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Turbulent-plasma phenomena in laboratories and in the ionosphere are often associated with plasma
inhomogeneities. As a plasma inhomogeneity, we consider a partially ionized gas with a mean density
gradient in a nonuniform mean electric field and a strong magnetic field. Because of drift instabilities, the
plasma becomes turbulent in the plane transverse to the magnetic field. We propose a method of a repeated
cascade, and derive the spectral distributions for the turbulent density and field Auctuations in the
production, inertia, and dissipation subranges of the universal spectrum. The results predict k 3, k ', and k ~

laws in the respective subranges for the density spectrum, and a single k ~law for the field spectrum. As the
plasma inhomogeneity may be embedded in an atmospheric turbulence, we also study the effect of the
atmospheric turbulence which drives the plasma inhomogeneity. The theoretical predictions are found to
agree with data from laboratory plasma experiments.

I. INTRODUCTION

For plasma turbulence we can distinguish be-
tween a homogeneous plasma and a plasma in-
homogeneity. The latter possesses a mean den-
sity gradient and a nonuniform electric field which
serve as sources of energy input into the flow
of energy across the spectrum, and there-

foxee

has the full sequence of production, inertia,
and dissipation subranges in its spectrum. The-
ories of plasma turbulence have treated weak tur-
bulence and strong turbulence in a homogeneous
medium. The turbulent motion in plasma inhomo-
geneities contains too many physical parameters

to be treated by dimensional analyses, which be-
come too ambiguous. On the other hand, most
analytical theories in hydrodynamic turbulence
cannot even satisfactorily predict a Kolmogoroff
law with one parameter. Therefore, we shall
resort to the method of a repeated cascade, which
extends the single cascade describing the transfer
of energy across a spectrum to include further
cascades which describe a memory chain and which
determine the eddy viscosity. Mathematically
speaking, a hydrodynamic turbulence is described
by one equation of motion, since the Navier-Stokes
equation of momentum and the equation of continuity
can be combined to determine the velocity after
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eliminating the pressure, while a plasma turbulence
is described by a system of two equations govern-
ing two variables: density and field fluctuations.
Therefore, the plasma turbulence will be treated
by means of the above repeated-cascade method
extended to two equations. Since the mathematical
details of the technique of the repeated cascade
have been fully developed in Ref. 4, we shall re-
strict ourselves to a discussion of the physical
features and emphasize the application of the meth-
od to a plasma and the derivation of the subsequent
results.

II. DYNAMKS OF PLASMA INHOMOGENEITY

A. General Considerations

Theories of the dynamics of plasma inhomogene-
ities are based upon a fundamental system of
equations governing the evolution of density and of
induced electric field. In the past such a funda-
mental system of equations had been derived
for a laminar plasma in a background of a con-
stant, external electric field. They are therefore,
valid for weak plasma inhomogeneities. However,
in strong plasma inhomogeneities, turbulent mo-
tions can be generated, and they require a system
of dynamic equations for turbulent motions in a
nonuniform background, i.e. , in the presence of
an inhomogeneous density and an inhomogeneous
electric field.

In a plasma dominated by collisions, the relaxa-
tion time for the approach to equilibrium of the
transport properties is short, so that any flux
should be proportional to Vn, or VT, only, and not
to their higher powers or derivatives. Consequently
an adiabatic approximation can be adopted to sim-
plify the determination of the particle velocities
and their elimination between (2. I) and (2.2). By
omitting the details of the calculation, we find as
a result of such elimination

'+v. [n,(Q, +q,)]=V (D,Vn,), (2. 4)

~(c)
g

a a

where

q. = —(o./e. )&((

is an induced drift, and

Q —V pQ + Q(g)

is the sum of a wind drift V, an external drift from
electric and magnetic fields

Q.*= ' (E,+yxB/c),
0

and an external drift from gravitational and temper-
ature fields

8n
8g
'+V n,v, =O, (2. I)

m~, ' +v, - Vv, =m, n,g-k T,Vn, +n,VT,
BI,

V K=4v Z n~, ,

+ n,e,(K+ v, x 5/c)

—m, n, v.(v, —V), (2.2)

(2. Sa)

(2. Sb)

where v, is the velocity, n, is the number density,
T, is the temperature, m, is the mass, and e, is
the electric charge. The subscript a refers to the
species electron or ion. Further, k is the Boltz-
mann constant, g is the gravitational acceleration,
E is the electric field, 8 is the magnetic field, V
is the wind velocity, c is the speed of light, and
v, is the collision frequency between the ionized
and neutral particles. Collisions between the
ionized particles are neglected.

8. Transport Properties and Dynamical Equations

%e analyze the transport properties of a plasma
by means of the following equations of continuity
and momenta for individual species:

8 - - kT.g+=g — —+V V V — ' VlnT,et a
(2. 5)

Here n, u, is a conductivity tensor and D, is a dif-
fusivity tensor.

IH. SIMPLIFIED EQUATIONS OF MOTION

The system of Eqs. (2.S) and (2.4) is too
complicated for the study of turbulence. It is nec-
essary to simplify them by introducing the follow-
ing approximations:

(i) The turbulent plasma motions will be studied
in the plane transverse to the magnetic field.

(ii) The magnetic field is strong, so that the ratio
a, of the gyrofrequencies to the collision frequen-
cies of ions and electrons is large.

(iii) The time scale for the realization of the
quasineutrality condition(n, =n, =n) is smaller than
the time scale for the rate of change of density in
the low-frequency plasma turbulence with which
we are concerned.

(iv) The mean temperature gradients, as well as
temperature fluctuations, will not be considered.
As a result, the present study will not apply to
very large scales of turbulence, comparable to
those of gravitational instability, or to plasma
turbulence induced by heating, e.g. , by xadar and
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en A 2—+V n(U+u)xe =DV n
9g 8

V'n[U+u+ (V+U ) &&e j=XV n

where

(S.1)

(8.2)

Cu=- —Vy
g+0 U =—

gy
8»

(S.3a)
D—= D, , X=z((Dq —D )

laser.
(v) The diffusion coefficients are assumed con-

stant.
(vi) The dynamical states of the atmospheric en-

vironment, including mean motions and fluctua-
tions, are assumed given, or not to be modified by
the introduction of plasma turbulence. In this
manner, it is not necessary to write down the equa-
tion of motion of the atmospheric environment.

Under those conditions, we can simplify drasti-
cally the dynamical equation (2. 4). We shaH re-
write it for ions and electrons separately and take
the sum and the difference of the two equations.
By omitting the details, we find for two dimensions

et
+Y.Vn =-w V(N+N')+DV n', (4. Sa)

(Y) =(U)xe, , (Z& +tf+((V)+&U,))xe, ,

Y'=(U'+u)xes, Z'=U'+u+(V'+U~}dies,

~here P, (U), (V&, and (U~) are permanent, or
mean, environmental quantities, while N', U', V',
and U» are environmental fluctuations representa-
tive of the atmospheric turbulence. Finally n' and
u=——(c/B)V p are fluctuations representative of the
plasma turbulence. We note that P, (U), N', U'

refer to an ionized environment, and (V), (UP, V,
U» refer to a neutral atmosphere.

By means of the above decompositions into a
mean and fluctuations, we can transform Eqs.
(4. 2) for the total motion into equations for the
mean quantities and for the fluctuations. The latter
lumps together the turbulent motions from the
plasma and the atmosphere, and it is necessary to
separate them. Omitting the details of the calcu-
lation, separation gives the dynamical equations
for the fluctuations of plasma turbulence in x space
as follows:

and g* is defined by (2. 5), which is approximated Z Vn'=-u V(N+N')+XV n' (4. Sb)

g*=g- —+V'v' Vet (3.Sb)

The diffusion coefficients D and X originate only
from the two-dimensional diagonal components
which are isotropic. The off-diagonal components,
which have opposite signs, will not contribute to
the right-hand side of Eq. (2.4), upon which Eqs.
(3.1) and (S.2) are based. We note that

In the derivation of the system (4. 3) for turbulent
plasma motions, we have made use of the properties
of a solenoidal field (2. Sb), and of the Poisson
relation (2. Sa), which are degenerated to the qua-
sineutral form

V u=O,
entailing

V Y=O, V. Z=O .
)&D .

IV. DYNAMICAL EQUATIONS FOR A

TURBULENT PLASMA

(3.3c) Also we have omitted the terms involving global
averages appearing in (4. 8), i.e. ,

(Y''. vn'), (Z'. vn'), (Y' mr'),
(Z' ~ V~r) (0 VK), (u'V& )

Y =%+w,
A

W-=U&e~,

r

Z =U+u+(V+U, ) &&es,
A

w =0+8' (4. 1)

reducing the dynamical equations (S.1) and (S.2)
for low-frequency plasma to the form

en
~ = 2—+ V'nY =DU n V'nZ =XV n

eg y (4. 2)

The variables n, F, and Z can be decomposed
into a mean and a fluctuation:

n = R+N'+n',

with

Y=&Y&+Y', z =&z)+ z',

For the sake of simplification of writing, we in-
troduce the following new variables:

since they will not contribute to the spectral bal-
ance. In a locally homogeneous turbulence, i.e. ,
where the homogeneity extends to a limited region,
the global average, as denoted by brackets, can
be obtained by a spatial average over that limited
region.

In Eqs. (4.Sa) and (4. Sb) for turbulent plasmas,
the following transport processes appear:

(a) The convections are represented by

(Y& Vn' &Z) Vn'

(b) The productions are

VP, u vF.
(c) The atmospheric coupling between plasma

turbulence and atmospheric turbulence are
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VN', u. V'N'

(d) The mode couplings are

w. Vn, u. Vn

(e) The molecular dissipations take the form

DV n', XV n'

In order to analyze the wave interactions more
adequately, we introduce a Fourier transform

n(t, x) = f dke"'*n(t, k),
and transform the system (4. 3) into the following
dynamical equations in k space:

~%I

+ ~ dk'tk''Y (k —k )n(k )

give relative macroscopic and random components,
and are denoted by (. .), ( ~ ~ )~", . ... They
are determined by cascade distribution functions,
which govern the velocities of many ranks, anal-
ogous to the distribution functions governing the
velocities of many particles in the statistical
mechanics of many bodies.

Upon applying the method of cascade decomposi-
tion~ and its rules of screening, we can transfoxm
the dynamical system (4.4) into a cascade system
of zeroth rank,

si Ii'. [&f(i- ic')) + V'(i -K') I~'(ic')

t+ ec&

dk tk [w (k —k )N(k')

(4 4»
a ~00

+(y (k-k')n &(k'))'"] Dk'n'-(k)

For the sake of brevity, we have omitted the
time argument t in the equations, and shall re-
store it when the need arises.

Although the writing of the mean background in
k space could permit going to strong inhomoge-
neities, we neglect the presence of a curvature in the
mean profile; thus

«&=-0 . (4.4c)

Also we shall neglect

(vent)2-=o, (4.4d)

since any turbulent flux should be linearly propor-
tional to VN as a driving force, in compatibility
with the Onsager general linear relation between
fluxes and forces in transport processes.

f dk'8' z(k-k') '(k')

= —f dk'tk'. u(k —k')N(k') —Xk n'(k) . (4. 4b)

f"dk'if&. ' [(Z(k —0'))+ Z'(k —k )]n'(k')
= —J dk'tk' [u'(k —k')N(k')

+(Z'"(k -P)n"&(f'))&'&)- &
a'n'(k) (5 lb)

and a cascade equation of first rank,

~d" (t, k)+Dn'n&" (t, k) =a&"(t, r), (5.2»

d n'"(k)=- "
+ ~ dk'f'k' [(Y(k-k'))

N

+ Y (k —k')+7 &(k —k )]n~ &(k )

called the "Langevin equation of turbulence, "
where

I&"&(t,k) —= —f dk'tk'Pw~'&(k —k') [N(k') +no(k')]

+(Y"&(k—kQ'"(k'))" ] (5 2b)

18 a driving force~ and

U. CASCADE SYSTEM

We shall apply the repeated cascade method, in-
troduced by Tchen for hydrodynamic turbulence,
to the dynamic system (4.4) for plasma turbu-
lence. For this purpose we decompose n' into a
series of ranks

n =n +n +'

and, similarly, for the other fluctuations. %'e take
the wave numbers k, 4'~', . .., which are the

'

boundaries bebveen adjacent ranks as independent
variables which will enter later in differential or
integral equations. *'Cascade ensemble averages, "
i.e. , ensemble averages of different ranks, will
be used to discriminate among the ranks. They

is a substantive, or Lagrangian, time derivative.
Terms from the first-rank fluctuations in (5.1)
will generate transport properties.

In analogy with the Brownian motion of mole-
cules, we have called (5.2a) a Langevin equation of
turbulence, with the wave number as a parameter,
in the sense that d, n~ &(t, k) represents the time
rate of change of n~ &(t, k) carried by a fluid ele-
ment which has a total streaming velocity (Y)+Y
+/~ ~ composed of ranks equal to and lower than
the first. Since the calculations of all transport
properties, molecular or turbulent alike, are based
upon such a Langevin equation, it will be used here
also as a basis for calculating eddy viscosities.
For that purpose, we make a formal integration,
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=- f dt'I)'"(f' k)y

for the first rank, or to

(5.4a)

n' )(f, k) = f dt'a' )(f', k)
0

for a more general rank e. The viscous damping
in formulas (5.4) has been neglected, being small
compared to the eddy mixing process. If such is
not the case, formulas (5.8) should be employed.

(5.4b)

VI. TRANSPORT PHENOMENA IN TURBULENT PLASMA

A. General Considerations

The density no and the field u~ are governed by
the cascade system (5. 1), from which we can de-
rive the equations for the development of the spec-
tral distributions of the density and the field,
called the "equations of spectral balance, "deter-
mining (n (f, k)s (f, —k}& and (u (t, k) u (f, —k) .
Since several transport processes are involved in
the dynamical system (4. 3), we must expect that
similar transport processes will appear in the
equations of spectral balance, which will be cate-
gorized as transport functions of the density and
the field in Secs. VI 8 and VIC, respectively.
Simplifications obtained by assuming local homo-
geneity will be discussed in Sec. VID.

The turbulent transport processes axe controlled
by eddy mixing, and therefore will call for "eddy
diffusivities of density and field fluxes, " to be
studied in Secs. VIE and VIF.

giving

n'"(f k) = f df'e- ~ ' "-'I'"(f' k)+n'"(O k)e-'~~

(5. Sa)

Since a correlation from variables of first rank
contributes to a transport property, and is attached
to a background Vno of rank zero, the upper limit
t wiQ belong to the time scale of the rank 0, which
is much larger than the duration of that correlation.
Therefore, that upper limit can be replaced by ~.
By the same token, the inital value will not be cor-
related with any fluctuation at time t, thus sim-
plifying (5.Sa) to

n'"(f, k)= j d 'fe-' "-")I&"(f'k) (5 Sb)

dk'fk) [(m (k —k')no( —k)PN(k')

+ (w', (k -k')s'( -R)II (k')P]

where

n ('&y")(k -k'}n())(k )&(~)so( K)&0

—DI '(n'(k)n'(- k)&'+ (k- —k), (e.2)

Z'(k} = J dk'Zc' ([(Y(k- k')&

+ Y (k —k')]n (K')n ( —R)&

represents the complex-conjugate part, obtained
by replacing k by —k. We shall sum up all the
wave numbers contributing to the zeroth rank,
i.e. , covering the spectrum in the range of wave
numbers between 0 and 0,

8

2 et
dk)('(n'(k)s'(- k)P+Ifo=S'„- C„' 6 D'„,

(e. 5)

where Id„', S T„, C„, and D„are called the con-
vection, production, transfer, atmospheric cou-
pling, and dissipation functions, respectively, and
are defined by

S'„=—J f dkdk'i}t,')('(w', {k—k')I'(- k}&'II(k'),

C„'= J f dkdk'f}t) )f'(I', (k —k')s'(- k)IIO(k')&',

Z'„= f J"dkdk'fn, ')f'((9"(k-k')s&')(k')&")so( l)P,

D„'=nr', P= fdku Y(s'(-k)s'(-k)&'

Z'„= f f"dk)f'If'(k) . (e. 6)

Ko(k) is defined by (6.3). The inclusion of a com-
plex-conjugate part, obtained by the property of
reversibility (6.4), is understood, and therefore
is not written explicitly.

C. Transports of Field

is a convection of an inhomogeneous spectrum (6.1)
by a streaming velocity (Y&+Yo. The notation

(k--k) (e.4)

B. Transport of Density

The time evolution of the density spectrum

(s'(k)s'(- k))' (6.1)

is obtained by multiplying (5. la) by n ( —k), giving

—„(n'(k)n'( —k)&'+ If'(k) +If'(-k)

Upon multiplying (5. lb) by no( —k), we obtain an
equation fox the field energy in the form

(e.7)

similar to (6.5), where K~, S~, Co, 1~, and D~
are the convection, production, atmospheric cou-
pling, transfer and dissipation functions, respec-
tively, governing the field spectrum. They are
defined by the expressions
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Z', = J J dkdk'e, 'q&[&Z(k kq&+@(k kq~

x s'(k')s'{ —k)&',

O'„= J J dkdk'fl, 'X'&s', (k —k')s'(- k)W'(k')&',

T'. = J f dkdk'@'X'«S&"(k-kgb'"(B&'"

x sa(- k)&',

D~=XJ

similar to (6.6).

(6.6)

S» = —J J dkdk Aq Xo&s,'(k -k)s'( k)&'&(k'),

into the transfer functions Z„and I ~ ~

The transfer functions are the most difficult to
calculate, as they are in the form of triple correla-
tions. As will be shown in Sec. VII, a repeated
cascade method will upgrade them to quadruple
correlations in the form of a product of tmo pair
correlations. The tmo pair correlations may be
tmo autocorrelations, one fx'om the plasma mo-
tions and the other from the atmospheric motions,
or, alternatively, the pair corx elations may be in
the form of a cross-correlation bebveen the plasma
and atmospheric motions, such as

&m'Vs'&0 (e. 1Oa)

D. Locally Homogeneous Turbulence

We shall assume a locally homogeneous
turbulence, in which me have

Id„'=0, If~ =0

For the same reason, me also have

&9"(k)d "(k')&'" = x'"&8"(R)d"(-k)&'"e(k+k'}

(6.9)

where

y.
' '=(v/X' ')'

and X'"~ is a length, characteristic of the extent
of the local homogeneity of &F~ '(x) F,' '(x))'"', when
a space average is taken. Similarly, me have

&n'(k)s'( —k')&' = )f'&s'(k)N'( —R)&'5(R+R')

Therefore X' is the size of the region within mhich
&[so(x)PP is locally homogeneous.

E. Basic Coupling and Transport Processes

The basic variables of the plasma turbulence
are n~ ~ andu~ '. The zeroth ranks of these vari-
ables are governed by the system of Egs. (5. la)
and (5. 11), and the transport functions are derived
in (6.6) and (6.6). The coupling of the plasma
motion, as represented by the variables @~N~ and
u~ ', with the driving mean density gradient VN,
is responsible for the generation of drift plasma
turbulence, and is represented by the production
functions So and S„. A corresponding coupling with
the mean field drift 6 is represented by the con-
vection functions Id„' and Sd„which we assumed to
vanish in a locally homogeneous turbulence. The
coupling between the plasma motion and the density
fluctuation N' ' of the ionized atmosphere resides in
the atmospheric coupling functions C„and C„.
Finally the plasma motions may couple among
themselves, or with the field fluctuation U' ' of
the ionized atmosphere and the velocity fluctuations
V +, U~ ~ of the neutral atmosphere, all entering

&U(i)~C 1)&t1)
&(Q n + U& n) (p 1) W 1))&( 2)

(e. lob)

For cross correlations of the types (6. 10a) and
(6. 10b) to exist, a mean gradient driving a tur-
bulent fluctuation with a mixing length l' is
necessary. For example, in connection with
(6. 10a), we have

e'=-l~ VN

Consequently

Nn =-Nl 'VN

or

&V&vn'P = —&1' v'vvÃ
=-0 (6. 11a)

F. Eddy Diffusivity of Density Flux

The time correlation of Y' ' gives, by an in-
tegration, the expression

fi'.g'(&) = J, df'X'"&d~" (f, k)d (f' -k)&'",
(e. 12a}

following the assumption (4.4c)~

In an analogous may, me can shorn that the cross
correlations (6. lob) will also involve a gradient of
a lower-rank quantity. As they contribute to an
eddy diffusivity, such correlations of the gradient
type should be left out of consideration in the pres-
ent transport processes, accoxding to the assump-
tion (4.4d). Hence we shall write the following:

&U(1)&1)&&1) 0 &(+1) U(1))(pl) pl))&(1) 0C

(6. 11b)

In conclusion, the transfer functions mill be the
product of two autocorrelations, either both aris-
ing from the plasma motions, or one each from the
plasma and atmospheric motions.
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(6. Isa)

An eddy diffusivity in x space is obtained by an
integration with respect to dk:

n'.,'=- n&„'(x/u -') = f dk n&. )(~)

have k ' as a lower-bound wave number.
A reduction to isotropic form is obtained by

writing

(6. 13b}

called the "eddy diffusivity of density flux. "
By inspecting (5. Ia), it is recognized that the

average &Y& )n& '&' ) has a rank value a —1, and

that the time integration (6.12a), which has been
subjected to a further smoothing process, will yield
a lower-rank value, i.e. ,

II &~)(k) has a rank value less than a-1. (6.12b)

In view of the property (6.12b), we can easily show

that

VII. TURSUI.ENT TRANSPORT FUNCTIONS

A. Transport Functions Covering Density Spectrum

From the repeated-cascade theory of hydrody-
namic turbulence, ' the transfer of modes across
a spectrum occurs in the direction of increasing
wave 'numbers. Therefore, we shall calculate the
mode coupling

«9"(f, k —k' )s")(f, k'))")s'(f, —K))', (V. 1)

as appearing in the function T„of (6.6), by taking
this unidirectional property into account. Con-
es&luently, we neglect the term involving Y ) in
the Langevin e&luation (5.2), and write the solution
(5.31}in the following form:

x [X(f',k")+s'(f', k"))

G. Eddy Diffusivity of Field Flux

(6. 13c)
=-- f dk")I,"f df'y&')(f', k' k")-

[xN(t, k") n+(t, k")]

We introduce an "eddy diffusivity of field flux, "
similar to (6. 12a) and (6. 13b)„

A'„)(}')= f df'X"&8'(f, k)y& )(f', —k))& )

(6. 14a)

in k spacey or

A'y, —= Ay, )(x/k ') -=f dkAg, (})) (6. 14b)

in x space. The symmetry in the indices j and s
may be noted.

If the external fluctuations, represented by U',
V', and U», are not correlated to the internal-field
fluctuation u, according to (6. 11b), we can write
the correlation

Z&~)Y& a'))& I) =&u&~)w&~))&~)=&Q~s)(P~) x ))&~)8

(v. 2)

where we have replaced n (f', k") by n (f, k") in
view of the stationarity of no as compared to Y' '.
Upon substituting (V. 2) into (7. 1}, we have

« y', "(f,k - k')n'"(f, k'))'"s'(f —k) )'

f dk—"ff "f df'&y&"(f k-k')y«)(f', k'-k")&&))

x&s'(f, k")n'(f, —k)}'

(v. 3)

with the aid of (6.9), (6.11a}, a,nd (6. 12a).
The mode coupling (V. 3) gives a transfer func-

tion, as defined by (6.6),

7'„=- f„dk '}f&s( fk)sa(f, —k)}0

using the defintions of (4. 1). This indicates the
absence of a trace. Hence A~&,

~ has the shear
components

(6. 15a}

and the diagonal components

xf dk'op, n&',)(~k'- k~)

:-c,rd„" f"dkk, n, }&'&n'(f, k)s'(f, —k}}'

=- c,n'„V,', , (v. 4)

A = —A +0 A =0 (6. 15b)

The system of E&ls. {6.5) and (6.7) rep~~sent~

the fundamenta1 equations of spectral. balance
for nonequilibrium turbulence. The transport
functions (6.6) and (6.6) will be calculated in Secs.
VII and VIIL The eddy diffusivities n&,

) and A&~,
)

for density and field fluxes, as introduced in (6. 13)
and (6.14), will be convenient &Iuantities in those
calculations.

P,'.= f dka, n. )f'&s'(f, k)n'(f, —I))' . (V. 5)

E&luation (V. 4) involves a normal eddy diffusivity,
defined by (6.12) and (6.13c). In arriving at (V. 4),
we have made the additional assumption that

n&,)(tk' —k I ) decreases rapidly with its argument,
in view of its stationary lower rank value (& 0);
see (6.12b).

The coefficient c1 should not differ much from
unity:
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c,=l (V. 6)

A calculation of the coefficient ci without the above
approximation of the rapid decrease of
Il&',)(lk' —kI), but with the hypothesis of isotropy,
gives

c, = 2/t( (V. V)

Since isotropy does not hold for all contributions to
V„, and a precise determination of the coefficient
requires a model of anisotropy, we shall not
pursue a more precise value of ci, which wQl lie
between (V. 6) and (V. V), but simply use the value
(V. 6) on account of its simplicity.

By a calculation similar to that leading to (V. 3)
and (V. 4), and with the use of (5.4b) for &2 = 0, we
find

-@JX'&I,'(t, k —k')n'(t, —k)~(k'))'

x FO{t', —k —k"))YQV{t,k")X{t,k'))'

= -&P'[ll'.(Ik - k'I)] X'&&(t, k')&(t, -k'))',
which transforms the functions 80 and Q of (6.6)
to the forms

S'„=-f dk'nP, ')&0~(k')N(-k')

(A&»3)z obtained from A&»e' by retaining the contri-
bution from the field u alone.

C. Eddy Viscosity Tensors

Parallel to the eddy viscosity of the plasma field
fluctuation

~'„'= f dk f,
'

dt')t')&s', "(t, k)~&,.)(t', —k)&' ',
M&o

(V. lla)
we introduce the eddy viscosity of the field fluctua-
tion in the atmospheric turbulence:

g(e) f dk f dt& ~(e)&f1&a)(t k)p. (a)(t& k))(a)
%&a)

(v. in)
%e shall calculate the diffusivities II&, and A&, ,
as defined by (6. 12a) and (6. 14a), in terms of g&,

'
and q(z, ~. For this purpose, we write

&y(a)ge))(e) &W(a)W(a))(a) ~(w&a)w(e))&si

(v. 12)

&g( e)g( e3)( s) &U( e)W( s))(e) (ut e)W(e))( e)

When we substitute {V.12) into (6. 12a) and
(6.14a), and make use of (V. 11), we find the com-
ponents of Il&,

) and A&&e) as follows:

11(e) g(e) +~(e) lie g(e) +~(e)
xf dk [II(,(I k —k'I)]

8N eN
=- co(111,)), , c(3 = 1

xg xs
{v.8)

(e) lite) ($(a) +)I&e))

P( &M) P( fM) P( )+ (O)ii M +f3 + '/l3

A(e) (((a) + )I(e)) A(e) $& a) + q(e)

(V. 13)

where the subscript I' refers to the contribution
from the field u alone, as a consequence of neglect-
ing the contributions fro(n &

Vw'VW')', on the basis
of (6.11b).

B. Transport Function Governing Field Spectrum

Omxttxng the calculations, which are similar to
those leading to (V. 4b), (V. 8), and (V. Q), we find
the transfer function, the production function, and
the coupling functions governing the field spectrum
in (6.8), to be as follows:

Pz = C&AA Pj

8N BNS', = c0{A„)r
ex~ »s

o 8&0 8N
cO, = c&3(A'„)„

xf ~xs

It is to be noted that these transport functions in-
volve the shear tensor A&»), defined by (6.14),
with the properties (6. 15), and the shear tensor

D. Transport Functions in Exphcit and SimpliGed Forms

Upon substituting (V. 13) into (V. 4b), (V. 8), (V. 9),
and (V. 10), we transform the transport functions
into the following explicit forms:

gO c )IOg g (t)I)I )2 g( e) — I1( a) )I( a) —~( a)

t:„-cO)I &(vA( ) ) —2cO))&2
8t)t BN

exi ex2

V'= c&(C'" +n(")& —2c)(62'+ v&2'»12 '
(V. 14)

@a c){412 + )12 )(+12 +22)",[(&',."-C',l') {n2"-n'„")X2 .
From (V. 14), we note that the production of field

turbulence requires a preferential density gradient
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8N/Bxl, giving rise to a preferred second moment

+11 +22 ~12

which has negligible shear component J&2. For the
atmospheric turbulence, we assume similarly that

1)'"=r/'"(x/k')

=.
"

dk
k j& '(x/k')

(8. lb)

(8.1c)

(g 2 0 g 2 0 8 g 0

S„-cogJ,0 0

C'„=c,&f'P, P =((VN')')', (7.15a)

Under these circumstances, we can simplify (7.14)
to read for the density spectrum

l 2
k& a&2&)&a~1) (x/k& a))

k& a-&)
(8 ld)

The identity (8.1b) is based upon the property
(6. 13a). The hierarchy (8.1) represents a memory
chain, when the eddy viscosity &f&'1(x/k& 1) of
rank &2 is governed by a relaxation fre&luency
k' '

&7& "'(x/k& ') of a higher rank. In Ref. 4 the
closure of the hierarchy was achieved by a viscous
cutoff

7„=C,(g&" + 1)&")8
and for the field spectrum

S„=coneJ ~
0 0

0 0 vO
Cy C0~12u I

Z y =Cl($12 + l12 )8
(V. 15b)

F(k}
1) =C2 dk &,)~)Q)y

(8.2a)

&a+1)(X/k&a)) &a)( /k&a))e-k a jkza

where k', ' is a viscous cutoff wave number, the
value of which has been determined.

The simplest closure of the memory chain (8. 1)
is an inviscid one, reducing (8. 1) to

We note that the above two kinds of transport
functions (V. 15a) and (V. 15b) are similar: those
determining the density spectrum are isotropic,
while those determining the field spectrum require
shear viscosities g2 and lflz', consistent with the
properties of the tensors ff&,

1 and A&~, ', as ex-
pected. The spectral structure of the isotropic
and shear viscosities will be determined in Sec.
VIG.

VHI. STRUCTURE OF EDDY VISCOSITIES

A. Normal Eddy Viscosity for Phsma Turbulence

An eddy viscosity tensor has both normal com-
ponents and shear components, which will be
treated here and in Sec. VIII B, respectively, for
plasma turbulence and in Sec. VIII C for atmo-
spheric turbulence.

For plasma turbulence, we introduce F as the
spectral distribution function of u, and attempt to
derive the relationship between g'&&' and F. The
normal components are assumed isotropic, and
in the following will be denoted by &)& 1:

~(a) ~(a)~

This relationship has been derived in Ref. 4, the
results of which are

with

&"(k) = k'q& "(x/k) (8.2b)

F(k')
&f =c2 dk &,)(k&}~o (Og

The solution of the integral equation gives

&f' 1(x/k ) = [2c2 f2 dk'k' F(k')] I

Formulas (8.2a) and (8.2c) for the eddy viscos-
ities will be used in Secs. IX and X.

It is to be remarked that the isotropic eddy vis-
cosity (8.2a) can also be written in the following
form:

(8.2c)

0 0
l ~If

=2c, f &f1&)&'(u~(k) u ( k))2[&d],"(-k)] '5&l .
(8.3)

B. Shear Eddy Viscosity for Plasma Turbulence

The isotropic viscosity is given by (8.3). Now
we shall calculate the corresponding shear com-
ponents, by first rewriting them in the following
form:

&)2&,
—-c2a f dky2(u2&(k)«2( —k})2[(v&~11(k)] 1 (8.4a)

.ao

F(k') 1fj =C2 dk ka &1)( /'k'), C2 Cl (8. 1a)

for i4 j, with a shear coefficient c2 which is dif-
ferent from the isotropic coefficient c2. The shear
coefficient is
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ag
C2 =CQ (8.4b)

= —coc, ' —y'(u~(k) u~(- k))0
BXg 2

x [(g'„"(k)]', (S.5)

From the calculation of shear stress made in
Ref. 4, we find

)f'(u', (k)u,'(- k)&'= —c,q'(k)
BXg

sume a cascade decomposition of U', we can de-
fine E, by

f' dks. (k) =-.' f dk}f'{U'(k) U'(-k))',
and find the eddy viscosities g', g'", g~, and g, ~'

in the atmosphere as follows:

a y {k)( =c~ dk (f)( )Q) 4f

where use of (8.2) has been made.
When we substitute (8.5) into (8. 4a), we obtain

Q + & BU'g BU&= —Ca CQCg—
2 BXg BX]

x dk-,' }('&u~(k) u~(- k))'[(o' "(k)] '
4 co

which may be rewritten

g'" = [2 f"dk'k' 'F (k')]"'

E,{k)
va = c3

[ (&) (k)]a t

Ea(k)
"a =cS dk [~(n{k)]8

pO (dg

Q Q4]g=- VII'~g y

(&) (&)
4~g =-ve I'~g i

(8. 10a)

Q Q
R&g= —I &yves

using the notations

(8. Ga) where

&&"(k) =k'g&" (k)

BP] 8U~

BX
+

BX

vvo=c, f dkF(k)[(o'j,"(k)]',
1

C3 = g C3 CQCg

Similarly for the next rank, we have

(&) ~ (&)
4g

———EkfvF

with

v',"=-v',"=c, f, dkZ(k)[(o~v" (k)]~,

where we can write

V( &) V( &)
Vp —Vg

(S.Gb)

(S.Gc)

(8.Gd)

(8.Va)

(S.Vb)

for the same reason as stated in (6.12b).
The formulas (S.Ga) and (8.Va) give the shear

components of the eddy viscosity.
When we differentiate (8.Vb), we find

„,= -c,Z(k')[(o'"{k')] '

= —c,(k,) -'Z(k') Pq"&]-', (8.S)

with the use of notation (8.2b). When we further
make use of (8.2c), we can transform (8.8) into

dvz & z d lng(

dk ="'~(') dk' (S.8)

a useful relation between vz and q

C. Normal and Shear Components of Eddy Viscosity
for Atmospheric Turbulence

If we introduce a spectral function I', for the
velocity U' of the atmospheric turbulence, and as-

is the relaxation frequency of the eddy viscosity
The relationship between v', ' and $'" is

d ") din (')dv g 0~ ding
daQ

(8.10b)

The derivation of Egs. (8.10a) and (S.10b) for
atmospheric turbulence is analogous to that of
Eqs. (S.2)-(8.8) for plasma turbulence, and is
therefore omitted.

We conclude that Egs. (8. Ga), (8.Va), and
(8. 10a) enable the eddy viscosity tensors g

' ' and
q' to be transformed into the scalar quantities

and v', ', respectively. These scalar quan-
tities, having the dimensions of the square of a
mixing length, will be called the "eddy dispersion"
of plasma and atmospheric turbulence, respec-
tively.

IX. EQUATIONS OF SPECTRAL BALANCE IN
UNIVERSAL RANGE

We can divide a spectrum into a nonuniversal
range, dependent on the special turbulence-gener-
ating agents, and a universal range governed ex-
clusively by the transport functions (V. 8)-{V.10)
at large wave numbers. In the universal range,
we can write the transport equations (6. 5) and
(G. V) in the form

called the "equations of spectral balance. " The
functions without superscript 0 are obtained by
putting kQ=~ in the same functions with a super-
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script. Thus, we have

S„=3o(ho= ),

c„=c'„{h'= ),

D„=Do{ho

S.=S',(h'= ),

c,=c'.(h'= ),

D, =D'„(h'= ) .

Stl Cn+ I n

—cor„[vo~(Z+ 8) —(v". ) + ~~~")p]+ )).8
(9.2a)

(9.2b}

Here the formulas (8.6a), (8.Va), and (8.10a) for
expressing the tensorial eddy viscosities, as they
occur in (V. 15), in terms of the scalar eddy dif-
fusivities YF" and v',"have been applied.

The system (9.2) governs the density spectrum
G, as carried by the function J, and the field
spectrum I', as carried by the functions g(" and

The two spectra are coupled in general. Be-
cause the plasma consists of electrons and ions,
two diffusivities D and X determine the dissipations
D„and D„. The plasma inhomogeneity is repre-
sented by a mean density gradient Bio and the

gradient I',2 of the mean electric field. The eddy
viscosity )}'"controls the transfer of density from
small to large wave numbers across the spectrum
in a homogeneous field, while the eddy dispersion
v(F ~ controls a similar transfer in the fieM gra-
dient. In addition, an eddy viscosity $"' and an
eddy dispersion v('~ of the atmospheric turbulence
will couple the plasma turbulence with the atmo-
spheric turbulence.

We distinguish two cases. Case a: Self gener-
ated Plasma turbule)v:e in the absence of atmo-
sPheric turbulence. The governing equations of
spectral balance are obtained from (9.2), by ne-
glecting

j())(()I(o p()) (( P(&)
y I F

and thus transforming (9.2) into

With the simplified forms (V. 15a) and (V. 15b) of the
transport functions, we can rewrite the equations
of energy balance (9.1) in an explicit form:

c,q'-(J+ J',)+c,{g'"+)}'")8+DP

X. SPECTRAL LA%PS IN SELF-GENERATED PLASMA
TURBULENCE

A. Inertia Subrange

We distinguish the following subranges: inertia,
production, and dissipation subranges. The inertia
subrange is the simplest, as it is governed by a
transfer function alone. All other subranges re-
quire the flow from one process to another, along
each spectrum or between the two spectra. We
shall discuss the inertia subrange first.

The inertia subrange is characterized by the
mode coupling alone, with a constant transfer
across each spectrum. Thus, by neglecting the
production and dissipation functions, the equations
of spectral balance (9.3) are degenerated to

c,)}"V'=D„,
cor„v"V'=D, .

By eliminating t, we find the relation

)}(0 r (D /D )p&&)

which gives, after a differentiation,

dq'" D d~'"
dk D„dk

~c Dz 1 ding( ~

D„k dk

on account of (8.9), and yields the solution

(1) ~C ~12+E a. 2

Dy

{10.la)

(10.lb)

Here and in the following, we have omitted the
superscript in k by replacing k by k as an inde-
pendent variable.

With the use of the relation (8.2c) between )}' )

and E, we find, from (10.2),

co)}' '(Z+ J',)+c)g~ V'+D J =D„, (9.4a)

cor„[v~),"(Z+d.')+ v", V']+)i/=D, . (9.4b)

The system (9.4) indicates that the production
and coupling functions require the presence of g( '
and TF, while the transfer and dissipation func-
tions do not.

q'"(Z+P)+DP =D„,
r„u'")(2+a')+) P=D, .

(e. sa)

(e. sb)

Z=~(r,~/)). )'h-o, ~=sc ocoo=- —,'. (10.3)

A substitution of (10.3) into (10. la) further gives

Case b: Passive Plasma driven by atmospheric
turbulence. The governing equations of spectral
balance are obtained from (9.2), by making the ap-
proximations

0 = B)(dX/r)o)h ), 8) = cJcoco = 2

B. Production Subrange

(10.4)

q(1) ~(. p(1) -(1) (-& -(1)"F "e

and are therefore reduced to

In the production subrange, molecular dissipa-
tlons are not effective, simplifying the equations
of spectral balance (9. 3) to read
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c,q'"(J+J') =D„,
cor„~"(J+J ) =D,

(1O.5a}

(10.5b}

Equation (10.10b) may be replaced by

-1 d in/ (1)
—cpc2 cBJI'12& k =2k G (10.10c)

The equation governing the F spectrum is found

by eliminating J+J between (10.5a) and (10.5b),
yielding, as a solution,

F=X(r„D/~)'k" (10.6)

d'" —-
J+n(1)2k2G = 0

dk
(lo. v)

where we have neglected J, since

J «J

which is identical to (10.3).
On the other hand, the G spectrum should be

governed by the flow process across the spectrum,
as a result of the interaction between the produc-
tion and the inertia transfer, which process can
be best described by a differential form of Eq.
(10.5a) for the spectral balance of density; we have

The system of Eqs. (10.10a}and (10.10b) or
(10.10c) yield the solutions

F=W(r,~/~)'k-', &=2c,-'c', =-', ,
G = Bn( JI'&3/X)k ', Bp = 2cocq'cs ——1.

(10.11}

(10.12)

It is to be noted that the field spectrum F(k) takes
the identical law in all subranges (10.3), (10.6),
and (10.11).

D. Critical Wave Numbers

The critical wave number k, separating the
production and inertia subranges is calculated from
the ratio

(J'/J)„, =1,
with J determined by an inertial spectrum (10.4).
We find

in the range of small wave numbers involved.
When we substitute the value of F from (10.6), or
equivalently the value of g'" from (10.2), we ob-
tain the density spectrum from (10.7):

k =B$ (rg2J/X J) Bg' = I/&2

(10.13)

G= Jk (10.8)

(1)
coJ + (XI'g+covpi)2k G = 0

(10.9)

The dissipation subrange is characterized by
large-enough wave numbers to justify the approxi-
mation

where J—=J (k=~). In view of X»D, according to
(3.3c), and of the large wave numbers considered,
we can also make the approximations that

(1)X + cpI'12vp D+ cd("=-a,

reducing the system (10.9) to

C. Dissipation Subrange

In the dissipation subrange, the nonlinear mode
transfers are dissipated by molecular diffusion.
In order to prescribe such a dissipation, we dif-
ferentiate the system (9.3) of spectral balance and
neglect the production functions, giving

dg("
c J

dk
+(D+c q' ')2k G=0

k), = (-,'c'c, A)"'(I'„/x)'~'

with

(10.14a}

(-'. chic, A)"'=- I/vY

XI. INHOMOGENEOUS PLASMA DRIVEN BY
ATMOSPHERIC TURBULENCE

A. General Considerations

(10.14b)

We consider a plasma inhomogeneity embedded
in an ionospheric background which is highly
turbulent, so that the field fluctuations generated
by the turbulent motions of the plasma are negligi-
bly small, as compared with the background tur-
bulence in the ionosphere. Under such a circum-
stance, the plasma can be considered as being a
simple passive species driven by an external tur-
bulence. The plasma itself may possess a mean
density gradient.

B. Inertia and Dissipation Subrange

The critical wave number k„separating the iner-
tia and dissipation subranges is calculated from the

equalization at this wave number between the trans-
fer and dissipation functions, L e. ,

c,(&'")~a~=D,
giving

1dvy 2
(1)

—cp JI'12K
dk

=2k G

(10.10a)

(10.10b)

In the study of the spectrum of the plasma tur-
bulence in the inertia and dissipation subranges,
we neglect the production function, reducing the
equation of spectral balance (9.4a) to the form
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J = D J/(c) $( '+ D) . (11.1)

where g(" is given by (8. 10a).
A simple differentiation of (11.1) yields the den-

sity spectrum G in terms of the background field
turbu1, ence:

In order to discuss the flow process across the
spectra, we differentiate (11.8a), giving

c() (el+ c/ ) + co)i + c) J

d DJ
C P{&)+ g)

(11.2)
+egg = 0

u = c ' 2c~
D m+1, (ll. 4)

as the critical wave number separating the inertia
and viscous subranges.

For k & k~, E(l. (11.3b) degenerates to
mg/3~+ -2( c2 g-1/2D~(~w) /2

4 (m+1
(11.5)

b. Viscous subrace (k &kn). For k&kn, E(l.
(11.5) degenerates to

1/2m + 1 2C2 g/p CJ +Nt47) /3
4 m+1 B

(ll. 6)

If the background held turbulence, as represented
by the fluctuation U', has a spectrum I', following
the power law

(11.3a)

then the density spectrum ( in the plasma inhomo-
geneity is derived as

1/P
w'/'as

4 m+1

C 1/2c2 g|/By&fft+1) /8 p&fft+7) /8+'m+1
(11.3b)

which degenerates to the following asymptotic
forms for the inertia and viscous subranges.

a. Inertia sub)'ange (k & kn). We find

We shall neglect J, and J, because the production
subrange is restricted to small wave numbers, re-
ducing the differential system to

d {0
7+@")2u'a + g{"m'@=0

dk 4

(11.Sb)

a. Production subrange. If the field spectrum
in atmospheric turbulence has a power law

with m & 3, the production by the gradient J is more
effective than the coupling function in (11.Sb), and
we find

6=Jk

(ll. Qa)

(11.9b)

(11.10b)

b. Combined production and coupling suWanges.
Let the field and density spectra in the atmospheric
turbulence be

(ll. 10a)

It is to be remarked that if we put

m=3 and A, =A(I„D/)()', (11.I)

the production and coupling functions become equal-
ly important in (11.Sb), and we find the plasma tur-
bulence spectra

we would reduce (11.3a}, (ll. 5), and (11.6) to
(10.3), (10.4), and (10.12}, respectively. E =A~k a=(i-a.)a ', (11.11)

C)}("(i+8)+c,j"V'=D„,

col")2[vs{~+&}+v('V'] =D„.
(ll. Sa)

C. Production and Couphng Subrsnges

The equations of spectral balance in the produc-
tion and coupling subranges are given by (9.4}with-
out D and X, and are rewritten in the form

in equilibrium with the atmospheric turbulence
having spectra (ll. 10).

XII. CONCLUSIONS

In the present paper, we have considered a plas-
ma inhomogeneity which possesses, on the average,
a density gradient and a nonuniform electric field.
Since the plasma is unstable owing to drift instabili-
ty, it will become turbulent. We have proposed a
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FIG. 1. Power spectrum of electric field in zeta.
The k+ spectrum is observed by Robinson and Rusbridge
in their experiments in zeta (Ref. 12). The same power
is found in the theoretical prediction by Eqs. (10.3),
(10.4), and (10.12) for an inhomogeneous plasma in this
paper, and is also found by Tchen for a homogeneous
plasma with (Refs. 14 and 15) or without (Ref. 16}an
external magneti, c fieM.

FIG. 2. Density spectrum in zeta. The experiments
are reported by Wort a&Id Heald using microwave scatter-
ing (Ref. 13). The ordinate has an arbitrary unit. The
solid line giving the power law A

~ and the dotted line giv-
ing the power law k are the theoretical predictions from
Eqs. (10.12) and (10.4) for the dissipation and inertia
subranges, respectively.

repeated cascade theory for calculating the spectral
structure of the self-generated turbulence in the
plasma inhomogeneity.

When a plasma inhomogeneity is embedded in an
ionosphere which is already turbulent, the atmo-
spheric turbulence may drive the plasma into a
turbulent state. The theory also includes the anal-
ysis of the spectrum of the passive plasma fluctua-
tions which are driven by the atmospheric turbu-
lence.

For a self-generated plasma turbulence, the
density spectral laws are found to be k 3, k, and

, in the production, inertia, and dissipation sub-
ranges, respectively [see Eqs. {10.8), (10.4), and
(10.12)], while the field spectrum is predicted to
be k ~ over all subranges (see Sec. X). The ef-
fects of atmospheric turbulence driving the plasma
fluctuations are analyzed in Sec. XI.

The plasma drift turbulence seems to prevail in
plasma laboratory experiments and in plasma in-
homogeneities in the ionosphere. The field spec-
tra of laboratory plasmas have been measured by
means of Langmuir probes, ' and their density
spectra by microwave scattering. '3 These mea-
surements show a k"3 law for the field spectrum,
and the k ~ and k ~ laws for the density spectrum
(see Figs. 1 and 2) as predicted by our E|ls. (10.3),
(10.4), and {10.12). Although Figs. 1 and 2 are
plotted in frequencies, the spectra are in wave
numbers, as the plasma inhomogeneities are mov-
ing with a large constant drift. The magnetic field
fluctuations were measured to be of a lower order
of magnitude. The k 3 spectral law of electric field
energy has also been found by Tchen for a homo-
geneous plasma with '" or without' an external
magnetic field.
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Accurate measurements were made of the mobility of positive and negative charge carriers in He4, at
pressures up to the melting pressure and temperatures in the range 0.27(T(1.0 'K. The data are

analyzed in terms of the scattering of phonons and rotons by the charge carriers. The phonon-

dominated mobility of the negatives agrees well with existing theories, and analysis of these results

provides a new determination of the electron-bubble radius as a function of pressure. The phonon-
scattering term for positives is calculated from the electrostriction model, and is in good agreement
with the experimental results. Roton-limited mobilities are obtained by subtracting the known

phonon contributions. One may express the results in the form (e/p, )~=f~(P, T)e '", where

h(P, T) is the pressure- and temperature-dependent energy gap derived from neutron-scattering
experiments. The measured pressure and temperature dependences of the prefactors f~(P, T) are
discussed in light of recent theories for the scattering of rotons by the charge carriers.

I. INTRODUCTION

Free charges, when injected into liquid helium,
form stable microscopically large structures. The
negative carrier, for example, can be character-
ized as a bare electron localized in a bubble with
a radius of about 1V A. The positive carrier, on
the other hand, consists of a solid central core
having a radius of about 5 A along with substantial
radial density and pressure gradients in the sur-
rounding liquid.

If an electric field is applied to a charge carrier
in superfluid helium, the carrier quickly attains an
equilibrium drift velocity limited by its interactions
with the elementary excitations of the liquid. At
low fields this drift velocity is proportional to
field: v~ = pE, where the proportionality constant
p. is the mobility. It is of interest to study how a
given charge carrier interacts with a particular
type of elementary excitation, and how these vari-
ous types of interactions give rise to the observed
behavior of the mobility. Under circumstances
where either rotons, phonons, or He impurities
are dominant, it is then possible to directly com-
pare the meqaprements of p, with various micro-

scopic models for the scattering of these excita-
tions by the charge carriers.

Meyer and Reif, ' in their pioneering study of
charge carriers in liquid helium, were the first to
measure mobility as a function of both temperature
and pressure. More recently Brody has made a
thorough study of p, (P, T'i for 1.3 'K & T & T„and
for pressures up to the melting pressure. Qur work
is essentially an extension of that of Schwarz and
Stark, ' whose vapor-pressure data represent the
first accurate mobility values at low temperatures.

In this paper we present extensive and accurate
measurements of the mobility of positive and nega-
tive carriers for various pressures up to the melt-
ing pressure and temperatures in the range 0.27 'K
& T & 1.0 'K. The observed mobility of the negative
carriers in the phonon-limited regime is adequately
explained in terms of resonance scattering of sound
waves by the electron bubble, in agreement with
earlier treatments of the vapor-pressure data. '
Qur analysis yields a new determination of the bub-
ble radius as a function of pressure. In the case
of the positives, the observed phonon contribution
to the scattering is in good agreement with calcula-
tions based on the electrostriction model for the


