 —4,447 45.97
-3.977 45,62 -3.755 -3.809 46.67
-3.328 46.50 -3.874 -3.184 47.61
—-2.663 47.58 -3.999 —-2.544 48.77
-2.173 48.64 -4,115 -2,073 49.91
-1.861 49.27 -4,193 -1.774 50.60
-1.531 50,16 -4,351 -1,457 51.56
-1,205 51,34 —4.456 -1.145 52.85
-0.8784 52,66 —4.666 -0.8331 54,29
-0.5516 54,84 -4,953 -0.5215 56.69
-0.2231 59,02 -5,592 -0.2097 61.33
-1.136 51.62 -4,582 -1.079 53.16
-1.031 51,97 -4,612 -0.9788 53.54
-0.9263 52,47 - 4,660 -0.8788 54,08
-0.8225 53.25 —-4,756 -0.7797 54,94
—-0,7165 53.60 -4.,793 -0.6786 55.32
—0.6154 54,35 —-4,871 -0.5823 56.15
-0.4204 56.21 -5.168 -0.3968 58.21
-0.3213 57.18 -5.264 -0.3027 59.28
-0.2224 59.21 -5.575 -0.2090 61.53
-0.1529 61.16 -5,788 -0.1433 63.72
-0.1210 62.13 - 5,957 -0.1133 64,82
-0.0888 63.07 -6.127 —0.0829 65.87
-0.0527 65.93 -6.515 -0,0491 69.11
-0.0363 67.07 -6.516 -0.0337 70.41
P, =17.33 bar

-10.55 36.27 -6.563 -9.609 38.42
-10.16 36.42 -6.548 -9.255 38.59

-9.406 36.85 -6.809 —8.556 39.09
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TABLE II. (Continued)
103[T-T,(N] C, (8pP/0T), 103[T - T, (P)] (o8
(K) (7 mole™ K™ (bar K-) (K) (@ mole™ K™
P,=7,33 bar
-9.037 36.95 -6.775 —8.216 39.20
-8.375 37.33 —-6.844 -7.607 39.64
-7.998 37.58 -6.859 -7.261 39.94
-7.653 37.71 -6.854 —-6.943 40.08
-7.304 37.92 -7.005 -6.623 40.32
-6.971 38.13 —-6.939 -6.317 40.57
-6.618 38.38 —-6.994 -5.993 40.86
—-6.279 38.54 -7.149 -5.682 41.05
-5.921 38.84 -7.132 -5.354 41.39
-5.587 39.10 -7.155 -5.048 41.70
-5.241 39.30 -7.337 —-4.732 41.94
-4.910 39.62 -7.394 —-4.,429 42.32
—-4.577 39.85 —-7.428 —-4.125 42,59
—4,238 40.19 -7.601 -3.816 42,99
-3.908 40.47 -7.605 -3.514 43.32
-3.573 40.89 -7.616 -3.210 43,83
-3.247 41.31 -7.813 -2.913 44,32
-2.913 41.70 -17.820 —-2.610 44.80
-2.589 42.21 —-7.849 -2.316 45.40
-2,265 42,73 —8.069 -2.023 46.03
—-1.945 43.35 -8.225 -1.733 46.79
-1.626 44,04 -8.362 —1.446 47.63
-1.306 44.91 -8.597 -1.157 48.70
—0.9869 45.98 -8.937 -0.8716 50.02
-0.6739 47.40 -9.363 -0.5922 51.79
-0.3607 49.86 -10.09 -0.3143 54,91
0.1400 36.96 -6.593 0.1271 39.08
0.2345 34,94 -6.015 0.2146 36.73
0.3837 32.69 —-5.425 0.3537 34.14
0.5823 30.77 -4.979 0.5401 31.95
0.7739 29.41 —-4,641 0.7208 30.43
0.9569 28.46 -4.407 0.8941 29.36
1.211 27.40 -4.,107 1.135 28.19
1,637 26.21 -3.827 1.446 26.88
1.858 25.41 -3.591 1,753 26.01
2.175 24,65 -3.343 2.057 25.18
2,496 24,03 -3.193 2.365 24,50
2.814 23.43 -3.082 2,672 23.86
-0.7394 47,22 -9.379 —0.6505 51.57
—0.6413 47.76 -9.615 -0.5631 52.25
-0.5471 48.36 -9.711 —0.4794 53.01
—0.4532 48.94 -9.697 -0.3961 53.75
-0.3577 49.98 -9.929 -0.3117 55.07
—0.3472 50.12 —0.3024 55.25
—0.2476 51.34 -0.2147 56.82
-0.1517 53.19 -0.1307 59.22
0.1058 38.33 0.0957 40.70
P,=15.03 bar
-5.047 33.97 -12.10 -4,132 39.22
-4.721 34.22 -12.15 -3.860 39.56
—4.401 34.43 -12.32 —-3.592 39.85
-4.077 34.69 -12.52 -3.323 40.23
-3.759 34.93 -12.73 —3.058 40.57
—3.433 35.13 -12.45 -2,787 40.84
-2.990 35.68 -12.75 —-2,420 41.65
-2,676 35.97 -12.94 -2.160 42.06
—1.487 37.84 -13.96 -1.185 44.82
—-1.334 38.15 —13.92 -1,061 45.27
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TABLE II. (Continued)

1037~ T,("] c, (®P/97), 10%[T -7, (P)] (0N
K) (J mole™! K) bar K) (K) (J mole! K*)
P,=15,03 bar
-1.169 38.58 -14.10 -0.9263 45,93
-1.008 38.99 -14.18 -0.7962 46.55
-0.8436 39.55 -14.56 —0.6636 47.41
-0.6898 40.16 -14.71 -0.5402 48.36
-0.5405 40.78 —-14,98 -0.4209 49.33
~0,4017 41.70 -15.39 -0.3106 50.80
-0,2621 42.89 -16.02. -0,2007 52,71
-0,1160 45,08 -17.05 -0.0871 56.34
0.1884 30.56 -10.53 0.1573 34,34
0.3725 28.01 -9,251 0.3170 30.95
0.5534 26.53 -8.528 0.4764 29.03
0.7262 25.46 -17.953 0.6299 27.66
0.9019 24,57 -7.774 0.7871 26.54
1.141 23.55 -17.305 1.002 25.27
1,439 22,59 -6.810 1.272 24,10
1.734 21.86 -6.455 1.541 23,22
2.176 20.92 -6.074 1.945 22.09
2,764 19.94 -5.484 2.487 20,93
3.348 19.10 -5.175 3.028 19.95
—0.4083 41.68 -15.68 -0.3159 50.76
-0.3071 42,57 -15.66 -0,2360 52.19
-0.2186 43.57 -16.34 ~0.1667 53.83
-0.1296 45,03 -16.82 -0,0976 56.25
—0.0467 47.59 -18.26 —0.0343 60.66
0.0549 34.82 -12.63 0.0442 40.31
0.1485 31.35 -10.85 0.1231 35.42
0.3638 28,04 -9.310 0.3095 30.98
P,=18.18 bar
-3.416 32.86 -14.54 -2.634 39.85
-3.091 33.17 —14,57 -2.378 40.32
-2,768 33.46 -14.66 -2.123 40.79
~-2,415 33.82 -14.94 —1.845 41.35
-2,114 34.16 -15.16 -1,610 41,901
-1.819 34.62 -15.58 -1.380 42.66
-1,518 35.07 -15.86 -1,145 43.40
-1.222 35.59 -15.90 -0,9173 44,26
-=0.9879 36.29 -16.22 -0.7371 45,43
-0.8377 36.66 -16.34 -0.6223 46.06
—0.6881 37.15 -16.60 -0.5084 46.91
-0.5376 37.80 -17.29 —-0.3945 48.05
-0.3889 38.48 -17.45 -0.2828 49.24
—0.2426 39.74 -18.10 -0.1741 51.52
-0.0996 41.85 -19.51 -0,0697 55.47
-0.7038 37.17 -16.69 -0.5203 46.93
-0.6170 37.42 -16.67 —0.4545 47.37
-0.5308 37.84 -17.24 -0.3894 48.10
—0.4425 38.24 -17.24 —-0.3229 48.82
-0.3538 38.78 -17.42 -0.2566 49.78
-0.1774 40.55 —-18.64 -0.1262 53.01
~0.0890 42.10 -19.47 -0.0621 55.95
-0,2773 39.50 -18.02 -0,1998 51.07
—0.1894 40.29 -18.65 -0.1350 52.54
-0,1056 41.77 -19.16 —0.0740 55.33
-0.3036 39.14 -17.97 —-0.2193 50.43
-0.2126 39.99 -18.20 -0.1520 51.97
~0.1249 41,29 -19.59 —0.0880 54.40
-5.366 31.58 —-14.03 —-4.187 37.86

—-4.777 31.91 -14.03 -3.716 38.38
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TABLE II. (Continued)

oo

10%[T - T, (V)] c, (3P/87T), 10%[T - T, (P)] c
(K) (J mole™ K) (bar K*) (K) (7 mole™! K1)
P,=18,18 bar
-4,186 32.26 -14.15 -3.245 38.90
-3.608 32.71 —14.43 -2,785 39.60
-3.039 33.17 —-14.82 -2,337 40,32
-2.571 33.66 -15.08 -1.968 41.10
-2.279 34,02 -15.15 -1.738 41.68
—-1.986 34,37 -15,31 -1.510 42,25
-1.692 34,81 -15.57 -1.281 42,96
-1.398 35.29 -15.73 -1.053 43.75
-1.104 35.91 -16.21 -0.8259 44.79
-0.8098 36.74 -16.87 -0.6009 46.20
-0.5160 37.87 -17.43 -0.3782 48.16
-0.1917 40,27 —-18.63 -0.1367 52,49
0.0653 32.21 -14.12 0.0500 38.70
0.1519 29,39 -12.64 0.1202 34.39
0.2456 27.59 -11.43 0.1979 31.75
0.3406 26,49 -10.51 0.2776 30.20
0,0451 33.24 ~14,59 0.0341 40.35
0.1249 29,98 -12,83 0.0981 35.28
0.2100 27,85 -11.99 0.1682 32,14
0.2998 26.81 -11.06 0.2433 30.64
0.0856 31.16 -13.81 0.0663 37.07
0.2319 27,70 -11.74 0.1864 31.91
0.3794 25.93 -10.67 0.3104 29.41
0.5280 24,72 -9.990 0.4371 27.75
0.6790 23.87 -9.388 0.5671 26.59
0.8322 23.09 -8.894 0.7000 25.55
0.9857 22,41 -8.595 0.8341 24,66
1,212 21,64 - 8,222 1.033 23.65
1.504 20.81 -7.711 1.291 22.59
1,797 20.10 -7.311 1.552 21.70
2.102 19.47 -7.094 1.825 20.91
2,403 18.96 -6.673 2.096 20.28
2.854 18.35 -6.338 2,504 19.53
3.445 17.62 -6.020 3.042 18.64
4,023 17.00 -5.636 3.570 17.89
4,922 16,23 -5.266 4,397 16.99
6.179 15.36 -5.155 5.561 15.97
7.500 14,63 -4,259 6.793 15.13
8.885 14,00 -3.89% 8.092 14.41
12.71 12,72 -3.198 11.71 12.97
19,37 11,20 -2.283 18.08 11.31
26.78 10,24 -1.680 25.26 10.27
34,88 9.399 -1.147 33.17 9.385
P, =22,53 bar
-5.957 28.58 —-16.24 —-4,327 36.16
-5.615 28,73 —-16.50 -4.071 36.42
-5.318 28.83 —-16.46 -3.849 36.58
-5.007 29.04 —-16.44 -3.617 36.96
—-4.700 29.19 -16.38 -3.389 37.22
—-4.411 29,37 —-16.56 -3.173 37.54
—-4.102 29.48 -16.73 —-2.944 37.74
-3.803 29.67 -16.99 -2.723 38.08
-3.508 29.86 -17.24 —-2.505 38.42
-3.195 30.03 -17.26 -2.275 38.71
-2.731 30.44 -17.36 -1,935 39.46
—2.442 30.63 -17.42 -1.723 39.80
-2,151 30.94 -17.63 -1,512 40.39
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103[T - T,(V)] c, (8P/87), 1037 - T, (P)] c,
(K) (J mole™! K) (bar K) (K) (J mole~! K1)
P, =22,53 bar
-1.857 31.28 —18.03 -1.299 41.03
-1.567 31.62 -18.40 -1.090 41.68
-1.338 31.94 -18.83 -0.9261 42.28
—1.246 32.21 -18.78 -0.8601 42.82
-1.155 32.33 -19.05 -0.7952 43.05
-1.065 32,54 -18.98 -0.7315 43.45
-0.9766 32.68 -18.86 -0.6687 43.74
-0.7972 33.03 -19.28 —-0.5421 44.42
-0.7103 33.32 -19.40 -0.4811 45.00
-0.6239 33.57 -19.63 -0,4207 45,52
-0.5377 33.82 -19.40 -0.3607 46.03
-0.4516 34.17 -20.08 -0.3012 46.76
-0.3673 34.59 -20.12 —0.2432 47.63
-0.1208 36.76 —21.44 -0.0769 52.38
—0,0422 38.58 -23.39 -0.0259 56.63
0.0415 30.57 -17.76 0.0286 39.61
0.1223 27.22 —14.96 0.0891 33.64
0.2124 25.53 -13.77 0.1590 30.84
0.4065 23.28 -12.40 0.3143 27.31
0.7215 21,37 -10.99 0.5733 24.47
1.023 20.16 -9.939 0.8267 22.74
1.308 19.32 -9,447 1,069 21.58
1.588 18.67 -8.870 1.309 20.69
2.005 17.82 -8.361 1.670 19.56
2,581 16,92 -7.684 2.174 18.38
-0,3724 34.66 -19.98 —0.2467 47.79
-0.2857 35.04 -20,21 -0.1875 48.58
0.0418 30.45 -17.09 0.0287 39.39
0.1127 27.49 -15.23 0.0817 34.09
P, =25,86 bar
-30.63 22.88 -16.07 -21.74 29.09
-29.20 23.04 -16.05 -20.69 29.38
—27.66 23.25 -16.17 -19.56 29.75
-26.21 23.38 -16.37 —18.50 29.96
—24.68 23.52 —-16.44 -17,.38 30.20
-23.25 23.69 -16.43 -16.34 30.51
-21.83 23.90 -16.69 -15.31 30.87
-20.35 24,05 -16.79 -14.23 31.14
—-17.47 24,44 —16.98 -12.15 31.83
-15.96 24,66 -17.18 -11.07 32,24
—14.52 24,93 -17.37 -10.03 32.73
-13.11 25.13 —-17.47 -9.024 33.11
-11.71 25,40 -17.74 -8.026 33.61
-10.31 25,67 -17.94 -7.034 34.12
-8.936 25.98 —18.16 —-6.064 34.72
-7.569 26.30 -18.30 -5.104 35.33
—6.426 26.70 -18.76 -4,306 36.13
-5.854 26,82 -18.61 -3.909 36.36
-5.283 27.06 -18.87 -3.514 36.85
-4.719 27.30 -19.30 -3.126 37.33
—4.159 27.49 -19.10 -2.741 37.73
-2.429 28,56 -19,94 —-1.568 40.00
—4,782 27.30 -19.28 -3.169 37.34
-4,204 27,52 -19.13 -2.772 37.80
-3.653 27.80 -19.38 -2.395 38.38
-3.098 28.18 -19.85 -2.019 39.19
—-2.547 28,54 -19.94 -1.647 39.97
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TABLE II. (Continued)
103(T- T, (V)] c, (9P/97T), 103[7- 1, (P)] [oR
K) (J mole™! K) (bar K1) (K) (J mole™! K1)
P, =25.86 bar
-1.996 29,01 -20.32 -1,279 41,00
-1.445 29,56 -21.07 —-0.9136 42,25
-0.8942 30.50 -21.57 ~0.5544 44.45
-0.3716 32.06 ~23.05 -0.2222 48,31
-5.367 26,98 -18.58 -3.572 36.68
~5.087 27.08 ~18.49 -~3.379 36.89
—4,806 27.30 -18.80 -3.185 37.34
-4,526 27.37 ~18.97 -2.993 37.49
-4,246 27.50 -19.09 -2.801 37.75
-3.968 27.62 -19.19 -2.610 38.00
-3.691 27.80 -19.23 -2,422 38.38
~3.416 27,96 -19.28 -2.234 38.73
-3.144 28,05 ~19,31 -2,050 38.90
~2.866 28,24 ~19.59 -1.862 39.31
-2.598 28.48 ~19,89 ~1.682 39,85
-2.324 28,64 ~20,10 -1.497 40,19
-2.044 28,85 -20,06 ~1.311 40.65
-1.769 29,19 -20.37 -1.128 41.41
-1.494 29,40 -20,37 -0,9456 41.89
-1.219 29.91 -20,69 -0.7654 43,05
-0.9436 30.41 -21.42 —0.5864 44,23
—~0.6664 30.89 -22.09 ~0.4083 45,40
-0.3913 31.88 ~22,65 -0.2344 47.87
~1.298 29.80 -20.73 ~0.8173 42.80
-1.081 30.05 -21,02 —0.6757 43.39
—-0.7947 30.77 ~21.66 -0.4904 45,10
-0.6532 31.05 -21.78 -0.3998 45,79
-0.5158 31.43 -22.19 -0.3126 46.72
~-0.3792 31.94 -22,83 -0.2269 48,03
-0.2419 32.71 -23.54 —0.1420 50,02
-0.1275 33.67 —-24.54 —0.0727 52.64
—~0.5782 31.31 -22.16 —-0.3521 46,43
~0.4372 31.76 -22,42 —-0.2631 47.56
-0.2982 32.42 —23.26 -0.1766 49.27
~0.1584 33.36 ~24.12 -0.0913 51.78
-0.3573 32.13 -22,22 -0.2133 48,52
-0.2175 32.94 -23.72 -0.1270 50.63
~0.0794 34,44 ~24.35 ~0.0443 54.82
-0.6081 31.19 -22.19 -0.3711 46.12
~0.4686 31.66 ~22,63 —-0.2829 47.30
-0.3291 32.28 —-23.00 -0.1957 48.89
-0.1901 33.16 -23.36 —0.1104 51,22
~0.0694 34.66 -25.15 ~0,0386 55.45
0.0603 27.24 —~18.89 0.0383 37.06
0.1726 24.20 ~16.04 0.1181 31.05
0.3133 22,46 ~14.59 0.2228 27.92
0.0775 26.66 -18.32 0.0502 35.86
0.2054 23.76 —15.64 0.1421 30.25
0.3450 22,24 —14.38 0.2469 27.54
0.0876 26.18 -18.10 0.0572 34.89
0,2237 23,55 ~15.43 0.1557 29.86
0.3601 22,02 -14.33 0.2584 27.16
0.4976 21.08 ~13.54 0.3644 25.58
0.6351 20.29 ~12.94 0.4721 24,29
0.7739 19.70 -12.35 0.5823 23.35
0.9136 19.14 —11.60 0.6943 22.48
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TABLE II. (Continued)
1037 - T, (V)] c, (8P/87), 10%[T - T, (P)] (0N
(K) (J mole™! K1) (bar K1) (K) (J mole~! K1)
P, =25.86 bar
1.052 18.70 -11.70 0.8064 21.79
1.258 18.09 —-10.84 0.9740 20,88
1.534 17.42 —-10.28 1.202 19.88
1.813 16.85 -9.751 1.435 19.06
2,093 16.39 -9.267 1,670 18.41
2.372 15.95 -8.962 1.906 17.80
2,789 15.41 -8.500 2,262 17.06
3.348 14.79 -8.053 2.742 16.21
4.032 14,16 -7.554 3.337 15.38
4.858 13.54 -6.962 4.062 14.57
6.177 12.74 -6.240 5.233 13.56
8.036 11.89 -5.499 6.904 12.50
-0.2588 32.69 -0.1523 49.99
-0.2307 32,87 -0.1351 50.46
-0.2020 33.12 -0.1177 51.14
—-0.1732 33.32 -0,1002 51.68
—0.0594 34.82 -0.0327 55.92
—0.0348 35.63 -0.0187 58.35
0.0306 28.32 0.0185 39.39
0.0609 26.76 0.0388 36.08
0.4133 21.59 0.2992 26.43
0.6727 20.15 0.5019 24.06
1.197 18.26 0.9247 21.12
2,340 16.02 1.879 17.89
5.020 13.45 4,205 14.45
9.113 11.49 7.881 12,02
13.83 10.19 12,22 10,48
19.08 9.243 17.15 9.394
24,82 8.509 22.60 8.574

the two phases is made by using primed coeffi-
cients for the low-temperature phase (HeIl). It
is possible to represent the coefficients in Table
III by smooth functions of P,, V,, or 7,. We
have chosen to write them as functions of P,, and
obtained

= 4.909(1 - 0. 03060P, + 0. 0002343P2)
Bl = 20.00(1 - 0. 00425P,) ,
Ag,=5.252(1 - 0. 01903P, + 0. 0001578F%) ,
By = - 3. 00(1+ 0. 00595P,)

(4.2)

from a least-squares fit involving all data with 107*

< 1t1<3x10°°K. The units of C, are in Jmole-'K -,
and P,(V) is the pressure in bars at 7,(V) on the
isochore with volume V. In order to determine
how well Eq. (4. 1) with the coefficients given by
Eq. (4.2) represents the measurements, in Fig. 4
we show in percent the deviations from Eqs. (4.1)
and (4. 2) of the individual data points. It can be
seen that all the data for which 107*< 1£] <5x107* K
deviate from Eqs. (4. 1) and (4. 2) by no more than
1%. It is clear that the relatively simple form of
Egs. (4.1) and (4. 2) may be used for many not too

demanding thermodynamic calculations.
For some purposes it is more convenient to con-
sider the specific heat as a function of the reduced

temperature interval €,=¢/T,, i.e.,
C,=-Agln|€|+By, . (4. 3)

It is apparent that this choice of variables does not

alter Ay,. However,
Bgy=Bgys = Ay InT,, . (4.4)

The values of B, are also listed in Table III, and

TABLE III. Least-squares parameters for C, on the

experimental isochores. See Egs. (4.1) and (4.3). C,
in J mole™'K"!,

By Ay Byt B, Agp Byt By,
1.646 5.062 -2.82 -6.71 4.612 20.29 16.74
7.328 4,563 -3.30 -6.67 3.890 19.06 16.18

15.031 3.940 -3.18 -5,91 2,990 18.28 16.21
18.180 3.741 -3.53 —6,04 2,554 18.49 16.78
22,533 3.420 -3.54 -=5.71 2,049 18.32 17.02
22.868 3.180 -3.19 -5,12 1.797 17.81 16.72
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to a good approximation,
Bgy,=~"7.00+0. 065P, ,

t»=16.40+0. 014P, , (4.9)

where again C, is in Jmole 'K ™! and P, in bars.
Although Eq. (4.1) is a good representation of the
data, the measurements are sufficiently precise to
reveal the fact that Eq. (4. 1) is not the correct
functional form for C,. The deviations from the
equation, although small, are systematic, and are
related to the fact that C,(T,) is finite, whereas
Eq. (4.1) diverges at T,. This has been discussed
briefly elsewhere.”
In order to investigate the extent of the deviations
of the data from the logarithmic functional form
Eq. (4.1), one can consider the more general power
law® ¥

Cv= (Av/av)(,tl-a"' 1)+th (4 6)
which, with a,<0, yields a finite C,(T,)=B,; -4,/

a,. Inthe limit as @, vanishes, Eq. (4.6) yields
! T T T o
0]
-1} L4 ..o Oas, ®e ° |
. *% 6,
-2 o %
3l Py =25.86 bar " -
-4} o [
N -5 ! ] ]
o
S T T T
P NIy + = 2o~ 7. pequm—
s - e “~ -
f 28 Px—22.?3bor | _
— 3 T T T
T2k P) =18.18 bar o
S P y
l:< 1 0"0 o 0 ©
o 1 ! B
e -
‘; 2 T T T
1} o -
<'? o - '. 0.0.6..‘).%0'
T Ak P\=15.03 bar .
> _p o | 1 1
o
‘6‘ 2 T T T
s 'F P\=7.33 bar .
- 0] Woo
-1 Oc: A [¢) .
-2 1 L
2 T T T
' e %4 Ofn e 7]
o ° ° ] 0 " ¢
- Py =1.65 bar ‘\ ]
-2 ! | 1N

-4 -3 -2
lo AV =T|
90
FIG. 4. Departures of individual measurements from

the logarithmic functional form, Eq. (4.1), with the co-
efficients given by Eq. 4.2).

Eq. (4.1). One would not necessarily expect Eq.
(4. 6) with @, <0 and determined from a fit to ex-
perimental data to represent the asymptotic be-
havior of C,. Asymptotically C, is a linear func-
tion of C}!, at least if C, diverges; but this behav-
ior cannot be observed in the present case at ex-
perimentally accessible values of |£]. Nonethe-
less, the data can be fitted well by Eq. (4.6), and
one expects a,<0 from such a fit to data sufficient-
ly near T, if C, is finite at T,. The results for

|t] <3%1073K were fitted to Eq. (4.6). Shown in
Fig. 5 are the resulting values of a, and @), Sur-
prisingly, @, is not a monotonic function of P,,

and for P,217 bar we have o, >}, whereas for P,
S17 bar, a,<a). We shall return to this point
when we discuss the heat capacity at constant pres-
sure in terms of scaling in Sec. VC. In any event,
a,<0 and a;,<0 at all except possibly the lowest
pressure, suggesting that C, is indeed finite at T,.
At P,=1.6 bar, a, is so nearly equal to zero that
experimentally it has not been distinguished from
zero,

It would be very desirable to compare the pres-
ent results with independent measurements by
others. There have been measurements of C, of
liquid He* published by Lounasmaa and Kojo
(LK)®% but a comparison is difficult because none
of the data extend nearer T, than about 4x 107K
and most of the present results are for |T,-T|
less than that. In addition, LK do not give T, or
T,- T, but instead report the absolute temperature
to + 107K and the density to + 10™ g/cm®, The re-
sulting uncertainty in a derived T, - T is about 2
x10"*K, and any comparison for |T,- T|32x1072
K is meaningless because of this uncertainty.
Nonetheless, we compare the results of LK with
our Egs. (4.1) and (4. 2), and we expect, in the ab-
sence of inconsistencies between the LK measure-
ments and the present results, that the fractional

)

?
-0.05- é }{ § ~

ay, a'y

-0.10 L
(0]
P, [bar]
FIG. 5. Exponents @, and &, obtained when the mea-

sured C, with |T—T,(V)| =3 %10 K is fitted to a power
law.
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deviations from Egs. (4. 1) and (4. 2) of data with
IT,- T122x10°2K should extrapolate to zero at
T,. These deviations are shown in Fig. 6. Itis
apparent that the LK data can be described within
a few percent by

Cy=(-=Agln|t| +Byy) (1+at), 4.7

with a=1. 7K and A, and By, given by Eq. (4.2).
An extrapolation to small |f]| of the deviations
from Eqs. (4.1) and (4. 2) does not differ signifi-
cantly from zero. We thus conclude that there are
no inconsistencies between the LK and the present
results.

Recently, results for C, have been reported by
McCoy and Graf.?2® These data do not agree very
well with ours. They have been discussed to some
extent elsewhere,” and the reason for the discrepan-
cy is not known.

B. Pressure ngfficient (0P/OT),

The pressure coefficient was measured along the
same six isochores and for the same values of T,
- T that were used for the C, measurements, by
measuring the sample pressure change which ac-
companied the temperature change used to deter-
mine C,. These results are listed in Table I to-
gether with those for C,. As with C,, we expect
(8P/8T), to approach a finite limit, in this case
less than or equal to the slope (8P/8T), of the A
line, as T, is approached. It already was demon-
strated by Kierstead?! that in spite of this expec-

0.3 T M I
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e 0.1635 2.042
0.2 © 0.1690 1.972 _
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FIG. 6. Relative deviations of the results by Lounasmaa
and Kojo (Ref. 20) from Egs. (4.1) and (4.2). The de-
viations tend to extrapolate to zero near T, where Eqs.
(4.1) and. (4.2) apply, implying consistency with the pres-
ent results.

tation (8P/8T), is well approximated over a wide
experimentally accessible range of T\ - T by a
linear function of In| Ty - T|. This is similar to
our observation for C,.

Rather than analyzing (8 P/87), independently as
a function of 7, - T in a manner similar to the
analysis given above for C,, we shall consider
(8P/87), as a function of C,. From the total dif-
ferential

dS=(8S/8V)pdV+(8S/87T),dT 4.8)
we obtain'®?-# with the aid of a Maxwell relation

and after some rearrangement one of the so-called
Pippard-Buckingham-Fairbank (PBF) relations

C,/T=(3s/aT), - (aV/a7T),(6P/07T), . 4.9)

Equation (4.9) is valid along any experimental path,
and in general the derivatives at constant ¢ will be
functions of ¢, Along isochores, however, (8V/
87T), is constant and equal to (8 V/87),. The deriva-
tive (35/8T), must approach a finite value (85/97),
as ¢ vanishes, except in principle possibly at iso-
lated singular points on the X line, in order for the
entropy to be finite along the X line. Thus, for
sufficiently small values of ¢, (85/87), may be re-
garded as constant and equal to (8S/87),. Then
C,/ T is a linear function of (9P/87),. Further-
more, we emphasize that C,/T is the same linear
function of (3P/dT), on the two sides of the transi-
tion, since the parameters (85/87), and (3V/87),
are properties of the X line only and do not depend
upon whether 7, is approached from above or be-
low. For this reason, a comparison of C, with
(8P/87T), provides a valuable test of the thermo-
dynamic consistency of measurements in the two
phases. In Fig. 7 we show (8P/87), as a function
of C,/ T for the six isochores. The measurements
for Hel are given as open circles, and those for
HeIl as solid circles. It is apparent that all data
on a given isochore can be represented within the
scatter by the same straight line for HeI and Hell,
provided | T— T,| $5%103K. We regard this as an
important confirmation of the thermodynamic con-
sistency of all the measurements, and particularly
of the measurements above and below the transi-
tion. In order to demonstrate in more detail the
thermodynamic consistency of the data, we have
chosen the isochore V=22.60 cm®/mole, and ob-
tained

(8s/97),=C,/T+(8V/87),(8P/57T), (4.10)

from each pair of data and the least-squares value
of (8V/87T),. This derivative is shown as a func-
tion of log,el 7, - 7| in Fig. 8. Again it is apparent
that for small 7, — T the same value is obtained in
Hel and He II for (8S/87),.
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FIG. 7. Pressure coefficient
(8P/9T),, as a function of C,/T for
the six isochores. Open circles:
Hel; closed circles: HeIl. The
numbers near the straight lines
through the data are the molar
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See Eq. (4.9).
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C. Entropy, and Its Temperature Derivative at Constant T — T

For many thermodynamic manipulations it is
useful to know certain derivatives at constant ¢= T
— T,. These derivatives may be regarded to be
constant when ¢ is sufficiently small; but it is dif-
ficult to estimate without a detailed calculation the
maximum value of ¢ at which the temperature de-
pendence of the derivatives at constant ¢ contributes
negligibly to a given calculation. It has been
shown,?® for example, that the dependence upon ¢# of
(6 V/8P), at saturated vapor pressure is noticeable
in a comparison of sound velocity® and C, (Ref. 1)
measurements when ¢ 10-*K. On the other hand,
our (8P/87), and C, measurements in Fig. 7 do not
reveal the ¢ dependence of (35/97); until £2 5x10-3
K. Thus, in general it is desirable in thermody-
namic calculations to take the temperature depen-
dence of the derivatives at constant ¢ into consid-
eration, if only to determine whether or not they
are appreciable, We already have shown else-
where?s that this temperature dependence can be
calculated from the heat capacity and its deriva-
tive parallel to the A line. For the sound velocity,?
this calculation yielded? accurately the correction
to the asymptotic linearity of the velocity in C,‘l.
With the present results we have yet another oppor-
tunity to test the reliability of this type of calcula-
tion; for a combination of C, and (8P/8T), accord-
ing to Eq. (4.10) yields directly an experimental
value of (85/87),. The temperature dependence of
this derivative can be compared with that calculated
from C, and properties of the A line alone. For
this purpose, we write the heat capacity along the
experimental path in question as

C=-Aln|¢t| + B+DtIn|¢| + Et+ Ft? . (4.11)

In the present case, this path is of course an iso-
chore, and C=C,, A=A4,,, etc. One obtains for
the entropy

S=8,+ T;! [~ Atln|¢t| + (A + B)t+ 2D+ A/ T,)¢%1n| t|
+i2E-2B/T,~-D-A/T)t?], t=T-T, (4.12)

where terms of higher order are omitted. Differ-
entiating at constant ¢,

(3949, 2422 e
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FIG. 8. Values of (8S/8T), deduced from the measured
C, and (8P/87T),, Eq. (4.10), and the least-squares value
of (9V/97), (see text). Open circles: Hel; solid circles:
HeII. In order to be thermodynamically consistent, the
data for both phases must yield the same (8S/97T), for
small |T\—-TI.
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FIG. 9. Dependence of (8S/9T), upon ¢{. The points
are from Eq. (4.10) and the measured C, and (8P/97T),.
The solid line is calculated from Egs. (4.2) and (4.13).

which, witb the definitions of A, B, and f used in
Eq. (4.11) above, is consistent with Eq. (16) of
Ref. 25.

For most of the present isochores, measure-
ments were not made for sufficiently large ¢ to re-
veal the dependence upon ¢ of (8S/87),. However,
for 26.81 cm’/mole, measurements extend to suf-
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TABLE IV. Experimental values of (8S/9T), and (8V/8T),
as a function of the measured P,.

P, (88/987T), Qv/a7),
(bar) (J mole'K-?) (cm®mole-K™)

1.646 8.61 34,01

7.328 5.51 18.45
15.03 3.79 11,03
18.18 3.38 9.27
22,53 3.17 7.46
25,87 2,91 6.30

ficiently large |#| for both phases to reveal this
dependence, and we show in Fig. 9 as individual
symbols the experimental values for (85/87), ob-
tained from C,, (8P/d7),, and Eq. (4.10). The
solid line gives the result based on Eqs. (4.13) and
(4.2). Itis apparent that the agreement is very
satisfactory. On the basis of this, and the work in
Ref. 25, we feel that we can calculate reliably the
temperature dependence of derivatives at constant
t in cases where independent experimental verifi-
cation is not possible. In particular, errors from
this source in the calculation of C, from C, (Sec.
IV F) are negligible.

D. Entropy and Volume Derivatives along the A Line

It is apparent from the discussion of Sec. IVB
and Eqs. (4.9) and (4. 13) that simultaneous mea-
surements of (9P/87), and C, near T, will yield
information about the derivatives (8 V/57), and
(8s/a T),. These derivatives are extremely useful

FIG. 10. Comparison of (8p/987),
derived from the measured C, and
(0P/8T), with more direct measure-
ments from Ref, 17.
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FIG. 11. Deviations of (8p/97), from smooth functions
f(Ty)). Top: f(T,) from Ref. 17. Bottom: f(T)) given by
Eq. (4.19). Open symbols are data from Ref. 17. Solid
symbols are from this work.

in many thermodynamic calculations near T,, and
they will be needed later (see Sec. IV F) in the de-
termination of C, from C,. We made use of the
fact that along isochores (8V/87T),=(8V/87T),, and
fitted the measured C, and (9P/67), to Egs. (4.9)
and (4.13) by a least-squares method. This yielded
the values” listed in Table IV for the derivatives
along the X line. We estimate that errors in (8 V/
87T), are no greater than 1%, and those in (35/87),
do not exceed 0. 1J mole-'K2,

The new results for (8 V/87), can be compared
with direct measurements by Kierstead,!” who de-
termined (8p/87),, where p is the density. We
have calculated (8p/87T), from our (8V/87), using
the relation (8p/7), = - (4.002/V?) (8V/37), and
Kierstead’s V, (see Table I) at our measured P,.
The results are shown in Fig. 10 as solid circles.
Also shown as open circles are Kierstead’s mea-
sured values. Clearly, the agreement is quite
good. In order to obtain greater resolution, the
deviations of the data from Kierstead’s equation
for (8p/aT), are shown in the top half of Fig. 11.
Although our data appear to differ from the equa-
tion systematically, the differences generally are
within 1% of (8p/87),. This good agreement im-
plies a high degree of thermodynamic consistency
between the current results and those of Ref. 17.
It strengthens our confidence in the reliability of
the values for (8S/87),, which cannot be compared
with equally or more precise independent measure-
ments.

In Fig. 12 (85/87), is presented graphically as
a function of V,. One finds that (85/87), as a
function of V, exhibits far less curvature than it
does as a function of P, or 7,. Also shown in Fig.
12 is the result at SVP deduced®® from the mea-
sured isentropic sound velocity,? the heat capacity
at constant pressure,! and a thermodynamic rela-
tion similar to Eq. (4.9). All seven points can be
represented, well within the expected error of
0.1 Jmole-K-? by the equation

(85/8T),= A+ B(Vyg = V3) + C(Vyg = V)2 + D(Vyo = V,)*
(4.14)

with
A=10.24, B=-3.042,

€=0.3942, D=-0.01619 . (4.15)

Here V,o=27.383 cm?® is the molar volume at sat-
urated vapor pressure, the units of V,q~ V, are
in cm®mole, and those of (85/87), are in
J mole-'K"2,

A search for an empricial relation between (85/
87), and T, yielded

(85/0T),=Ae*+B, €,=(Ty—T,\)/ Ty (4.16)
which, with
x=1,380, T,=2.260,
(4.17)

A=0.0938, B=1.97,

represents the data within the estimated errors.
Equation (4.16) is readily integrated, and in con-
junction with the calorimetric entropy at SVP 2627
S,0=6.24 Jmole'K"!, yields the data in Table V
for the entropy and its derivatives.

Possible errors in S, and (85/67), are about 1%,
and (8%25/8T?), may be in error by as much as 10%.
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FIG. 12. Derivative (8S/8T), as a function of V,. The
solid square is obtained in Ref. 25 from the measurements
of Ref, 24,



8 THERMODYNAMICS AND EXPERIMENTAL TESTS OF STATIC... 5417

TABLE V. Smoothed values of the entropy and its first
two temperature derivatives at T).

T, S, (88/97), (o%s/9T,
(K) (Imole”'K!)  (Imole-'K?) (3 mole™'K™3)
2,172 6.24 10.24 129
2.17 6.22 9.99 123
2.16 6.12 8.90 96
2.14 5.96 7.36 62
2.12 5.83 6.33 43
2.10 5.71 5.00 31
2.05 5.46 4.46 16.4
2.00 5.25 3.83 9.8
1.95 5,07 3.42 6.5
1.90 4,91 3.16 4.5
1.85 4.76 2,96 3.3
1.80 4.61 2.82 2.5
1.76 4.50 2.73 2.1

In Fig. 13 the entropy S, computed from Eq.
(4.16) is compared with calorimetric entropy
data.?"?® The agreement is quite good, and within
combined possible errors.

It has been notoriously difficult in the past to find
suitable empirical functions for the representation
of derivatives along the X line. Particularly near
vapor pressure, derivatives with respect to T, tend
to vary rapidly although they remain finite and non-
zero.'"# In order to represent this behavior,
Kierstead!” used an empirical function with six pa-
rameters to represent (3p/87),. The success of
Eq. (4.16) for fitting (85/8 T), with a much smaller
number of parameters suggested that similar sim-
ple functional forms might also be useful to repre-
sent other derivatives along the A line. The re-
sults by Kierstead!” and our own values for (3p/
97),, yielded the parameters

T,=2.194 K, x=0.383,

A=-0,05020 (4.18)

for the function

(8p/0T),=Ale -1), €=(Ty—T)/Ty. (4.19)

The standard deviation of the data from Eqs. (4.18)
and (4.19) was only 1.0x10"° gecm=K-!, which is
slightly smaller than but not appreciably different
from the standard deviation obtained with Kier-
stead’s six-parameter equation. In the bottom
half of Fig. 11, the deviations from Egs. (4.18)
and (4.19) are shown, and they are seen to be rea-
‘sonably random They can be compared readily
with the deviations from Kierstead’s six-parameter
equation, which are shown in the top half of Fig.
11. It is apparent that Eqs. (4.18) and (4. 19) are
an equally good representation of the data.

We have not yet found an equally simple form for
(8P/8T), which fits the measurements'™?® within

the scatter. However, (8p/8P),, which may be ob-
tained from the measured (6P/97), and Egs. (4.18)
and (4. 19), can be represented quite well by

(8p/8P),=A€;*+B, €,=(Ty-T)/Ty, (4.20)
with parameters

A=3.975x10"*, B=0.118x10"*,

Ty=2.206 K, x=0.403 .

One can readily compute (8P/3T), from Egs.

(4.19) and (4.20), but the fit to the measurements'’
is not quite as good as that obtained with Kier-
stead’s six-parameter equation. For T,22.05 K,
deviations of the measured (8 P/87), from Eqgs.
(4.19) and (4. 20) appear random. At 7,=1.95 and
1.77 K the calculated value seems 0. 6% low and
1.0% high, respectively.

(4.21)

E. Comparison with Other Results for (3P/dT),

Equations (4.1) and (4. 2) enable us to calculate
C, to within about 1% on any isochore over the ex-
istence range of the liquid, provided 10#<1¢1 <5
x10"% K, In addition, if we also use Eq. (4.9), we
can obtain an approximate closed form expression
for (0P/8T), which we estimate to be valid to about
+2% over the same range of |¢|. Specifically, we
shall write

(8P/8T),=aln|t| +b, t=T-T\(V) (4.22)
with

a=Aq, /[T(OV/8T),], 4.23)

b=-[B,,,/T-(85/57),]/(8V/5T), (4.24)

for Hel, and similarly with primed coefficients
for Hell. Here we have used the approximation
(8S8/97),=(85/87),, which was demonstrated in
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FIG. 13. Comparison of the entropy along the A line
derived from this work with calorimetric entropies at
T,. Ovencircles: Ref. 28; solid circles: Ref. 27.
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Sec. IVC and Fig. 7 to be valid within the re-
quited precision over the range of ¢ under consid-
eration. We obtain (8 V/387), from Ref. 17 or Eq.
(4.19) and (85/87), from Eq. (4.16).

Now it is possible to compare the present results
with measurements by others of (8P/87T), near T,
along any isochore. Sufficiently near 7, such mea-
surements were made by Kierstead,?! and by Lou-
nasmaa.¥® The values of a, b, a’, and b’ corre-
sponding [in units which yield (8P/37), in bar K-!]
to the coefficients given by the original authors,
are compared with the ones based on the present
work in Table VI. At 13.2 bar the coefficients of
Lounasmaa appear to differ considerably from the
present ones; however, either set of coefficients
fits the data in Ref. 30 within the scatter for 10-°
<1 <107'K, except possibly for Hell and |¢|
510"*K, where deviations from Eq. (4.22) with
coefficients from this work appear slightly sys-
tematic. At 30 bar, the coefficients based on
Kierstead’s work are in good agreement with the
present work, and of course the predicted values
of (8P/87T), based on either set of coefficients is
in excellent agreement with the data. We note
here that Kierstead’s coefficients yield a/a’
=2.117, and the present work, extrapolated to 30
bar, gives a/a’ =2.083, differing by only 0. 034,
or 1.6% of a/a’. This agreement in the amplitudes
will be important in Sec. V, when we discuss the
heat capacity at constant pressure in terms of
scaling predictions.

F. Heat Capacity at Constant Pressure C,
1. Cp along Isochores

In order to calculate C, from C,, we write the
thermodynamic relation between these two quanti-
ties in the form

oP\? (aV
C,—Cu——T<aT)v (SP)T.

We take (8P/9 T),, from our direct measurements,
and write (9 V/8P), in terms of thermodynamic
parameters of the X line and C,. Equation (4. 25)
can then be solved for C,. We prefer this approach
to using the relation C, - C,= T(8P/37),(8 V/9T)p,
which is formally equivalent to Eq. (4.25), because

(4.25)

TABLE VI. Comparison of parameters for (9P/87T),
from this work with measurements by others.

Source Py Hel He Il
(bars) a b a’ b’
Ref. 30 13.21 1.50 3.55 1.01 -6.08
This work 13.21 1.653 4.662 1,267 —4.308
Ref. 21 29.95 3.301 9.12 1.559 —14.40
This work 29.95 3.241 9.035 1.556 —13,62

(8 V/8P),, although divergent at 7,, varies little
over the experimental temperature range and is
nearly equal to (9 V/8P),,which is known with high
precision. On the other hand, (9V/87), changes
considerably over the range of T- T, of interest,
and small systematic errors in (3 V/87T), could
have a larger effect upon the ¢ dependence of C,
than similar errors in (8 V/8P),. We use the rela-
tion?

avV\ _ [aT¥ 35\ [oT vV
T(aP)f } <8P>, G T<8P>t (aP)t ' T(8P>t ‘
4.26)

where ¢=T,(V)- 7. This and Eq. (4.25) yield

R N RCACN]
- () @)

Aside from C,, the major contribution to the de-
pendence upon ¢ in Eq. (4.27) for C, comes from
(8P/87),. It is therefore particularly important
that the best and most consistent available values
be used for this quantity. It was mentioned in

Sec. III B that the random errors in (3P/87), tend
to be somewhat larger than those in C,. In addi-
tion, values of (8P/87T), were not obtained for every
value of C, (see Table II). For these reasons, the
least-squares parameters for (35/97), and (8 V/

9 7), obtained for a given isochore (see Table IV)
were used along that isochore to calculate (3P/87),
from the measure C, [Eq. (4.9) and Eq. (4.13)].
When in the course of this analysis the value of
(05/87T), in Eq. (4.9) was approximated by (85/67),
instead of using Eq. (4.13), the resulting values of
C, differed from the correct value by no more than
0.6% for |¢#1 £10°2K. Therefore (8P/37), could be
expressed sufficiently accurately by Eqs. (4.9)

and (4.13), and this smoothing procedure eliminated
unnecessary scatter due to the lesser precision

of (P/67T), from the final values of C,. Possible
systematic errors in C, will be investigated later
(see Sec. V B) by varying the parameters of the A
line within permitted ranges. It now remains to
evaluate those contributions to Eq. (4.27) which
depend only very mildly upon ¢.

An expression for (85/8T), in terms of measured
quantities already has been discussed in Sec. IVC,
and is given by Eq. (4.13). Along isochores (8 V/
8T),=(8V/a7),, and (6V/87), is available either
from the present measurements [Sec. IV D and Eq.
(4.19)] or from independent determinations.!? It
remains only to obtain (8 7/8P), before C, can be
evaluated. For this purpose, we first solve Eq.
(4.9) for (8P/57),, use Eq. (4.13) for (85/37),,

(4.27)
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and integrate along an isochore to obtain P as a
function of £, One gets, to order #In|¢| and ¢,

P=P,+(35/0V),t-(8T/3V),(S-S,), (4.28)

where Eq. (4.12) gives the necessary S—- S,. Dif-
ferentiation at constant ¢ yields

8P\ (8P 9% ( 82T)
(aT),-<8T),.+(8V8T>,‘t_ sver), S=S)

ENGREN

- av)x [ aT)t— 8T/Hh] ’
which may be evaluated with the aid of Eqs. (4.12)
and (4.13). Now all contributions to Eq. (4.27)
are expressed to order ¢ and #In|#| in terms of
measured quantities, and C, can be evaluated.

As pointed out in Sec. IVC, we have consider-
able faith in our ability to calculate the dependence
upon T- T, of such quantities as (87/9P), [i.e.,
Eq. (4.29)], because of the success of such calcu-
lations to order ¢ and £In|¢| in predicting® the
isentropic sound velocity from C,, and because of
the comparison with direct measurements of (8S/
87), in Fig. 9 of this paper. Nonetheless, it is
difficult to estimate the size of possible systema-
tic errors in a particular case like, for example,
Egs. (4.27) and (4.29). For this reason, C, was
calculated also in the approximation that (9 7/9P),
and (85/97), in Eq. (4.27) are independent of ¢ and
equal to their values at 7,. This approximation to
C, never differed from the exact expression by
more than 0.5% for |#| <3x10%K. Since the ef-
fect upon C, of the dependence upon ¢ of (87/8P),
and (85/87), is so small, it is clear that there is
no appreciable contribution to the errors of C,
from this source.

(4.29)

2. C, along Isobars

Although we have obtained in the previous section
values of C,, these values are still along the ex-
perimental path, i.e., essentially along an iso-
chore. Along isochores, the pressure varies in
accordance with Eq. (4.28). The transition tem-
perature T,(P), when regarded as a function of
pressure, may be considered as a variable along
this path, and is different from 7,(V), i.e., from
the transition temperature at the volume of the
isochore. When we wish to express C, as a func-
tion of T— 7,, we therefore shall have to make a
choice of whether we wish to consider C, as a func-
tion of 7— 7,(V), which we have at present, or as
a function of 7- 7,(P), which we can calculate
from available thermodynamic information. Since
it appears more consistent to regard an isobar as
a “natural” path for the heat capacity at constant
pressure, we shall compute C, along isobars from
our known C, along isochores. For this purpose

we define

6=T-T,(P), t=T-T,(V) (4. 30)

for every point on our isochore. The difference
between 6 and ¢ is illustrated schematically in
Fig. 14. We shall carry out the computation of C,
along isobars in two steps. First, we compute
from {. This is easily done, for we already know
the pressure along isochores from Eq. (4. 28).
Now

6=t+(P-P,)(87T/5P), . (4.31)

Equation (4. 31) is valid as long as the A line may
be regarded as locally linear. Since |P- P, |
never exceeds a few tenths of a bar, this is true
for all practical purposes. We now know the de-
sired “distance” along the temperature axis from
the X line. However, we still do not in principle
have C, along isobars, for all values of C, still
have to be adjusted to some constant pressure, say
P, for our isochore, along a path of constant 6.
This second correction is numerically small, and
easy to apply. It is illustrated in Fig. 14 by the
dashed arrow from the experimental point 1 to the
desired point 2. We first neglect the correction
and obtain an approximate functional form for
C,(6, P). Then we use this function to calculate
(8C, /8P),, and obtain

C,(6, )= G,(6, P)+ (P, - P)(8C, /3P),, (4.32)

where again P - P, is given by Eq. (4.28). The
resulting values of C,(9, P,) and 6 are listed in
Table II.

The difference between C,(6, P) and C,(6, P,),
given by Eq. (4.32), always is very small (less

I

p 8
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\ V=VX
e——— t ——=

T

FIG. 14. Schematic representation of an isochore and
an isobar near the A line which demonstrates the con-
version of ¢ to 6 and C,(6, P) to C,(9, P,) as discussed in
the text.
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than 0. 5% even well away from T,L) and therefore
can be calculated sufficiently accurately to cause
negligible errors. However, the difference be-
tween ¢ and 0, given by Eq. (4.31), becomes large
at the higher pressures, and #/6 for some of our
data is as big as 1.6. More detailed values of #/6
can be obtained readily from Table II. Although
we estimate that errors in this ratio are never
larger than about +0.01, it is not immediately
obvious whether or not appreciable errors may
arise from this source in derived parameters.
Therefore we shall return to this point later in the
paper when the scaling parameters which describe
C, are discussed (see Sec. V B).

G. Heat Capacity at Constant Chemical Potential C,,

Since it is not entirely clear which temperature
derivative of the entropy should be examined for
its asymptotic behavior and compared with scaling
theory,"" we will consider in this section the heat
capacity at constant chemical potential

C,=T7(35/87), . (4.33)

It has been observed® that, although C, may in
some sense be more fundamental than C,, for the
A transition “all singularities will be unchanged,
however, if the experiments are done at constant
pressure.” We will examine explicitly the relation
between C, and C,, and assure ourselves that the
difference between them may indeed be ignored
for our purposes. We have at constant u from the
total differential of S(P, T) and with the aid of the
Maxwell relation (85/9P),=— (8 V/87T)p,

C.=C,—-T(aV/8T)p(6P/37T), . (4.34)

Now, since (8P/97T), =~ (8 p/9T)p/(81/3P)r=5/V,
we obtain

C,.=C,—(TS/V)(8V/3T), . (4.35)
We can express (8 V/87T), in terms of C,, and have
T(8V/87),= (8 T/0P),C, — T(8S/8P), . (4. 36)

Remembering that on anisobar (8 7/8P),=(87/2P),,
we can now write Eq. (4. 35) as

C,=[1-(s/W(e1/3P),]C, +(ST/V)(8S/8P), .
(4.37)

Since all quantities except C, on the right of Eq.
(4. 37) are finite at 7,, it is obvious that C, has
indeed the same asymptotic singularity as C,. It
only remains to examine the size of possible dif-
ferences in higher-order contributions, which, if
they are too large, might confuse the analysis of
experimental data for the asymptotic behavior.
For this purpose, we first examine the term
(S/V) (8T/5P),. Although both the entropy and the

| oo

volume on an isobar depend upon 6, this depen-
dence is mild, and we shall examine the size of this
correction at 7,. We have (S,/V,) (6 7/8P),=0.02
at vapor pressure and 0.04 at the solidification
pressure, Since this term is small compared to
unity, it is clear from Eq. (4.37) that it yields no
large higher-order contributions to C, from the
leading term in C, and the 8 dependence of S/ V.
Next we examine the last term in Eq. (4.37).
Every contribution to this term depends upon 6,
but is finite at 7,. Again we find that at 6~10-*K
this term contributes 1 or 2% to C,,, and it cannot
yield any large higher-order terms. We therefore
conclude that the asymptotic behavior of C, is the
same as that of C,, and that higher-order terms,
although in principle different, are of the same
magnitude for C, along an isobar as they are for
C, along an isobar.

Finally we consider the possibility that there is
an appreciable difference in higher-order contribu-
tions to C, along different thermodynamic paths.
In principle, one might regard C, along a path of
constant chemical potential as the most fundamen-
tal quantity. One has (81/87)p =~ S, and thus,
along an isobar,

pein== [y SdT'z-0s, (4.38)

and therefore, as in the derivation of 6 from ¢ in
Sec. IVF2,

0,=0,+0p5(8T/0p), . (4.39)
Now (87/0u),=[- S+ V(sP/3T),]", and
0,=6,{1-8/[s, - V(eP/aT),]} . (4.40)

Here 9, = T- T)(n), and 6,= T— T,(P). We find
that 11-6,/6,1£0.02, and virtually independent
of ,. Thus, no large higher-order terms can
arise from the path dependence of C,.

H. Thermodynamics on Isobars
1. Equations for C,

In order to facilitate thermodynamic calcula-
tions, it is convenient to have an expression for
C, along isobars in closed form. It has been
shown for the results at vapor pressure’? that the
function

C,=—A0€1n|€|+BOE+D0¢<1n|<|+EoE< (4.41)

or
Cp=—AgsIn| 6| + Byg+ Do In| 8] + Egpf , (4. 42)

with €=6/T,=(T - T,)/ T,, fits those measure-
ments extremely well over a considerable range
of € or 8. This function was used for the present
results, and so far as possible the pressure de-
pendence of the coefficients was determined. The
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equations
Ag.=5.102 - 0.05652P, +9. 643 x10"P? ,
By =15.57 - 0.3601P, +4.505x10-P?
Dg.=-14.5+6.119P, ,
Ey.=69.0+19.08P, ,
Age=5.357 - 0.03465P, + 8.447x10*P2 |
By, =-"17.75-0.362P, - 4.535X10"4P?,
Do, =14.5-6.203P, ,
Ey. =103 - 16. 55P, ,

(4.43)

with P, in bars yield C, in J mole’K -}, and in con-
junction with Eq. (4.41) are a good description of
all the measurements. Deviations of most of the
data from these equations in percent are shown in
Fig. 15 for HeI and in Fig. 16 for HeI. Although
these equations clearly are suitable to represent
C, in thermodynamic calculations, we caution the
reader that no excessive theoretical significance
should be attached to the functional form of Eq.
(4.41) or the values given by Eq. (4.43) for the
coefficients; for Eqs. (4.41) and (4.43) are by no
means unique, and many other forms could con-
ceivably represent the data equally well. We shall
discuss this matter in detail in Sec. V.
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FIG. 15. Deviations in percent of C, for HeI along iso-

bars from the reference equation, Eq. (4.41), with the
least-squares adjusted coefficients given by Eq. (4.43).

Equation (4. 41) gives C, as a function of €. Al-
though this is convenient in many respects, we
shall carry out our thermodynamic calculations in
terms of = T—- T, = T, and make extensive use of
Eq. (4.42). The coefficients of Eq. (4.42) are
given in terms of those for Eq. (4.41) by

Ago=Age (4.44)
Byg= Bye + Aq In(T)) , (4. 45)
Dyo=Doe/ Ty (4. 46)
Eg9=[Eqe = Doe In(T) 1/ Ty, (4. 47)

for Hel, and by the same relations between primed
coefficients for Hell.

2. Other Thermodynamic Functions

The thermal expansion coefficient « is readily
obtained from C, by the technique already employed
in Sec. IV B to derive Eq. (4.9). One has

(59,6969 %
8T Jp ap),\oaT/, \oP), T *
Here we have used the fact that on isobars (87/
8P),=(87/8P),. Since Eq. (4.42) for C, has the
same form as Eq. (4.11), it is clear that Eq.

(4. 12) for the entropy and Eq. (4.13) for (85/67),
may be used along isobars as well, provided ¢ is

(4. 48)
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FIG. 16. Deviations in percent of C, for He II along
isobars from the reference equation, Eq. (4.41), with
the least-squares adjusted coefficients given by Eq. (4.43).
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TABLE VII. Thermodynamic properties of He? on isobars near the superfluid transition.
a K G o K Cy
logyol 01 K™ (bar!)  (J mole”'K™) v logyol 0| (K™ (ar) (I mole! K1) ¥
He II, 0.05 bar HeIl, 15.0 bar
-5 -0.0836 0.0150 78.2 1.0368 -5 -0,1648 0.00842 65.7 1.307
-4 -0.0661 0.0148 66.5 1.0271 -4 -0.1356 0.00802 55.5 1.247
-3 —0.0486 0.0146 54,6 1.0178 -3 -0.1068 0.00763 45.3 1,188
-2 =0.0311 0.0144 42.3 1.0095 -2 ~0.0787 0.00723 35.1 1.131
Hel, 0.05 bar Hel, 15.0 bar
-5 - 0.0535 0.0147 58.0 1.0203 -5 ~0.1147 0.00774 48,1 1.203
-4 -0,0351 0.0145 45.7 1.0111 -4 -0.0819 0.00730 36.5 1,137
-3 -0.0165 0.0144 33.4 1.0034 -3 —0.0496 0.00685 25,1 1.073
-2 +0,00251 0.0142 21.2 1.0001 -2 -0,0193 0.00645 14.7 1.0192
HeIl, 5.0 bar He I, 20.0 bar
-5 -0.1205 0.01098 73.3 1.110 -5 -0,1870 0.00811 63.2 1.441
-4 -0.0980 0.01073 62.1 1.086 -4 -0.1541 0.00762 53.2 1.356
-3 -0.0756 0.01047 51.0 1,062 -3 -0.1216 0.00714 43.3 1.273
-2 -0.0532 0.01019 39.5 1.040 -2 -0.0904 0.00665 33.7 1,195
Hel, 5.0 bar Hel, 20.0 bar
-5 -0.0821 0.01055 54.3 1.069 -5 -0.1294 0.00726 45.7 1.293
-4 -0.0579 0.01028 42,3 1.044 -4 -0,0917 0.00700 34.2 1.197
-3 -0.0337 0.01002 30.4 1.0209 -3 - 0.0546 0.00615 23.0 1.105
-2 -0.0096 0.00977 18.8 1.0028 -2 -0,0210 0.00566 13.0 1.028
HeIl, 10.0 bar HeIl, 25.0 bar
-5 —0.1440 0.00924 69.1 1.199 -5 -0,2149 0.00823 61.4 1.622
-4 -0.1182 0.00892 58.4 1.159 -4 -0.1771 0.00762 51.6 1.503
-3 -0.0925 0.00860 47.8 1.119 -3 —0.1400 0.00702 41.9 1.388
-2 -0.0672 0.00826 37.0 1.0811 -2 -0.1049 0.00642 32.7 1.280
Hel, 10.0 bar Hel, 25.0 bar
-5 -0.0999 0.00870 50.9 1.1303 -5 -0,1471 0.00714 43.8 1.410
-4 -0.0716 0.00835 39.2 1.0869 -4 -0.1029 0.00642 32.3 1.273
-3 -0.0433 0.00800 27.6 1.0455 -3 -0.0598 0.00573 21.1 1.142
-2 -0,0161 0.00767 16.6 1.0105 -2 -0.0220 0.00513 11.4 1.036

replaced by 6, and provided the coefficients given
by Egs. (4.43)-(4.47) are used. In order to ob-
tain o= V-8 V/8T),, one needs to integrate Eq.
(4.48) to obtain V. One has

V=V,+(0T/0P), (S-S, - [ (85/5T),. d6’) ,
° (4. 49)

which to order 6 and 61n| 6| yields, with Eqgs.
(4.12) and (4.13),

V=V, - T;Y9T/3P),Ags01n| 06|

—(87/9P), [(85/08T), — T (Agp+ Boo)16 -
(4. 50)

For the compressibility k= -V~1(3V/aP), we have®

- (), [(39),:(9), (2).-(32).4]
(4.51)

Equations (4.13) and (4. 50) give (85/87T), and V.
It remains to obtain (8V/87T),. This can be done by
differentiation of Eq. (4.50), and yields

(8V/8T),=(8V/8T), + (8*T/ 8P8T), [S— Sy~ (8S/8T),6]
+(8T/ aP),[(8S/8T), - (8S/8T), - (82S/8T?),6].
(4.52)

Equation (4. 52) can be evaluated with the aid of
Egs. (4.12), (4.13), and (4. 43)-(4. 47).

The ratio y=C,/C, is of considerable interest,
and can now be easily calculated. Since C, is finite
at T) and C, may diverge, Y may diverge also at
T\. However, Y varies only slowly in accessible
ranges of 6, and at vapor pressure it does not
differ much from its minimum value of unity at
any accessible 0. At pressures of about 25 bar y
becomes as large as 1.6 for 6= 10"°K. One can
calculate ¥ from the relation

C,-C,=0®VT/k, (4.53)
which yields
y=(1-a?VT/xC,)™. (4.54)

Expressions for a, V, and « are given above in
this section.
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The calculation of the isentropic sound velocity
u has been discussed in detail in Ref. 25. This
thermodynamic velocity is useful because a com-
parison with velocities measured at low frequen-
cies provides a thermodynamic consistency test
between two rather different experiments, and be-
cause comparison with measurements at higher
frequencies yields the dispersion in the velocity.
The value u, of # at T, can be obtained from?®

w2 = V3E[(aT/9P),(8S/oP), - (8V/8P),]. (4.55)
At all T, one has
u=yV/k. (4. 56)

Equations (4.55) and (4. 56) may be comhined to
yield # — u,. Alternately, the more complicated
Eqgs. (7) or (13) in Ref. 25 may be used, but yield
essentially the same result.

Table VII contains values of a, «, C,, and y for
log,,l 0| equal to -5, -4, -3, and -2 at 5-bar
intervals for SVP <P <25 bar. These results are
calculated from the relations given in this section,
and Eqgs. (4.41) and (4.43) for C,. At constant P,
linear interpolation in logwl 6| introduces negligi -
ble errors. At constant |0|, graphic interpolation
in P is perhaps the best procedure. Possible
errors in the calculated values of @, k, C,, and
¥ -1 are expected not to exceed 2%.

Table VIII contains values of %, and ¥ —u,. Er-
rors in both quantities probably do not exceed 2 or

3%.

TABLE VII. Isentropic velocity of sound on isobars
near the superfluid transition. Units are bar, K, and
cm sec™l,

Py
Uy, 5,00 10.00 15.00 20.00 25.00
logy 16| 25480 28260 30400 32070 33330
u —u, for He II
-6.0 63.1 64.5 68.9 76.2 85.5
-5.5 67.6 69.2 74.0 81.9 91.9
-5.0 72.9 74.6 79.9 88.6 99.5
—-4.5 79.1 81.1 87.0 96.5 108.7
-4.0 86.8 89.2 95.8 106.6 120.3
-3.5 97.0 99.9 107.8 120.3 136.5
-3.0 112.2 116.1 126.0 141.6 162.2
-2.5 139.0 144.8 158.,8 180.6 210.6
-2.0 195.4 205.2 229.1 265.3 318.5
u —uy for Hel

-6.0 80.5 82.2 87.9 97.7 110.2
-5.5 88.6 90.7 97.4 108.6 123.1
-5,0 98.4 101.2 109.1 122,2 139.4
-4.,5 110.5 114.3 124.0 139.8 160.4
-4.0 125.9 131.1 143.,2 162.8 188.4
-3.5 145.8 153.1 169.0 194.1 227.4
-3.0 172.3 183.1 204.8 238.8 284.2
-2.5 208.8 225.8 257.4 306.4 372.9
-2.0 263.2 292.,8 342.9 419.1 523.2
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J. Comparison with Other Results for He*

In addition to the internal consistency of our C,
and (3P/3T), results which was discussed in Sec.
IVB and demonstrated in Fig. 7, it was already
shown in Secs. IVA, IVD, and IVE that the mea-
surements reported here are thermodynamically
consistent within combined errors with independent
measurements of (8P/97), (Refs. 21 and 30), of
C, (Ref. 20), of (aV/aT), (Ref. 17), and of §,.27'2®
The present results for C, join smoothly with the
previously reported!’? data at vapor pressure which
in turn agree! within allowed combined errors with
previous measurements. In addition, there have
been measurements by Kierstead®! and by Grilly®
of k along isotherms, by Elwell and Meyer33:3 of
a along isobars, and recently by McCoy and Graf?®
of C, along isochores with which the present work
might be compared. Further, very recent results
on the scattering of light by liquid helium®=%" can
be compared with k and y— 1 in Table VII.

At the highest pressures, the compressibility
measurements by Grilly*? suggest a roughly loga-
rithmic divergence of k, but they do not extend
sufficiently near T, and are not sufficiently precise
to yield quantitative information about the param -
eters of the logarithmic functional form. In par-
ticular, the amplitudes, which are of theoretical
interest (see Sec. V), cannot be determined very
precisely. The data are, however, generally con-
sistent within about 5% with the values quoted in
Table VII.

The compressibility measurements by Kierstead®!
are along the isotherm which meets the X line at
29.95 bar and 1,7683 K. This is beyond the pres-
sure range of the current experiments. The results
are shown in Fig. 17 as a function of log,o| P, - PI.
At the top of the figure the distance | T,(P)- T!
=— | P,—- Pl (8T/8P), from T, along isobars is shown
as well. The data are for small P, - P, and can
reasonably be expected to reveal the asymptotic
behavior. They are consistent with a logarithmic
divergence. The best straight lines through the
data yield an amplitude ratio Ay/Aj=1.16 >1. This
ratio of the amplitudes is consistent with our C,
results, but we do not consider it justified to make
a more detailed comparison because our data are
for P=26 bar, and an extrapolation to 30 bar of
Egs. (4.41) and (4. 43) could introduce sizable er-
rors. We do not expect a dramatic change over
this pressure range in the amplitude ratio, how-
ever,

It has been notoriously difficult to observe the
singularity of the isothermal compressibility near
T,. This is understandable on the basis of Eq.
(4.51). We expect a contribution to k proportional
to C, which with Eq. (4.41) leads to a logarithmic
divergence with amplitude equal to (T,\V)™!
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X(8T/3P)3A,, and a constant contribution indepen-
dent of C, which is given by

Ko== V"1(8V/8P),- V-1(aT/aP),(8S/8P),. (4.57)

The contribution to k, from (8V/8P), dominates at
all accessible (7, - T') particularly at low P, and
makes it difficult to observe the singular part.

The situation becomes more favorable at the higher
pressures. In Fig. 17 the contribution from «; is
shown near the bottom.

It was pointed out by Kierstead®! that his (8P/8T),
along an isochore which meets the A line at the
same point as the isotherm for his k is thermody-
namically consistent with the ¥ measurements.

The thermodynamic relation

k=- V- (aV/8P),[1- (8T/8P),(8P/8T),]*  (4.58)

and the measured (8P/87), agree with the « data,
Kierstead’s measured (3P/8T), and Eq. (4.58)
yield Ag/A;=1.2. Again this ratio of amplitudes
is significantly larger than unity and consistent
with the present work.

Elwell and Meyer®3'3 have made very extensive

logyo IT-T), (P)]
1" =3 =3
¢ T T |

O He I

Ko
| ] ] ]
-4 -3 -2
Iog'o |P—P)\|

FIG. 17. Compressibility measurements from Ref. 21
along the isotherm T'=1.7683 K as a function of P— P,
on a logarithmic scale. The top of the figure is labeled
by the “distance” T — T) along isobars from 7,. kg is the
nonsingular contribution to «, and is given by Eq. (4.57).
The numbers in the figure are the ratios of the slopes of
the indicated line to that of the best line through the He II
data.

measurements of the isobaric thermal expansion
coefficient a along isobars which cover the entire
existence range of the transition. These results
are generally consistent within a few percent with
the values quoted in Table VI, and support a
logarithmic divergence for a. However, they yield
Ay/A;=0.9, with estimated errors®®* at the in-
termediate and higher pressures sufficiently small
to yield Ag/Ag<1. This is contrary to our results
for C, and to Kierstead’s results for « and (8P/37),.
We have no explanation for this apparent discrep-
ancy.

The measurements by McCoy and Graf?® of C,
differ by as much as 12% at the higher pressures
from the results of this work. They are also
thermodynamically inconsistent” with the (8P/8T),
(Ref. 21) and the A-line parameters!” of Kierstead.
This has been discussed in detail elsewhere.” We
have no explanation of this difficulty.

Very recently, measurements on the scattering
of light by liquid helium near T, have yielded ther-
modynamic information which can be compared
with the results in Table VII. The total scattered
intensity at a 90° angle to the incident light beam
was measured at a pressure of about 19 bar, 36
and is expected to be proportional to the compres-
sibility. Normalization at a single temperature
below T, results in excellent agreement for all
102=T,~ T24x10™ K; but in HeI the normalized
intensity differs from the compressibility by 2 or
3%. Although the difference for 7> T, is not really
large, it seems slightly outside the errors of the
data in Table VII since the normalization below T,
should largely eliminate systematic errors. For
IT)- T1S4x10™K, the light scattering measure-
ments are not expected to be simply related to «
because the inverse of the coherence length in the
liquid is of the same size as the wave vector of the
scattered light and hydrodynamics does not apply.

The ratio of the intensities of the Brillouin com-
ponents corresponding to light scattering from
thermally excited first and second sound has been
measured below T, at pressures of 20 bar® and
25 bar.3” Where hydrodynamics applies this ratio
is expected to be equal to y-1. It agrees with the
data in Table VII within the estimated uncertainties
of 5-10% in the intensity ratio for T,- T210™K.

It can be concluded that the majority of experi-
mental measurements of thermodynamic response
functions near the A line are consistent with each
other. When fitted to a logarithmic divergence,
they yield an amplitude ratio 4,/A4;>1.

V. SCALING AND UNIVERSALITY

A. Preliminary Comment
It has been shown previously'*? that simple-
power-law interpretations, or interpretations in
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terms of a logarithmic divergence with power-law
correction terms, of the measured heat capacity
near the superfluid transition at saturated vapor
pressure are inconsistent with the Widom-XKadanoff
scaling laws.%* We will now examine the present
results for the heat capacity at constant pressure
C, for pressures up to 26 bar from the viewpoint
of scaling, and will encounter similar difficulties
with simple interpretations. The most satisfactory
interpretation of all the results which is in agree-
ment with scaling is one in which the specific heat
exponent « is negative, implying a finite C, at T),.
However, this interpretation is possible only when
singular correction terms to the asymptotic behav-
ior of C, are allowed in the analysis. Both the
leading exponent o (which is negative), and the
correction term exponent are permitted by the data
to be independent of the pressure P, and their
best values are consistent with the results - 0. 02
and 0. 5, respectively, which are suggested by re-
cent calculations. ¥~ However, the ratio of the
amplitude of C, above T, to that below T is pres-
sure dependent. One might have expected this
ratio, as well as the exponents, to be universal,®
in the sense that changes in an “inert” variable
like P would leave them unaltered. A pressure-
dependent amplitude ratio also is not contained in
the equation of state derived recently by Brézin
et al. ,* although explicit calculations have not yet
been made. In addition to the difficulties with the
amplitude ratio, the data and the assumption of a
universal (i.e., pressure independent) a=a’<0,
also imply that C, cannot be continuous at all pres-
sures. For a negative leading exponent one might
expect a continuous C, because a discontinuity in
some sense would correspond to a leading exponent
equal to zero. Some of the results presented in
this section already have been discussed briefly
elsewhere. °

The predictions of scaling as they pertain to the
superfluid transition have been reviewed previously
in some detail.® We shall proceed here by analyz-
ing the results in terms of the power law'®

C,=(A/a)[| €| *=1]+B if a#0 (5.1)
or

C,=-Aoln|€| + B, if =0 (5.2)
for Hel, and the equivalent expression with primed
coefficients for HeIl. Here

€=0/T,=[T-T,(P)]/T\(P). (5.3)

Equation (5. 1) is equivalent to Eq. (5.2) in the
limit as @ vanishes; and the implication a=0 of
the form of Eq. (5.2) is indicated explicitly by the
subscript on A and B.

The scaling predictions which one can attempt to
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test directly on the basis of the present data alone
3,4
are

a=a’ (5.4)
and
A=A’ if a=a’=0. (5.5)

In addition, if measurements from other sources
of the superfluid density are available, we can also
test the scaling law®!

¢=28-mv', (5.6)

which with the aid of other scaling laws®* is readily
written as*

t=32-a", (5.7)

where the superfluid density p,~ e‘, the coherence
length for order-parameter fluctuations £~ €™, the
order parameter |3|~€®, and where 7 describes
the departures of the correlation function from
Ornstein-Zernike behavior. We may further con-
sider the relation

B-A/a=B'-A"/a’'. (5.8)

In terms of the parameters of the function C,
=A*|€|™® + B* which has sometimes been used by
others, Eq. (5.8) is equivalent to

B*=pB*", (5.9)

Equations (5.8) or (5.9) pertain to the parameters
of C, if, in addition to the basic homogeneity pos-
tulate of scaling, it is also assumed that the lead-
ing asymptotic singularity is the only singular term
in the free energy. One might expect Eq. (5.8) or
(5.9) to be valid particularly if @ =a'<0; for in
that case a discontinuity in C,, which has an ex-
ponent equal to zero, would in some sense be the
leading singularity.

Although Eqgs. (5.1) and (5. 2) may be expected
to represent the asymptotic behavior of C, as €
vanishes, one must in general expect contributions
to C, which are of higher order in €. We have dis-
cussed these terms to some extent when the mea-
surements at vapor pressure were presented. L2
The possibility of the existence of these terms
makes it extremely difficult, if not impossible, to
arrive at unqualified conclusions about the asymp-
totic behavior of C,, i.e., about A, A’, a, and a’.
Therefore we will proceed by making several sets
of assumptions either about the correction terms
or about the parameters of the leading term. We
can then see if these assumptions and the measure-
ments are consistent with pertinent predictions.

Before proceeding to a comparison of the mea-
surements with the predictions, we shall first dis-
cuss in some length the size of possible errors in
the scaling parameters «, a’, and A,/A;. The
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reader who is not particularly interested in this
detail may immediately proceed to Sec. VC.

B. Errors in Scaling Parameters

Of particular interest from the viewpoint of
scaling are the exponents @ and &’ in Eq. (5.1) and
the ratio Ay /A, of the amplitudes above and below
T, in Eq. (5.2). These quantities are defined in
terms of C, and 6 rather than in terms of the actual
measured quantities C, and £. Clearly, C, and 0
are subject to systematic errors which arise in
their derivation from uncertainties in the neces-
sary thermodynamic parameters. Before we pro-
ceed to a discussion of our experimental data in
terms of the scaling laws, we must therefore con-
sider carefully how systematic errors may propa-
gate, and how large the resultant systematic er-
rors in @, a’, and A,/A, may be. We expect that
these errors will be largest at the highest pres-
sure, because C,/C, and /6 are largest there,
thus requiring the largest corrections. For this
reason we have chosen the measurements at 25. 86
bar for a detailed investigation of the effect of
changes in parameters, and have calculated a’, A,,
and A, for the following cases:

(i) our best estimate of all parameters;

(ii) (8V/aT), was changed to 1.01 (8V/aT),;

(iii)(8S/8T), was changed to 1.01 (8S/87),;

(iv) (8P/87T), was changed to 1.01 (8P/87T),;

(v) (8S/87T), was regarded as independent of ¢ and
equal to (8S/8T);

(vi) (8T/9P), was regarded as independent of ¢
and equal to (87/8P),;

(vii) in Eqs. (5.1) and (5. 2), #/T, was used for €
instead of 6/T,;

(viii) T, was changed to T,+1.0x107¢K.

In each case, pure-power-law behavior was as-
sumed for C,.

We believe that these cases cover all possible
sources of appreciable systematic errors in the
C,to C, and f to 6 conversion. Equations perti-
nent to these conversions are Eqs. (4.9), (4.13),
(4.27), (4.29), and (4.31). Cases (ii)-(iv), which
assume a 1% error in certain parameters, are
realistic estimates of possible errors. Cases
(v)=(vii) are, of course, totally unrealistic over-
estimates because they assume that the error in a
particular correction is 100%. Case (viii) is be-
lieved to overestimate the error in T, by an order
of magnitude. Results were obtained with assump-
tions (i)—(viii) at 25.86 bar, and are listed in Table
IX. In each case the calculations were somewhat
arbitrarily performed with all available data for
which 16/7,1=1.58x10"3, and included 51 points
for HelIl and 27 points for HeI. We conclude from
the data in Table IX that even at our highest pres-

TABLE IX. Effect of various systematic errors in the
data processing on the scaling parameters at 25.86
bar.

Case a’ Af Ay Ay/A§
@) 0.002 4.148 4.802 1.158
(ii) 0.001 4.105 4,780 1.165
(i) 0.002 4.138 4.793 1.158
iv) 0.001 4,104 4,781 1.165
W) -0.001 4,178 4,798 1.148
(vi) 0.003 4,137 4.802 1.161
(vii) 0.004 4,319 5,097 1.180
(viii) 0.006 4.161 4,784 1.150

sure the total systematic errors in a’ (or a) and
Ay /Aq from items (ii)~(viii) above do not exceed
0.003 and 0.01, respectively.

The only additional systematic errors to be con-
sidered are ones arising from systematic errors
in the temperature scale. Since @, a’, and 4,/A4,
are derived from measurements over an extremely
narrow absolute temperature interval, they are
virtually independent of the particular temperature
scale which is used. Of course A, and A, by them-
selves will be subject to errors from this source.
For this reason, we must expect a scatter of
1 or 2% in Ajor A§ as a function of pressure.

In addition to the systematic errors discussed
above, there will be random errors for @, a’, A,
and Ag which will depend upon the number of data
points used to derive these parameters. These
random errors increase rapidly as the range of €
over which data are included in the analysis is de-
creased, and will have to be indicated specifically
in particular situations. As a general guide, how-
ever, random errors when data up to €=1.6x10"3
are included, and a pure power law is assumed,
are approximately +0. 005 to +0.015 for @ and a’,
+0.03 Jmole™ K™ for A, and 4,, and +0.007 for
Ay /A,.

C. Analysis without Higher-Order Singular Terms

In order to compare Eqs. (5.1) and (5. 2) with
the measurements, we shall assume initially, as
was done at SVP, that contributions to C, from
higher-order terms in € are negligible for € <1,
We expect this to be the case if these higher-order
contributions arise from terms in the free energy
which are regular functions of 7. In this connec-
tion, we note that typical scaled equations of state
that have been discussed® have usually assumed
free energies with singularities only in the leading
term. For these cases, we would expect Egs.
(5.8) and (5.9) to be valid. We have chosen,
somewhat arbitrarily, a maximum value €,,,=1.6
%1073, and all data at a given pressure with | €|
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< € Were fitted to Eqs. (5.1) and (5. 2) to obtain
a and a’. We note that, if higher-order singular
terms are indeed absent in C,, then deviations
from Egs. (5.1) and (5. 2) will only be of order e,
and not larger than the experimental scatter for
|€1=€yq. The results are shown in Fig. 18. The
same analysis, but with €,,. = 3x10%, yielded very
similar parameters, but the statistical errors
were smaller. We recall that at SVP the type of
analysis used here resulted in a%a =0, "% in con-
tradiction to Eq. (5.4). For 1.6 <P =15 bar, we
find that within our errors, a=a’=0. If we as-
sume, as is permitted by our data, that a= o’ and
independent of P for P< 15 bar, then we find an
average

a=a'=0.000+0.003 for 1.6 <P=<15,0 bar.
(5.10)

This result is consistent with scaling, i.e., with
Eq. (5.4), but differs from the result at SVP. It
suggests, but does not prove, that the result a’<0
at SVP might not be representative of the asymp-_
totic behavior of C,, but rather a consequence of
contributions to C, from singular higher-order
terms which are larger than of order €. According
to this interpretation, at sufficiently small € Eq.
(5.10) is valid also at SVP.

At pressures greater than 15 bar, difficulties
arise again when higher -order terms are assumed
to be small, but this time in the high-temperature

phase. We find within our errors that
a>a’=0 for 15.05P=<25.9 bar, (5.11)

in contradiction to Eq. (5.4). This time, a be-
comes as large as 0.04. Our experience with the

0.05

o a T » T
| oo’ lEISLEx10 {
0.04

- L |
-0.02
0 10 20 30

P [bar]

FIG. 18. Exponents a and @’ of C, which are obtained
when data with |e | =1.6x 103 are fitted to a pure power
law.
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low-temperature phase at vapor pressure, how-
ever, makes us hesitant to accept this result as
representative of the asymptotic behavior. We are
inclined to believe it possible that in fact a=a’ at
all pressures, with higher-order contributions to
C, responsible for the apparent departures from
Eq. (5.4). If we adopt this point of view, we can
no longer expect Eqs. (5.8) and (5.9) to be valid.
In this connection, it is interesting to note that
recent measurements of the heat capacity at con-
stant volume near the liquid-gas critical point of
CO, (Ref. 42) are consistent with a=a’>0, but in-
consistent with Eq. (5.8). Both the present work
and that of Ref. 42 lend strong support to the exis-
tence of higher-order singular terms in the free
energy; but neither result is definitive about the
functional form of these terms.

The apparent pressure dependence of a indicated
in Fig. 18 seems most unusual, and should have
been noticeable as an anomaly in the pressure de-
pendence of the original data for C, from which C,
was derived. Indeed, we have displayed in Fig. 5
values for the effective exponent «, of C,, and we
found a, to be nonmonotonic. Although we already
have demonstrated that C, can be calculated re-
liably from C,, it is comforting to see the anomal-
ous behavior of a reflected in the primary data.

Before we proceed to examine the results from
the viewpoint that singular higher-order terms
must be considered, we will first enquire whether
the data and the hypothesis of no singular higher-
order terms are consistent with scaling at least
over the limited range 1.6 =P =15 bar, where the
current analysis yields a=a’. Since @ and a’ are
extremely small, and within their errors indis-
tinguishable from zero, we shall assume that in
fact @=a’=0, and examine A, /A, for P=<15 bar.
In this manner we can test Eq. (5.5). We show in
Fig. 19 values of A,/Aj which were obtained by
fitting the data for e =1.6x107 to Eq. (5.2). Also
shown for comparison is the result at vapor pres-
sure (P=0), which was deduced in Ref. 1 by invok-
ing singular higher-order terms for T<T,. Itis
clear that even over the limited pressure range
1.6 =P =15 bar this interpretation of the measure-
ments is inconsistent with scaling because A,/A]
~1,06+1, contrary to Eq. (5.5). This is, of
course, the same observation that was made al-
ready'? for the results at saturated vapor pres-
sure.

D. Analysis with Singular Higher-Order Terms and =o' =0

So far, we have investigated what our data imply
about scaling if it is assumed that the only singular
term in the free energy is the leading asymptotic
singularity. We found that this assumption and the
data imply a breakdown of scaling because for P>15
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bar @’=0<a, in contradiction to Eq. (5.4), and
for P<15 bar, where the data yielded a=a’=0,
Ay>Ag, in contradiction to Eq. (5.5). The pres-
sure dependence of a implied by this analysis also
appears to be a breakdown of universality. We
shall now investigate whether agreement with theo-
ry can be obtained if singular higher-order terms
which may be large even for small lel are per-
mitted in the analysis. Obviously it is extremely
difficult in that case, if not impossible, to make
quantitative statements about the asymptotic be-
havior of C, without some additional assumptions
either about the asymptotic functional form of C,,
or about the functional form of the higher-order
terms. We shall therefore proceed by making
some reasonable assumptions, and by then investi-
gating their consequences.

Inspection of Fig. 18 reveals that, although «
seems to depend upon P, a’ is remarkably constant
and very close to zero. In fact, if @’ is assumed
to be independent of P, then the data (exclusive of
the vapor -pressure result) yield an average

a’=0.001+0.003. (5.12)

It is of course possible that data which include
higher-order contributions yield a’=0 by coinci-
dence, when in fact a’#0 corresponds to the
asymptotic behavior; but we observe that a’=0
within error has been obtained consistently at all
pressures except SVP. Thus, if the asymptotic
exponent is in fact different from zero, then high-
er-order terms have to contribute over the experi-
mental range of ¢ at all P just to the extent required

1.09 — T I

1.08 |~ -]

.07 —

Ao/A%

1.06 - —

1.05- —

1.04 - —

P [bar]

FIG. 19. Amplitude ratio A/A¢ of the logarithmic C,
which is obtained at low pressures when the data are fit-
ted to a pure logarithmic divergence.

TABLE X. Parameters of Eq. (5.2)for a logarithmic C,.

Py Af Bi Aoy By Ao Bz
SVP  5.100*° 15.52* 5.355*  -7.77%

1.65 5.036  14.82  5.374 -8.91  5.393  -9.06
7.33 4,801 12,70  5.053 -9.82 5,108 -10.29
15.03 4,501  11.35 4,846  -11.50 4,988 -12.84
18.18 4.292  11.48 4,837  -12.78 5,017 —14.52
22.53  3.991  11.94 4,819  -14,39 5,023 - -16.43
25.86  4.148 10,79 4,801  -15.24  5.115 -—18.26

*From Ref. 1.

to yield a’=0 from a fit to Eq. (5.1). The absence
of any dependence upon P of ¢’ in Fig. 18 therefore
might suggest that &’ =0 does indeed correspond

to the asymptotic behavior. Thus, we shall explore
as a second interpretation the possibility that, con-
sistent with scaling, a=a’=0 at all pressures.

We will attempt to attribute the apparent departure
in Fig. 18 of a from zero at large P to higher-or-
der contributions to C,. If a=a'=0, then scaling
requires Ay=A{, according to Eq. (5.5). We have
already seen in Fig. 19 that this relation is vio-
lated for P=15 bar., We shall proceed nonetheless
and examine in more detail as a function of pres-
sure the asymmetry about 7', which corresponds to
this apparent breakdown of scaling. We do this by
examining the difference

ac,(lel)=cilel)- c(lel) (5.13)
which, with Eq. (5.2), can be written as
AC,(|e])=(AJ- Ag)In|e |+ (By- BS). (5.14)

According to Eq. (5.5), the amplitude of Inlel in
Eq. (5.14) should vanish, and AC, should be inde-
pendent of ¢ in the limit le|<< 1, We have fitted
the measurements for HeIl to Eq. (5.2), and list
the resulting parameters in Table X. AC, was
evaluated by subtracting Eq. (5.2) with these He Il
parameters from the HeI data, and is shown in
Fig. 20. The curvature of the data at the higher
pressures and for €2 5%x10™ reflects the result,
shown in Fig. 18, that a fit to Eq. (5.1) yields
a>0. It is immediately apparent that the data
over the entire pressure range and at all accessi-
ble ¢ do not reflect the scaling prediction Ay=A;
because AC, does not show any tendency to become
independent of le! even for our smallest lel. In
fact, the data imply that Aj— A, in Eq. (5.14) is
nonzero, and that AC, diverges as Inlel. We can-
not, of course, rule out the possibility that higher-
order contributions have a sufficiently complicated
form to obscure completely the asymptotic behavior
even at our smallest lel of about 1075,

We have seen that it is not possible to interpret
the measured C, at any pressure and over our
range of ¢ in a manner consistent with scaling if
a=a’=0, because then according to the data A,/A;
>1. Nonetheless it may be of interest to have a



8 THERMODYNAMICS AND EXPERIMENTAL TESTS OF STATIC... 559
-22 T T T -22
0.05(SVP) b
ﬁ 7.33
-21t FRLAL / 165 --21
- o6 o o 909 '9.03 18.18
T ° ° gmﬁ/
.u-x o o a o 5! AMA‘/
s ~20f o ° ' 2 -&5 a 4-20
—t
g ae FaY s 12}
2 . % s
= -i19f 2 22.53 T'9
=) FIG. 20, Difference AC, between
as 25. - R »
T a 00 Cae000 prd 86 C, for He Iand C, for He II along
w -18F & & o ..‘ J-21 isobars as a function of logygle |.
£ ° ° d The numbers in the figure are the
~<° F o @ o pressures in bars. Note that the
L ol o®® * ] -20 data at 22,53 and 25,86 bar are dis-
IR o b placed with respect to the other
E’ ') data.
HZI- -19} [ & 4-19
[ J
-1gf o eo® Jd-
18 b3 18
] ] )
-5 -4 -3 -2
|og|°|€|

reasonable estimate of the size of Aj/A]. Asa
crude approach to this problem we can simply fit
the data for € $1.6x10™ to Eq. (5.2), although we
know that for HeI Eq. (5.1) with & >0 is a better
fit. Inspection of Fig. 20 and the curvature of AC,
vs Inlel reveal that this procedure yields a lower
limit for A,, and therefore for A,/Aj. This lower
limit is given in Table X as A;;. The associated
B,, is listed also. A more realistic and larger
value for A, is obtained by making some assumption
about the form of the higher-order terms that cause
the curvature in Fig. 20 at the higher pressures.
We have assumed, as was done at vapor pressure!:?
for Hell, that these terms can be written as
Delnlel + Ee. The use of this functional form in
conjunction with Eq. (5.1) yields values of a with
much larger statistical errors than those shown in
Fig. 18 because of the correlation between the
large number of parameters in the fitting function,
and in all cases the value a =0 is permitted by the
data and this functional form. We obtain the Ay,
and By, given in Table X. As atest of this estimate
of A;,, we have used yet another approach which
makes no assumption about the form of the higher-
order terms but is possible only when data are
plentiful. At 18.18 and 25. 86 bar, we have fitted
all data with |lel=¢y,, to Eq. (5.2), and determined
A, as afunction of €,,,. We show the results in the
top half of Fig. 21. In the bottom half of this fig-
ure the corresponding results for A, are shown.

1t is evident that Aj within the statistical errors
indicated in the figure is independent of €,,,, as it

should be if Eq. (5.2) fits the data. For A,, how-
ever, atrend with e_,, is observable which is
larger than the statistical errors, indicating that
Eq. (5.2) is inadequate. However, we are at the
moment assuming that Eq. (5.2) is asymptotically
correct, and therefore may attempt to extrapolate
Aj 10 €o; =0, as shown by the solid lines. This
results in A;=4.97 at 18.18 bar and 5. 05 at 25. 86
bar. These values are lower than Ag, by only 0.9
and 1, 3%, respectively, and tend to support the
validity of our previous analysis which yielded Ag,.
Best estimates with reasonable error bars for

Aq /A{; over the entire pressure range are shown
in Fig. 22,

It matters little at the present which method of
determining A, /A(; we prefer. We are forced to
conclude that A,/A; >1 at all pressures, contrary
to scaling and the assumption a=a’=0. Further,
A,/ A, depends appreciably upon pressure, varying
from about 1. 05 at vapor pressure to about 1. 22
at 26 bar. The pressure dependence of A,/A;
seems to violate the concept of universality.

The result Ay/Ag>1 obtained from the data and
the assumption @ = a’=0 which we have pursued so
far has implied that higher -order terms, although
they are singular and larger than of order e, are
sufficiently small that they can be neglected for
€<510™, This can be seen by inspecting Fig. 20,
where AC, approaches linear behavior in the vicin-
ity of € =10 even at the higher pressures. It is
of course possible that higher -order contributions
are so large that they do not become negligible
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compared to the leading term until € is much
smaller. In that case, AC, in Fig. 20 might change
its qualitative behavior and approach a constant at
very small €, and then 4;=Ag, and scaling would
be valid. It is not feasible to disprove this possi-
bility by experiment if higher -order terms are
permitted to be arbitrary. However, the present
data imply that if Ay=A{, then higher-order terms
are not negligible unless € <107, because for a
larger € AC, in Fig. 20 depends upon €. In addi-
tion, these terms would have a complicated depen-
dence upon ¢, and could not be represented by a
simple power law over an appreciable experimen-
tally accessible range of ¢. Nonetheless, for com-
pleteness, let us pursue the possibility 4,=A4;
somewhat further. In this case, scaling imposes
no further unsatisfied conditions upon C,. How-
ever, if in addition to scaling it is assumed that
the so-called “linear model” hypothesis?® is valid
for the parametric equation of state of Josephson**
and Schofield, ** then a relation exists between B,
- B, and the exponent 8 for the coexistence curve.
We have*® from the linear model*?

Lim (- AC,)=Bg- By=2A7/(1-2B)+Agln[g/ (1= B)].
1e1-0
(5.15)

If we assume, consistent with the data in Fig. 20,
that AC, is monotonic in le| for all 1¢/$107, then
Eq. (5.15) yields 8=0.30 at all pressures. In
conjunction with the scaling law®**! n’=28- $(2
- ') this yields n<0, and for v’ =% one gets 7
=-0.1. Similarly one obtains y’=1.40 from
(2-7n)v'=y’, and 6=5,67 from o'+ (1 +85)=2.
These exponents satisfy all the known inequalities,*’
and there is no thermodynamic stability argument.
against them, Nonetheless, n=-0.1 seems most
unusual,

We have seen so far that it is virtually impossi-
ble to interpret the measurements in a manner
consistent with scaling and a=a’=0, even by invok-
ing singular higher-order terms. Only by permit-
ting these terms to be extremely large and of a
complicated, at present apparently unreasonable,
functional form can enough freedom be introduced
into the interpretation to achieve consistency with
Ay=A]. Therefore we shall next pursue the possi-
bility that higher-order terms are important in
both phases, and that a=a’#0. In that case scaling
does not require A=A",

E. Analysis with Singular Higher-Order Terms and a=a'# 0

As an alternate interpretation, we can consider
the possibility that higher-order terms contribute
appreciably in both phases at most pressures, and
that in fact @ =a’ at all pressures. At first, let
us assume, as we did at vapor pressure, !*? that o
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FIG. 21. Amplitudes Ay and A{ obtained from the mea-
sured C, at 25.86 and 18.18 bar and a fit to the logarith-
mic functional form of data for which le | =€,

and o’ are equal to some value intermediate to
those derived for o and o’ at a given pressure in
the first interpretation (Sec. V C) and shown in Fig.
18. At SVP, this approach resulted! in consistency
with scaling, and implied a finite C, at €=0 (i.e.,
a=a’<0). Itis evident that we can no longer at-
tain consistency with scaling in this manner, be-
cause a= a’=0 would still be obtained for 1.6 <P
=15.0 bar. Over this range, then, 4,/A}>1, con-
trary to the prediction Eq. (5.5). The pressure-
dependent values obtained in this manner for o and
a’ would violate universality.

It is apparent now that consistency between scal-
ing and the data is attainable only by invoking
singular higher-order contributions which result in
a=a’+#0 at all pressures. In particular, we have
chosen to write the specific heat above T, in the
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form valid, and analyzed the results at each P with the

C,=/a)|e|™-1)1+D|e|*)+B,  (5.16a)

with x >0, and similarly with primed coefficients
below T,. One could choose other slightly different
functional forms such as

C,=A%¢"**[1+ D*¢** )+ B*, (5.16b)

which also include singular correction terms that
vary as a power of €. The values of the amplitudes
and exponents in Eqs. (5.16a) and (5. 16b) which
can be obtained from a fit to a given set of data

will not differ much. When o and &' are not fixed
at a predetermined value, we prefer Eq. (5.16a),
because A and Bare analytic functions of @, whereas
A* and B* are singular for a*=0. Such singulari-
ties are inconvenient in an iterative nonlinear least-
squares problem. We have ascertained, however,
that x* is about equal to x~ 0.1 for the range of
or a* pertinent to our data, and that o and a* differ
insignificantly from each other.

Equation (5. 16a) without any additional restric-
tions has many highly correlated parameters, and
therefore it yields sufficiently large statistical er-
rors for the parameters to accommodate most
theoretical predictions. This is true even when it
is fitted to data with a precision of 0.1% over two
decades in | el with all lel=3%10", We will first
compare Eq. (5.16a) with the experiment with a
minimum number of restrictions upon the param-
eters. Fitting it to the data at one particular pres-
sure, we were not able to simply least-squares ad-
just all the paran :ters because the high correlation
between them, in conjunction with the available
numerical precision, prevented convergence of the
iterative nonlinear least-squares fit. We were
more successful when x was held constant at a pre-
determined value, and Fig. 23 shows « and a’ as
a function of x for the 25. 86-bar data. The error
bars do not, of course, include any correlation of
a or &’ with x. It is apparent that o and a’ are
not very sensitive to the'choice of x. For xs1,
the results are consistent with a«=a’. Therefore,
we have next assumed that Eq. (5.4) is indeed

constraints a=a’ and x=x’. During this analysis,
x was still held constant, and o=’ was determined
at each pressure for several x=x'. The results
are shown in Fig. 24. In this case, the solid cir-
cles indicate that the estimate of the variance
based on the fit was sufficiently small that the fit
may be regarded as satisfactory. The values of o
represented by open circles correspond to unsatis-
factory fits, implying that the assumed value of x
was outside an acceptable range. The data indicate
that generally any value of x between 0.5 and 0.9

is acceptable. Over this range of x, the data do
not indicate any pressure dependence of o and a’,
and one has approximately

-0.04a=0"£0.02,

0.55x=x"50.9,

(5.17a)
(5.17b)

Equation (5. 17a) permits a rather large range of
values for @ and a’. This range becomes some-
what narrower if the value of ¥ and x’ is restricted.
Recent calculations*® indicate that x probably has a
value near 0.5. If the additional constraint x=x"

0.04 T T
25.86 bar %
0.02 —
5 I lT
X 0.00 } l T T
q
]
-0.02- .
o HeI
-0.04}+ 1 e Hell —
| |
0.5 1.0

X

FIG. 23. Leading exponents o and ¢ ’, determined in-
dependently of each other, using Eq. (5.16a), as a func-
tion of the fixed value x of the exponent for the correc-
tion term. The results are for 25.86 bar.
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=0.5 is imposed, the data yield

a=a'=-0.02+0.02 if x=x"=0.5. (5.18)

The result Eq. (5.18) is of course dependent upon
the assumption a=a’. Also, consistent with the
data, a and o’ are assumed independent of P. The
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FIG. 24. Leading exponent @ or a’, determined un-
der the constraint @ =a’, using Eq. (5.16a), as a func-
tion of the fixed value x=x’ of the exponent for the cor-
rection term. The number near the top of each block is
the pressure in bars.

result Eq. (5.18) is in remarkably good agreement
with the calculations by Wilson® and Brézin et al.,®
which to second order in 4 -d yield a=a’=~ g for
a system of dimensionality d=3 whose order pa-
rameter has two degrees of freedom (see also Sec.
VH).

There have been several other recent, usually
more empirical and often less specific, sugges-
tions about the form of higher-order singular con~
tributions to the equation of state.**~*® Although
they do not all make explicit predictions about the
specific heat, it is likely that the various approach-
es would all yield values of x which fall in the
range of Eq. (5.17b). However, recent results for
the superfluid density p, (Ref. 54) have also re-
vealed the existence of singular correction terms,
It appears*®*® that the correction exponent for this
variable should be essentially the same as the one
for C,, and the p, results yield 0.45x<0.6. There-
fore the two sets of data considered together per-
mit only values of x near 3. This is in agreement
with the estimate by Wegner, *° but tends to exclude
some of the other approaches which yield larger
values of x.

Let us proceed further by investigating the be-
havior of the amplitude ratio A/A’ over a reason-
able range of x and ¢. We should do this by as-
suming =o' and x=«’, With these restrictions it
is possible to obtain precise values of A/A" as a
function of x and . These results are shown in
Fig. 25 for P=25. 86 bar. Again only data with
le]l =3x10"? were used in the analysis. It can be
seen that A/A’ at constant x is virtually independent
of a for 0,00<a=a’=<0.08 and at constant o only
mildly dependent upon x. Even for large x, A/A’
tends towards a limit which is larger than 1.

As x becomes large, |D| and {D’| become large
also. As an example of this, D is shown in Fig.

26 as a function of x for the results at 25. 86 bar
for three values of @. Since D and D’ are pure

'.4 Y T T 1 T
P=25.86 bar
1L.3p 8= T
[ ]
-~ © ® O
$ |.2" =2 O a cm~
<< -
ik e a=0.00 le]<3x1073 1
o @=0.02 a=a’
1ok o a=0.04 vy .
of  +q-008 XX
0.9 . ' y y

0.5 1.0 L5 2.0

FIG. 25. The amplitude ratio A/A’, determined by
fitting the results at 25.86 bar to Eq. (5.16a) with fixed
a and x (or @’ and x’) for four values of a=a’ as a func-
tion of x=x"',
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FIG. 26. Amplitude D of the correction term in Eq.
(5.16a) at 25.86 bar as a function of x for several a.

numbers, one might expect them to be of order
unity; therefore it is unlikely that x21.0 where
D210. This conclusion is of course in agreement
with the earlier one that 0. 5=x=0.9.

Since A/A' is independent of @, we can compare
the results for A/A’ in Fig. 25 with the previous
estimates of A;/AJ which assumed a=0a"=0 and
which were shown in Fig. 22. The results in Fig.
25 are consistent with those in Fig. 22 for x 20.17.
If indeed x20.7, then A/A’ can be expected at all
pressures to be equal to the A;/A{ in Fig. 22 with-
in the error bars which are shown. If x<0.7,
A/A’" may be somewhat larger; but the pressure
dependence in Fig. 22 would still exist if x is in-
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dependent of P.

The result Eq. (5.17a) permits a = a’#0 and in-
dependent of P, and therefore the scaling predic-
tion A,/Aj = 1 need not be applicable. The results
show that A/A’>1. This inequality, in conjunction
with @ = a’> 0, implies that for sufficiently small
€, C, above T, is larger than C, below T at the
same |€|. This can be seen readily from Fig. 20,
where a linear extrapolation to smaller |el will
cross zero and yield a positive C4 (| €|)-C} (| €l).
Although there appears to be no thermodynamic or
scaling argument which is violated by such a be-
havior, it is most unexpected, and no detailed
equation of state with this property has as yet been
proposed.

The result Eq. (5.17a) of course also permits
a=a'<0. Inthat case, C, is finite at 7). The
amplitude ratio Ay/A{ shown in Fig. 22 would still
be representative of A/A’. For negative a and a’,
A/A’>1 is not so unusual, and would result from
many equations of state®’** which have been con-
sidered in the past. But again, the data yield an
A/A’ which depends upon the pressure in accor-
dance with Fig. 22. One would still have expected
A/A' to be independent of the pressure, since the
equation of state of Brézin et al.>* contains no rele-
vant pressure-dependent parameters and yields an
A/A’ which depends only on the dimensionality of
the system which is three, and on the number of
degrees of freedom of the order parameter which
is two. An explicit calculation of A/A’ based on
this equation would be of interest.

Of the possible interpretations of the data which
have been discussed, the one represented by Eq.
(5. 18) comes closest to being consistent with theo-

TABLE XI. Parameters of Eq. (5.16b) with the constraints a*=a*’ and x*=x* =}, for a*=0*'=-0.02 and a*=a*’
=—0.04, R=8.314 J mole~'K"! was used where needed to make the parameters dimensionless.

P(bar) a*’A*'/R A*/A*' B*'/R (B*-B*')/R — D* - D*’
a*=qa*’'==~0,02, x*’=0.5
0.05 0.735 1,065 + 0.009 38.08 ~0.55+ 0,26 0.07 0.00
1.65 0.725 1.096 + 0,044 37.50 +0.38+1,27 0.09 0.03
7.33 0.704 1.062+ 0,024 36.10 —0.65+ 0,67 0.09 0.07
15.03 0.667 1,059 £ 0,023 34,09 ~0.73+0.60 0.06 0.09
18.18 0.633 1.184+ 0,022 32.43 +2,48+ 0,51 0.18 0.08
22.53 0.586 1.334+ 0,028 30.20 +5.80 = 0,57 0.29 0.07
25.86 0.623 1.236 + 0,021 31.75 +3.66 + 0,47 0.24 0.12
a*=o* =—0,04, x*=x*'=0.5
0.05 0.895 1.065 + 0,010 21,43 ~1.54+0.14 0.25 0.14
1.65 0.878 1,084+ 0.044 21,30 ~1.21+0.64 0.26 0.18
7.33 0.849 1.076 + 0,024 20.17 ~1.32+0.32 0.31 0.24
15.03 0.817 1.061+ 0,022 18,96 ~1.49+0.29 0.27 0.32
18.18 0.773 1.179 + 0,023 19.51 +0,05+ 0.26 0.45 0.29
22.53 0.717 1.341+ 0,031 20.12 +1,89+ 0,31 0.71 0.27
25.86 0.760 1.229+ 0.022 19.56 +0.56+0.25 0.56 0.35
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ry. Of course, the theoretical result Eq. (5.5) and
the data exclude a zero exponent because A/A’#1,
and therefore theory and experiment jointly yield

-0.045a=a’<0. (5.18")

We present in Table XI the parameters obtained by
fitting Eq. (5.16b) to the data, with the two fixed
values of — 0.02 and - 0.04 for a*=a*’. Here the
correction term exponents were fixed at x*=x*"’
=3. Again it is evident that A*/A*’ is independent
of the leading exponent, but dependent upon P. For
a*=a*'=-0,02, B*- B*’ is zero within error for
P<15 bar, implying a continuous C, at T,. This is
consistent with Eq. (5.9). For larger P, where
A*/A*' is dependent upon P, B*— B*' is no longer
zero if a*= a*’=~0,02, It is clear from the re-
sults in Table XI that a continuous C, which agrees
with Eq. (5.9) can be obtained from the data only
if a*= a*’ depends upon P and varies from near

- 0.02 to near - 0.04 as P changes from 0 to 26
bar. For a* and a*’ between — 0,02 and - 0,04,
the finite C, at T is predicted to be in the range
20-40R (R is the gas constant), which is a factor
of 2-4 larger than the largest measured C,.

F. Heat Capacity near the Superfluid Transition in He3-He?*
Mixtures

In Secs. VC-VE it was demonstrated that, even
when reasonable latitude is permitted in the form
of singular higher-order terms which are included
in the data analysis, it is difficult to escape the
conclusion that there is an asymmetry about T,
in C, which is not fully explained by that part of the
theory which pertains to the asymptotic behavior.
This asymmetry is reflected for instance in the
unusual € and P dependence of AC, which is shown
in Fig. 20. Although we were able to obtain agree-
ment with theory to a large extent essentially by
attributing the asymmetry to different amplitudes
for the correction terms above and below T,, and
to a pressure -dependent amplitude ratio for the
leading term, we would now like to inquire whether
its existence is supported by an asymmetry in mea-
surements of the appropriate response function for
He3-He* mixtures. For that system there exist
rather precise data by Gasparini and Moldover®:%8
for the heat capacity C,, at constant pressure equal
to the saturated vapor pressure, and constant He®
concentration. Itis easy to show, however, onpure-
ly thermodynamic grounds that C,, in general is fi-
nite at T,, except at zero He® concentration, where
it is equal to C, for the pure system and may di-
verge. Inthis case C,, occupies a position rather
similar to that of C, in the pure system, and it has
been possible to calculate®'%® reasonably reliably
at least at the lesser concentrations the heat ca-
pacity at constant chemical potential difference
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FIG. 27. Difference ACyp between Cqp for Hel and
Cqp for He Il along lines of constant chemical potential
difference & for He®~He! mixtures as a function of
logjple |. The numbers in the figure are the He® mole
fraction at T,. The solid lines are calculated from the
power laws given in Ref. 56. The individual points are
for pure He* from Ref. 1, and are some of those shown
in Fig. 20.

Cop. Coy is permitted by thermodynamics to di-
verge at all concentrations. Indeed, when data for
C,, were fitted to a power law like Eq. (5.1),
values of a and &’ near zero were obtained. ¢ We
show as solid lines in Fig. 27 the differences AC,,
between the power laws above and below T, which
were obtained® from the data by a least-squares
method., It is immediately apparent for concentra-
tions up to a He® mole fraction of 0.3 that AC,, is
rather similar in its ¢ dependence to the AC, shown
for pure He! in Fig. 20. The result for zero con-
centration can of course be compared directly with
the vapor -pressure measurements in pure He*.
Some of the He! SVP results!’? which were shown
in Fig. 20 are repeated here as individual points,
and agree nearly perfectly with the smoothed AC,,
for x=0 from Refs. 55 and 56. At x=0.39, the
calculation of C,, from C,, is not very precise be-
cause the difference is large, and the apparently
different behavior of AC,, at this concentration
may not be real. We conclude that the measured
C,, in the mixtures fully support the existence of
the asymmetry about 7, which we have discussed
for the pure system.

G. Comparison with Thermal Conductivity of He I and the
Superfluid Density of He Il

Although C, could be represented well by pure
power laws (see Sec. IVC and Fig. 18), it has be-
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come apparent from the analysis of C, that it is
not possible to obtain agreement with scaling unless
singular higher-order contributions are permitted.
Specific theoretical predictions pertaining to such
higher-order terms have become available only
very recently* but the existence of such terms at
least in some properties near T, has been evident
from experiment for some time. They were re-
vealed first by measurements of the thermal con-
ductivity X of Hel near T, under pressure.® These
results could not be fitted at all by a pure power
law, or by a power law with logarithmic correc-
tions suggested by theory, ' even when data were
restricted to € $10™. Recent high precision mea-
surements of the superfluid density p, (Ref. 54)
have revealed that singular higher-order terms
exist also in this parameter. As in the case of

A, a statistically satisfactory fit of the p, mea-
surements to a pure power law could not be ob-
tained and the existence of singular correction
terms was established on the basis of the data
alone. The results for p, were fitted to the equa-
tion

ps/p=ke[1+ae”],
with % and q analytic functions of P. They yielded®
0.66<¢<0.68 (5.20)

as an estimate of the asymptotic exponent {. This
result can be compared with the result Eq. (5.17a)
which pertains to C,, and which is also based on
the assumption of power-law correction terms to
the asymptotic behavior. Equation (5. 17) yields

0.660=<3(2-a’)=<0.680. (5.21)

This agrees well with the result Eq. (5.20) and the
scaling law Eq. (5.7). The asymptotic behavior of
X has been compared elsewhere® with that of C,,
and does not appear to agree with the predictions
of dynamic scaling®!; but the possible existence of
logarithmic terms in the theory in addition to high-
er-order singular power-law terms make the in-
terpretation of the data extremely difficult. A
more thorough analysis still needs to be done.

The problem would be eased considerably by spe-
cific predictions for the exponent of higher-order
contribution to A,

Since C,, A, and p, all seem to contain singular
corrections to the leading power-law contribution,
one might enquire whether the experimental re-
sults for the correction exponents are consistent
with each other and with theoretical predictions.
For ), there are no specific predictions of the
correction terms at this time. However, it ap-
pears that the exponents’x and ¥ in Eqs. (5.16a)
and (5. 19) for C, and p, should be approximately
equal to each other, ***® and that their value .should

(5.19)

be near 0.5.%° The result Eq. (5.17b) agrees with
this prediction, but leaves so much latitude in x
that the comparison does not constitute a very
severe test of the theory. In the case of p,, the
exponent y of the correction term in Eq. (5.19)
may have a value somewhere between 0.4 and 0. 6.
This also agrees with the theoretical value. Some-
what less latitude than in x is permitted by the
data in the value of y; and if we expect x=y as
suggested by theory, then only values near 0.5,
say

x=2y=0,5+£0.1, (5.22)

would be permitted by the two sets of measure-
ments, This result is in good agreement with the
calculation,

The constant y = 0.5 which is suggested by theory
and which was used in Sec. E for C, [see Eq.
(5. 18)] can also be adopted in the analysis of p,;
but most of the uncertainty in ¢ is attributable to
systematic errors, and an independent value for y
does not reduce the error of ¢ appreciably.® Thus,
even for y = ; the result Eq. (5.20) pertains. How-
ever, if the scaling predictions Eqgs. (5.4) and
(5. 5) are assumed valid, then the result A/A'>1
and the result Eq. (5.18) imply a=a’<0. Thus,
Eq. (5.7) and Eq. (5.20) yield

2/3<£=0.68. (5.23)

The best value of @ and a’ given by Eq. (5.18)
yields 3(2~ @’)=0.673. This is in particularly
good agreement with the value® ¢=0. 674 obtained
by fitting the p, results at vapor pressure, where
contributions from correction terms appear small,
to a pure power law. We note that at vapor pres-
sure and T< T, a fit of C, to a pure power law':?
yields a’=- 0,02, This agrees with the best esti-
mate Eq. (5.18) for all pressures and suggests
that at SVP contributions from correction terms
are small also for C, below T),.

H. Comparison with Other Systems

The analysis in Secs. VE and VG revealed that
only a slightly negative value of @ and a’ is con-
sistent with the measurements and most of the the-
oretical predictions (of course even then the prob-
lem of the pressure-dependent amplitude ratio re-
mains). We now wish to examine whether the re-
sult 0>a=a’=-0.02 is consistent with experimen-
tal measurements for the heat capacity near other
critical points.

According to the recent theoretical work by Wil-
son, %% the exponents are given as an expansion
in 4 - d, where d is the dimensionality (i.e., d=3)
of the system. The coefficients in this expansion
are functions only of the number of degrees of
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freedom 7 of the order parameter,’®® We would thus
expect a =a’to be a smoothly varying function of
n. Therefore, we have collected in Fig. 28 what
appear to be the best available experimental esti-
mates of a=a’ for different types of systems with
n=1,2, and 3.

For n=1, measurements near liquid-gas critical
points, order-disorder transitions, and transitions
in Ising magnets pertain. Of these, the heat capac-
ity near the critical point in CO, (Ref. 42) and in
He® (Ref. 57) yield perhaps the most reliable ex-
ponents, and result in a=a’=%. For n=2, the
superfluid transition discussed in this paper yields
a=a'=-0.02. For n=3, Heisenberg systems
pertain, and the most reliable experimental results
have been obtained for the antiferromagnetic tran-
sition in RbMnF;. These data yielded®® a =a’
==0.14+0,01, There are no other values of n» for
which experiments are possible, but » =« corre-
sponds to the exactly soluble spherical model®
which has a=a’=-1. The solid line in Fig, 28 is
drawn through the experimental data, and continues
smoothly for small 1/z to the value — 1 for a of the
spherical model., Near 1/2=0, this line is drawn
with the limiting slope 32/7% which is predicted by
theory in three dimensions from an expansion of a
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FIG. 28. Dependence of & and @’ upon the number of
degrees of freedom of the order parameter. The open
circles represent the experimental results for liquid-gas
critical points (z=1), for the superfluid transition (»=2),
and for Heisenberg systems (z=3). The spherical model
has 1/#=0, and yields a=a’=-1. See Sec. V H for de-
tails. Also shown, as solid circles, are the experimental
amplitude ratios A/A’ for n=1, 2, and 3.

in 1/7.% It is evident that the theoretical results
for large n and the experimental data for n=1, 2,
and 3 yield a smooth dependence of o upon . In
particular the very slightly negative a for n=2,
which was obtained in this work, is quite consistent
with the known theoretical and experimental results
for other values of n.

The dashed curve in Fig. 28 is an estimate to
second order in 4 - d of o which wasobtained®® from
the expansion by Wilson® of exponents in the
dimensionality. This estimate also agrees quite
well with the experimental values.

Instead of the exponent, one could also compare
the amplitude ratio A/A’ that is obtained from
measurements on systems with different values of
n. Asfor a and a’, it is expected that A/A’ is a
function only of d and 7. ¥ Therefore, the experi-
mental A/A’ for the liquid-gas critical point, ¥
for the superfluid transition at pressures less than
15 bar, and for RbMnF; (Ref. 58) are shown as
well in Fig, 28. As we saw for the exponents, the
values of A/A’ also fall on a smooth curve. This
curve yields A/A’=1 at the value of 1/7# where
a=a'=0; and therkfore the scaling prediction Eq.
(5. 5) is consistent with experiment. The larger
values of A/A’ obtained for the superfluid transi-
tion at the higher pressures are indicated by the
arrow on the point for 1/2=0.5. They could also
be connected with the results for other » by a
smooth function; but the curve through the large
A/A’ for n=2 and through the results for n=1 and
n=3 would not yield A/A’=1 when a=a’=0, and
would therefore be inconsistent with scaling.

VI. SUMMARY AND CONCLUSIONS

In this paper we have described modifications
which were made to previously discussed apparatus
and procedures! for the measurement of thermo-
dynamic properties near the superfluid transition.
With these changes, the transition was investigated
as a function of pressure by measuring the heat
capacity at constant volume C, and the pressure
coefficient (8P/ 8T), along six isochores. The re-
sults, together with those at vapor pressure, +?
provide a complete thermodynamic description of
the transition, and were used to derive the heat
capacity at constant pressure C,, the isobaric
thermal-expansion coefficient @, the isothermal
compressibility «, the ratio y of C, to C,, and the
isentropic sound velocity #, all along isobars. The
results span approximately the range - 102 <7- T,
=102K. In addition, new values of the tempera-
ture derivative of the volume and the entropy along
the X line were obtained from the measurements.

The results for the heat capacity at constant
pressure C, along isobars were analyzed in terms
of power laws, and the resulting parameters were
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compared with theoretical predictions, 3+438=41:59,60
We summarize the results as follows.

(a) When the data with e=17/7T,—-11=1.6x10"°
were fitted to a pure power law, the resulting ex-
ponents a and a’ above and below 7', within their
statistical and systematic errors were not equal to
each other at some pressures. From this it fol-
lows either that the theoretical prediction®* o = o’
for the asymptotic exponents is not valid, or that
there are large contributions to C, even for small
€ which are not attributable to the asymptotic be-
havior.

(b) Since pure power laws in conjunction with the
data are incompatible with theory, the results were
next fitted to power laws with singular correction
terms. The higher-order contributions were also
written in the form of power laws. The high sta-
tistical correlation between the larger number of
parameters in this analysis resulted in larger er-
rors for @ and a’. Independent of pressure, -
-0.04=a=a'=0.02 was obtained. Within these
larger errors this result is consistent with the
theoretical prediction®* o= o’ and with universal-
ity. 10

(c) When the exponent for the correction term
was fixed at the recently predicted*® theoretical
value of 0,5, the permitted range of @ and o’ was
restricted to - 0.04<a=a’=0. 00.

(d) The ratio A/A’ of the amplitude above and
below T, of the leading contribution to C, was in-
sensitive to the value chosen for a, provided the
constraint @ =a’ was imposed. For all a, we
found A/A’>1. Therefore, the data agree with
theory®* only if a=a’+#0; for if a=a’=0, then
scaling requires A/A’=1,

(e) If the correction exponent is fixed at a value
near 0.5 as theoretically predicted, *° then the
measured amplitude ratio A/A’>1, the scaling
law®* A/A’=1if a=a’=0, and the result of (c)
above permit only negative values of o and a’.
Thus, we obtain agreement with theory only if C,
is finite at T,.

(f) The permitted range —0.04 <a=a’<0 is in
good agreement at all pressures with recent mea-
surements® of the exponent ¢ for the superfluid

density p, and the scaling prediction®**! ¢=4(2
—a’). The values permitted for o and ¢ also
agree well with the result o =-1/50 and ¢=0.673
obtained from recent calculations, 3+

(g) Regardless of what choice is made for a and
a’ within the permitted range, the data show that
the amplitude ratio A/A’ depends upon the pres-
sure. Although explicit calculations for A/A’ have
not been made, no pressure dependence is expected
for this quantity.

(h) Although the measured C, can be fit well by a
pure power law and does not by itself provide evi-
dence for the existence of singular correction
terms, such higher-order contributions have been
observed more directly for small ¢ in the thermal
conductivity A of Hel (Ref. 6) and in the superfluid
density p, of He1I.** Therefore, invoking such
terms in order to obtain agreement for the leading
exponents with theory is not unreasonable.

(i) The finite value of C, at T, which is obtained
from the data with a negative a= o’ is only 2-4
times larger than the largest measured C,. If
a=a’=-0.02, then C, may be continuous only for
P<15 bar, and will be discontinuous for larger P.

() A very slightly negative exponent is consistent
with experimental and theoretical results for other
systems and a smooth dependence of exponents
upon the number of degrees of freedom of the order
parameter.

We summarize our results by stating that nearly
full agreement between our data and existing theo-
retical predictions®*'3%~*! can be obtained only if
singular higher-order contributions to C, are per-
mitted, and if C, is finite at 7, (i.e., a=a’<0).
Even in this case, the ratio A/A’ of the leading
amplitudes depends upon the pressure. This pres-
sure dependence appears contrary to theory. In
addition, the data are not consistent with a con-
tinuous C, at all pressures if o and a’ are univer-
sal.
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