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The statistical dynamics of a classical random variable that satisfies a nonlinear equation of motion is

recast in terms of closed self-consistent equations in which only the observable correlations at pairs of
points and the exact response to infinitesimal disturbances appear. The self-consistent equations are

developed by introducing a second field that does not commute with the random variable. Techniques
used in the study of the interacting quantum fields can then be employed, and systematic

approximations can be obtained. It is also possible to carry out a "charge normalization" eliminating

the nonlinear coupling in favor of a dimensionless parameter which measures the deviation from
Gaussian behavior. No assumptions of spatial or time homogeneity or of small deviation from

equilibrium enter. It is shown that previously inferred renormalization schemes for homogeneous systems

were incomplete or erroneous. The application of the method to classical microscopic systems, where it

leads from first principles to a coupled-mode description is briefly indicated.

I. INTRODUCTION

Despite the deluge of papers that have been
written over many years on the organization and
calculation of the statistical properties of classical
systems, there is not to our knowledge a satis-
factory theory with the utility, generality, and
precision of the quantum-fieM theories. In par-
ticular there is no parallel to the functional equa-
tions of Schwinger, ' or the equivalent diagrammatic
techniques of Feynman for expressing the statis-
tical and dynamical properties of a classical sys-
tem, conservative or dissipative, in terms of
closed albeit complicated equations involving the
first few of the exact correlation functions for the
system. As a consequence there is no renormal-
ized perturbation theory for a classical system.

The lack of such a theory has led to certain
bizarre and devious calculational procedures in
conservative systems. In plasmas, s and even in
conservative systems with only short-ranged non-
singular forces, approximate classical kinetic
equations have been derived using quantum-mech-
anical techniques and the classical result deduced
by setting 8-0 in the final result. There has been
even less systematic study of the dynamic prop-
erties of dissipative systems for which no quantum
Hamiltonian exists.

Although a classical procedure does not exist,
the value of a practical scheme would be enormous.
In problems involving fluids, for example, it would
provide a framework for calculating transport and

other kinetic properties near or far from equilib-
rium, from a microscopic starting point. In
other problems where macroscopic equations like
the Navier-Stokes equations provide a satisfactory
starting point, such a theory would permit an at-
tack on problems such as turbulence. And in sim-
pler problems still, like the statistical treatment
of nonlinear damped oscillators, it would provide
a systematic self-consistent treatment in terms
of physical properties. Indeed, the utility of such
an approach is so great, and its existence so likely,
that without demonstrating its correctness authors
have used it implicitly with notable success. Thus,
on the basis of equations intuitively obtained with
a mixture of classical and quantum notions,
Kadanoff and Swift, ~ Kawasaki, s and Rdsibois and
co-workers have produced mode-coupling schemes
that have enabled them to predict qualitatively the
properties of transport coefficients near the critical
point.

The most serious attempts of which we are
aware, to deduce such equations for classical sys-
tems from "first principles" are those of
Kraichnan, Wyld, and Edwards for the problem
of turbulence. Unfortunately, their approaches
have proven too cumbersome and insufficiently
systematic to be carried to completion. Indeed,
as we shall show, they have only been treated cor-
rectly to fourth order in the anharmonicity. "

It is the purpose of this paper to present what
we believe to be the elusive generalization which
is necessary for deriving a renormalized set of
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equations and thus to deduce the renormalized
statistical theory of a classical fiel, d satisfying a
nonlinear dynamical. equation. Before me go further
let us emphasize the word beBege. Our procedure
is far from rigorous from a mathematical point of
view. Certain formal steps are involved which

are even less well justified than those physicists
normally call mathematics. We believe these
formal devices can be justified and provide no

serious obstacle. We have checked them to a few
orders in perturbation theory and resolved several
apparent internal inconsistencies, but me have no

categorical proof of their correctness.
The formal quantity which mill play a central

role in our discussion is an operator' mhich serves
to infinitesimally change the elassieal random
variable at a given point in space and time. With
the aid of this quantity we will be able to ask ques-
tions about the response of the system in a rep-
resentation-free fashion and thus, to determine
the response in a state, the details of which are
only determined at the end of an exact (or approxi-
mate) self-consistent calculation. From our
procedure will. emerge differences between classi-
cal and quantum systems which suggest reasons
for the difficulties that have previously been en-
countered and mhy the curious methods that have
sometimes been used to circumvent these difficul-
ties, did so.

We have not fully assimilated all of the differ-
ences, but two seem morthy of special mention.
The first is that the operators that displace the
value of the classical fieM need not change the en-
ergy by a discrete amount. In quantum systems,
*'second quantization" imposes the restriction that
the modulus squared of the field (and therefore the
energy or more precisely number of quanta) change
discretely. Local changes in the expression for
the classical energy or particle intensity are not
restricted in this fashion. They are described
classically by a real field (not the square of a com-
plex field), which can be altered continuously.
The second is that the classical. phase space for
the corresponding problem is infinitely larger be-
cause the position and momentum of a single par-
ticle can be independently specified. It seems that
this feature is connected with the fact that in our
discussion of conservative classical systems there
appears in a natural, fashion a non-unitary trans-
formation, or an effective non-Hermitian Hamil-
tonian on the Hilbert space which includes both the
physical, fieM and the operator which increases or
decreases it. As a consequence, the equations of
motion for both conservative and dissipative clas-
sical systems are naturally described in terms of
a free-energy functional. '~ (The reader may not
be surprised to learn that we mere led to the de-

scription of conservative systems after studying
problems involving dissipation, that is, problems
in mhich a non-Hermitian "Hamiltonian" was ex-
pected for the physical field itself because the un-
derlying equations mere irreversible. The adjoint
operation me introduce to define the Hermitian con-
jugate is not related to complex conjugation as in
quantum mechanics. )

We shall introduce the extra field we have been
discussing into our equations in a formal fashion.
It should be recognized, however, that it has a
physical basis. In ordex to discuss statistical
problems it is necessary to calculate both the re-
sponse of the system to a fluctuation and the like-
lihood of fluctuations. In a quantum system both
effects can be characterized by products of the
same pair of quantum operators. Fluctuations in-
volve the antieommutator and response is related
to the commutator. Classically the commutator
vanishes, but the physical response is given by the
Poisson bracket, in which each of the observables
is a different function of the dynamical variables
than it is in the operator product which gives the
fluctuations. '4 Our additional operators are not
necessary but they permit us to calculate the re-
sponse conveniently. While it is not in any way a
physical. justification for their introduction, it is
noteworthy that independent attacks on this prob-
lem by Kraichnan, Wyld, Edwards, and ourselves
have all implicitly or explicitly predicted a renor-
malized theory in which more than one (in principle
four, and in practice, two) propagator occurs;
our procedure defines three yroyagators nonyer-
turbatively. It appears that the failure to recognize
this "operator doubling" in a classical theory has
been the major stumbling block to the development
in terms of closed equations, or equivalently, to
all orders of a completely renormabzed many-time
classical theory (in which h nevers appears). R
is perhaps also worth noting that this "doubling"
is not necessary for the static-equilibrium prop-
erties of classical systems. Symptomatic of the
operator doubling is the occurence of both the en-
ergy (Hamiltonian) and the Liouville operator in
el.assical. statistical dynamics; only the former is
necessary for classical thermostatics or quantum
dynamics and thermostatics.

Up to this point we have been discussing the
questions me shall consider as if the reader mere
familiar with the notions of renormalization and
quantum-field theory. The point of our work,
however, has been to develop an equivalent non-
quantum theory and our hope is to convince a wider
audience that these techniques are the proper ones
for a great variety of problems. We shaB there-
fore attempt, in See. II, to summarize and explain
the notions that are entailed in quantum-field-
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theory renormalization and what they accomplish.
In Sec. III we derive fundamental classical equa-
tions by functional techniques. In Sec. IV we dis-
cuss the diagrammatic rules, and how certain
simple approximations emerge. We will refrain
from describing all the available techniques that
this rearrangement makes possible —the study of
low-energy theorems, the renormalization group,
variational formulations in terms of entropy
production —partly because it seems more worth-
while to discuss them in the context of particular
problems, and partly because much work along
these lines remains undone. We merely note that
most relations of this type are derived by imposing
general symmetries on the exact correlation func-
tions that occur in the renormalized perturbation
theory.

II. DESCRIPTION OF PROBLEM AND RESULTS

—J Ua(123)g(2)g(3)d2d3= Ui(l) (2. 1)

The index 1 refers to the time and to the other
space and internal indices on which the random
variable depends. The integration implies a sum-
mation for internal coordinates and the functions
U, (1 ~ ~ ~ i) are prescribed.

Let us illustrate the formula with a few examples.
The simplest might be a classical damped-non-
linear one-dimensional forced system for which

it has two components g(0t) = x(t) and g(4t) = p(t) and
for which the equations of motion are

x(t) —p(t)/m = O,
p(t) + yp(t) —Xx (t) + m&daax(t) =f(t)

In the general notation above we would have

U, (ft, )=f(t ), U (0t; tt )=(I/m)&(t, —t ),
U, (&t„ i t,) = y&(t, —t,), —

Ua(&ti, &ta) = —mQPQ&(ti —ta),

Ua(4 ti,' '3 ta,' 0 ta) = X5(ti —ta) 5(ti —ta)

and all other elements of U(a, t„aata, aata) with

The problem in which we are interested is the
determination of average properties of a classical
random variable whose time dependence is gov-
erned by a prescribed nonlinear differential equa-
tion. A typical situation might be one in which we
know the differential equation but do not know, and
wish to average over initial conditions, perhaps
with some constraints. The same is, of course,
true in quantum systems. In both cases we have
an equation of the form

g(1) —J Ua(12)g(2) d2

a=0 or 0 vanish.
A second example of our basic equation is the

Navier-Stokes equation for an incompressible
fluid. Here the field g depends on space and time
and has vectorial components, i.e. ,

y(I)=I, (r, t,),
Ui(1) fi (riti)

1

Ua(12)= vv&5(r, —ra)5(ti —ta)5, ,

Ua(123) = Vp 5(r, —ra) 5...
x 5(r, —ra) 5(t, —ta) &(ti —ta)

plus similar terms with interchanged vector in-
dices which come from eliminating the pressure.

A third example is the Liouville equation for a
fluid of interacting particles. If r (t) and p (t)
are the random variables that are associated with
the position and momentum of the eth particle at
time t, we may introduce the random variable

$(I) -=f(ripiti) =2 &(ri —r (t,))&(p, -p"(I,)),

(2. 3a)

which describes the single-particle phase-space
density. In this problem it is not usual to intro-
duce a source of particles, i.e. , a potential
U, (rpt), but we often have a streaming term and
a one-body external potential V"' of the form

Ua(rip, ti; rapata) = [-(p,/m) ~ V;I+ Vpi V (ri) ~ V;I]

x 5(ri —ra) 5(pi —pa) 5(ti —ta)

(2. 3b)

and a two-body interaction VN'(r, —ra) of the form

U ( ip3irtl r2p2t2 r3pat3) Vit V (ri r2)

x 5(ri —ra) 6(PI —Pa)

x 5(ti —ta) t)(ti t ) (2. 3c)

In all three of the above examples we may look upon
each of the infinitely many variables $(1) as a
scalar and all of the variables commute. In quan-
tum-fieldtheory each random variable g is an in-
finite dimensional. matrix or operator and typically
there is a second set of operators g~(1) which does
not commute with the g. Indeed, in contrast with
what happens in classical physics, the operators
f at different times do not commute. The quan-
tities gi satisfy equations of the same form as those
satisfied by $(1). In addition the quantity [$(1),
gi(1 )] is directly related to the response of the
interacting system' to an external disturbance,
i.e. , to the effect at point 1 in the correlated sys-
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tern produced by an infinitesimal change in the
force U, (l ). If we make the additional notation
change that $(1) and $~(I) are the two components
of a single field with an additional index a taking
on the values j. and 2 and correspondingly under-
stand that the potentials U& depend on the indices
e&, ... , a„ the equations above give a complete
description of the quantum system.

The basic problem that concerns us both clas-
sically and quantum mechanically is the calculation
of mean values and correlations of the field g.
Whatever the state, i.e. , the probability distri-
bution, we may write

&4{I)&-f U, {ISXA2)&

—f U, (123Xg(2)g(3)) d2dS= U, (1),
or with g(1) -=& /(l)}+ 5/{I) so that &5$(I)& = 0,

&i{I)&—f U.(»XC(2)&d2

—f Us{ISSX58(2)54(3)&d2dS=~i{I) .
In this equation we have introduced the "mean
field" U~(12),

Ug(12) = Ug(12)+ 2 f [Uq(123)+ Us(132)]&/(3)& dS

Qf course, this equation is not closed. To eva, luate

&$(l)& we must know &5$(2)5$(3)}, which satisfies
the equation

&5$(1)5$(l )) —f U~(12)&5$(2)5$(I')}d2

—f U (123X54(2)54(3)54{1')&&2&3=0 .
(2. 4)

Virtually no attempt to calculate correlations does
not make this first step. That is to say, all meth-
ods eliminate'completely uncorrelated events by
working in terms of cumulants or linked diagrams.
But up to this stage we have done very little. In-
deed since our last equation contains a new un-
known, one could say that we have done nothing.

Of course we can always put off our problem by
writing equations for &(5$) ) in terms of &(5$) ),
etc. The approximations come in when we rep1.ace
products like &5$(I)5$(2)5$(3)5$(4)}by lower cum-
ulants. Thus the first approximation that is often
made (a Hartree-Fock or Gaussian approxima-
tion) is the replacement

&5$(1)5$(2)5$(3)5$(4)& &5$(1)5$(2}}&By(3)5y(4)}

+ &5%(I)54(4)X54(2)54(3)&

+ &5/{I)54(3)&&54(2)54(4)& (2.5)

When we do so we obtain a closed equation for the
matrix &(5$) }which, in a sense, is correct to or-
der [U~(123)]3. There are, however, often serious

difficulties with such a procedure. In particular,
in a system whose microscopic Hamiltonian is
time-reversal invariant the factored equations re-
main even in time and don't reduce to equilibrium.
Furthermore the dimensionless expansion param-
eter, which is something like U~s/U~~may not be
small. This is the case, for example, in a fluid
when the Reynolds number is high (the viscosity
small} and in a kinetic or Boltzmann-like equation
at low frequencies, when the collision term dom-
inates the equation. Under such conditions we
must find a new expansion parameter, or a dif-
ferent way of truncating. A similar difficulty al-
most always arises when the fluctuations tend to
oscillate, ' even when U, «Uz. The point is that
the parameter which actually occurs when we in-
vert truncated equations is U~s[(8/Bt) —Uz] s and

this parameter will be large near any resonance
predicted by the mean field. This is a basic dif-
ficulty with all truncation procedures. They do not
treat secular properties satisfactorily and, hence,
are ineffective for discussing properties like fre-
quency shifts and lifetimes that come about via
collision broadening.

"Mass renormalization" is a procedure that over-
comes this difficulty, at least in part. What mass
renormalization does is to express the theory not
in terms of the dimensionless parameter
U~~[(8/Bt) —U3]

~ but in terms of U~~[&(5$) }],
everywhere in a unique self-consistent equation for
&(5&)'&

' —[(8/Bf) —U,] in terms of the parameter
U, [&(5$) )]'. While the error in &(5$)3}would be
large and &(5$) & would be large without mass re-
normalization because URS[(8/Bt) —U3]

~ can be in-
finite, the renormalized equation that gives
[(8/Bf) —Uz] as &(5$) ) ' plus corrections in powers
of Us[&(5$)2}]~ saturates and does not diverge.
The error is never arbitrarily large even though
it is not necessarily a very good approximation
when terms are omitted. In many ways it may be
likened to a Pads-approximate scheme for func-
tions. (As the analogy suggests, there is no com-
pelling reason for expecting convergence in addi-
tion to order by order finiteness. )

A second renormalization, "charge renormali-
zation, " carries the procedure the final step.
BasicaDy charge renormalization is a method for
determining the non-Gaussian part of &(5tg4}, that
is, &{By)'}—3&{5/}~}',as it appears in the equation
for &(5$)~&

' fin the combination U~s&(5$)~}[&(5$)4&
—3&(5$) )Q exactly and uniquely in terms of the in-
trinsic dimensionless parameter of the interacting
system &(5$)3)~/&(Br/~}3This ex,act closed equa-
tion completes the system. NaturaQy, the exact
and unique equation closing the set is extremely
complicated. It does, however, lend itself to sys-
tematic approximations which do not demand a
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small U3. The words "mass" and "charge" nor-
malization refer to the fact that in electrodynamics
the bare mass is U~ and the measured mass is a
space-time average of ((5g)~) '. Likewise U~~ is
essentially the square of the bare charge, and a
space-time mean over coordinate arguments of 5g
in the combination ((5g) ) /((5g) )~ the square of the
fine-structure constant. The masses and charges
we are discussing are, of course, functions, not num-
bers, since both Uz and U3 and their replacements
are nonlocal. "

Cleax'ly the point of the reaxrangement is to take
advantage of the fact that the non-Gaussian char-
acter of the slow fluctuations that are actually
present are often weaker than, and even relatively
independent of, the deviations that mould be pres-
ent if the interactions were unmodified. ~' Under
these circumstances we can hope to get approxi-
mate results for the fluctuations of interest in
terms of a self-consistently determined small
skewness although U~3/Uz~ is large for some argu-
ments.

Renormalization has another related advantage.
Because the expressions that occur in the calcula-
tion are measurable we can relate some we wish
to calcul. ate to others that are measured, not cal-
culated. For example, although in yrincipl. e the
equilibrium properties of a classical fluid must
emerge from the dynamical equations we shall de-
rive, it may be convenient to insert measured in-
stantaneous equilibrium properties or instantan-
eous equilibrium properties calculated by other
means. ~6 Three other illustrations deserve men-
tion: In discussing the coupling of hydrodynamic
modes, we must use true vertices, which in the
long-wavelength limit, are related to thermody-
namic derivatives. ~' In discussing phase transi-
tions, and in proyerly improving uyon the direct-
interaction approximation~8 for turbulence, charge
renormalization plays an essential role. Finally,
in a rather trivial fashion it is necessary for the
elimination of the effects of infinite hard-core po-
tentials. (The classic example in electrodynamics
is the expression of low-energy scattering yrocess-
es in terms of the measured charge of the elec-
tron, the bare charge being eliminated. )

Now that we have summarized why such equa-
tions are interesting and what ideas are involved,
it seems appropriate to say a word about the equa-
tions themselves. It will turn out, in detail, that
the equations relate ($(I)) and two functions of two
space-time points, the desired fluctuations
(5$(I)5g(2)) and the response function that gives the
change induced in (5$(I)) by an infinitesimal ex-
ternal disturbance U, (2). The latter two functions
satisfy nonlinear equations in which three functions
of three space-time points occur. These functions

describe (i) (5$(1)&g(2)5$(3)), (ii) the linear change
in the fluctuation produced by an external distur-
bance, and (iii) the second-order change produced
in the field ($(1)) by infinitesimal changes in U, (2)
and U, (2).

It is because the combination is a rather com-
plicated and unsymmetrical one when expressed
in this form, that difficulties arise in the direct
resummation and reorganization of perturbation
theory, making it so opaque even to fourth order
in the coupling Us. In fact the renormalization
proposed by Wyldo and by Lee~ does not work to
higher orders since, as the above comments sug-
gest, three renormal. ized vertices, only one of
which is nonvanishing to lowest order, are re-
quired. By contrast, phrased in terms of our ma-
trix operator, the procedure can be readily under-
stood, to arbitrary order, in spatially inhomoge-
neous systems, and reexpressed in terms of two
closed equations. The two renox malized yropaga-
tors and three renormalized vertex functions ap-
pear naturally as the nonvanishing parts of one ma-
trix propagator and one matrix vertex function and
the combinatoric and recurrent "double-counting"
problems with "bare" graphs are eliminated.

The equations are now correct for arbitrary in-
homogeneous spatial distributions. With regard to
nonstationary behavior in time, it would appear
they are correct for pure states and for impure
states in which the initial field and two-field cor-
relation functions are given, but all higher cor-
relations are random consistent with the prescribed
initial values for these two functions.

IH. DERIVATION OF BASIC EQUATIONS

Let us now return to our classical problem.
We have an algebra of observables g{1), A/2), . . .
and states which are linear functionals on them.
Less "mathematically" the states give us the values
of correlations of the field g at different points.
We shall not, in general, be concerned only with
pure states —states in which all properties that
could be specified, are specified —but with mixed
states in which we have only statistical informa-
tion. Presumably initial conditions determine a
pure state and thus the pure states can be param-
etrized in terms of specified functions of the space
variable at a given time. Likewise, mixed states
can be described by giving, at a specified time,
expectation values for all the moments of the clas-
sical field, i.e. , for all instantaneous correlations.
A class of mixed states are those for which ($(1))
and (g{I)g(2)) are specified at a fixed time. We
shall abvays use what is known as the Heisenberg
picture. In this picture, the values measured at
different times are described by the values of the
field for different time arguments. The state does



not change with time. Let us define time-ordered
products of operators that depend on the time in
the usual way, i.e. , [A(t, )A(t(,,) ~ ~ ~ A(t„)], is the
product in which the A's are ordered from right
to left in order of increasing time. For our clas-
sical /this makes no difference since the random
variables g commute. Let us, however, next ex-
tend the algebra to include all time-ordered prod-
ucts of the operator g and P, where we take g to
satisfy

[g(irt), g(i'r't}]= 5(r r)—5(i —c ),

8g
+ V,(21)j(2)+2@,(231)y(2)(I(3)=0 . (3. Ib)

(3. la)

1 2

FIG. I. Propagators (Qg(1)6&(2))„.}and (Qg(l)gg(2))+}.

Let each linear functional on the physical quan-
tities $(l) ~ ~ ~ g(n) be extended to time-ordered prod-
ucts of g and g in such a way that (i) it is un-
changed when the product contains no g, (ii) its
values on states containing g's are consistent with
Eqs. (3. la) and (3. lb) and with (i), (iii) its value
is zero whenever the left-most factor of the prod-
uct is a (tt. The last restriction is possible be-
cause Eq. (3. lb) contains no term U, (1). For
some purposes, however, it mill be useful to con-
sider what would happen if U, (1) were not equal to
zero. In that case all elements of the matrix cor-
relation function mould contain four different quan-
tities &(5$(irt) 5g (i r t )),), &(5$(irt) 5$(i r t )),),
&(5(t(trt) 5$(t r t )).), and &(5g(irt) 5(t(t™rt )),& and
condition (iii) couM only be imposed, say, at times
after U, (irt) vanished.

The asymmetry of the restrictions is connected
with our desire to treat problems in which the
system is stationary until we apply our external
force or describe our initial conditions, whereas
me do not require absolute equi'. ibrium beyond any
fixed finite time in the future. In stationary prob-
lems, the asymmetry is not there. 'Vfe could
equally work with the convention &(gg)& =0.

It is possible to deduce a number of relations
between the abstract definitions introduced above
and various averaging processes over initial con-
figurations, with and without interaction but me
shaB not discuss these here.

The consistency of the above requirements is
not obvious. %Ye shall speak about it further below,
and describe in a following paper the equivalence,
to all orders in perturbation theory, of a variety
of conditions. We shall not, however, prove their

uniqueness in any conclusive nonperturbative fash-
ion.

On the basis of the requirements imposed above
we see immediately that the matrix of the four
quantities defined above really contains only two
independent functions.

One of them is the function &(5$(l)5$(2)),&, which
to conform with %yld, me mil, l designate later by
a thick wavy line [Fig. 1(a)]. The second is
&(5$(1)5$(2)),&, which we may write alternatively

&((}(t'(rgt()(}(t(rgtg)),& = n(t( —
t(()& ~k(r(t() t}|t(r(t(,)&

=&((}(t( t)(8( t)).&, (3.2)

and which we shall designate by a thick line [Fig.
1(b)]. It corresponds to the thick straight line of
Wyld but me shall reserve the notation of a thick
straight line for the matrix propagator containing
all four elements, at least in this section. The
quantity in Eq. (3.2) describes the response at
the point 1 to an infinitesimal impulse at the point
2.

In the absence of anharmonicity, it is the quan-
tity &/(1)(t(1 )) which gives the free response, i. e. ,
in the Navier-Stokes fluid

-. 1

&(4(I)4(I )),&o
= — &' ('(» )

1

8 1 1A ~ (" g & %2(t ( ~
&

(2(()

q(t —t ) -(r( —r()
(4((vl t, —t', I)"' 4v(t, —t,')

(3.3)
Likemise in the fluid of particles

&((F(I)i(I')).&. = ——" ' ((ll')I 8 p ~ V

=n(t -t')(}(p -p)
x(}((r,—r, ) —(t, - t', )(p(/m)) (3.4)

describes free propagation.
The remaining quantity &(5$(1)(}g(2)),& vanishes.

As we have nom stated several times, the book-
keeping mill be greatly expedited by the introduc-
tion of a two-component matrix C (mrt), where
4 (+ irt) = g(irt) and C ( —trt) = g (irt), and by searching
for the correlations of 4, Furthermore, it mill
be useful to generate our equations in terms of a
"non-Hermitian Hamiltonian, " i. e. , we may write

~«) = t~(I),~] (3. 5)

X l ~((I)C(I)„I+ I „~(,2)C, (I)C,(2)„,„21

+ —, I y3(123)e(I)4'(2)4'(3)(ti(t2(t3, (3.6)
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and because |t and It have canonical commutation

relations and the given potentials U, (l ~ ~ ~ i} are all
instantaneous, i. e. , contain 5(t, —tz) ~ ~ ~ 5(t, —t, );
the operator X can be made symmetrical in the
arguments 1, 2, and 3. The commutators of 4
satisfy

or

[4 (~(!rt), 4(+ i'r't)]=0,
[4 (+ irt), 4 (vi'r't)]=+ 5(ii')5(r r—) (3.7)

[4 (airt), 4(a i r t)] = (ia~)(an )5(ii ) 5(r —r }

where iaa is the usual Pauli matrix Arm(o. e ), whose

four elements are ivz(+ v ) = + 1, ioz(+ + ) = 0. [Sym-
metrizing introduces an effective coupling of the
form U(1))t)(1) which violates condition (iii) but this
correction, which amounts to a translation, can
be eliminated and we shall assume that is done. ]

The equation of motion for the operator 4 is now

precisely the same equation that arises in the
quantum theory of fields, i. e. ,

-to~43(1) = y, (1)+ ya(12)43 (2) + —', y~(123}@(2)43(3)

(3.3)

where we have introduced a summation convention
for repeated indices, and the techniques for find-
ing the correlations proceed in a similar fashion. 34

The first step is to relate the mean values in a
given state to the values in the same state when

y, (1) is replaced by y, (1)+ g(1), i. e. , to consider
the generating functional

S=&.~[y '.(3)~(3)]].

and to relate the functions

G",(1)= ((S4 (1)),}/(S)= 5 in (S)/5g(1),

Gq(12)=((S@(1)43(2)),)/(S} —GG2(1)G~)(2} (3 9)

= 5' ln(S) /5')1(1) X(2)

5n(3) ' 5G"(4)

-io'&Gm(11 ) —[y&(12)+y&(123)Gg(3}]G2 (21 ) (3. 12)

—Z(12)G, (21) =5(11) .

In this equation we have suppressed the p which

always occurs implicitly and introduced

2(11 )= —,y5(122)G5(25)G5(34)(-
1

(3. iS)

The quantity

5G,'(5l ) 5q(1 )

5Gi(4) 5G&(4) 5Gg(5)

5 [ln(S) —q(3)G, (3)]
5G2(4) 5G2(5) 5G2 (I') (3. 14)

symmetric in these indices plays the role of the
renormalized charge. The equation

Z(ll )= —ys(123)G))(25)Gz(34)I's(451 ) (3. 15)

is the equation which determines the quantity Z to
all orders, as a power series in y3 and G~. The
equation can be described diagrammatically and

the nth-order terms characterized by their graph-
ical properties. In particular we have to the low-

est order I', (451 ) = y~(451 ) and Fig. 2(a), where
thick lines stand for propagators and dots for the
bare vertices ys. Repeated indices, which are
integrated over, are not indicated. The second
term in the series is obtained by iteration of the
exact equation"

or using the fact that

Ga'"(25) 5GG()(51 ) = —[5G() "(25)]G~~(51 )

and using the chain rule of differentiation to write

to one another. These functions reduce, when

g= 0, to the desired correlation functions.
Taking into account the definitions of S and G

and the equations of motion, we may write

-iomG", (I) = y, (1)+g(1)+ y, (12)G",(2)

2
(a)

1 1 1 1 1 1 + 0 (gs) (b)

+ 2 y2(123)[G~g(23)+ Gg(2)GG2(3)1 . (3. 10)

The equation for the function G"(12) is obtained by
differentiating with respect to 9,

-ioaGz(11 ) = 5(ll )+ [yz(12)+ ys(123)GG2(3)] GGB(21 )

1 ~ 3 - 1.3 t

(c)

+ —,'y, (123) 5 .
)

GG~(21 )5g (3
(3.11)

FIG. 2. Approximations to the self-energy Z(11')
(a), (b); and its reexpression in terms of a vertex func-
tion (c), (d).



430 MARTIN, SIGGIA, AND ROS E

I

rs(M1 ) = ys(451 )+
1

5Z(51 ) ecs(6V)="""' ec,(ev) ec', (4)

= y (451 )+ G (68)r (894)c (9V).
I 5Z(51 )

(s. 16)

Since 5Z(51 )/ec (6V) = y (568)G (89)y, (QV1 ) to the
next order, we derive to the next order [Fig. 2(b)].
We see immediately, by induction, that since
higher-order terms in Z are obtained from lower-
order ones by breaking open single lines and in-
troducing pairs, that the graphs are all of a form
which cannot be cut into tmo disjoint parts by cut-
ting a single line.

Of course, the equation written above, before
iteration, in which the vertex designated by rs(123)
is represented by a thick dot; from which three
lines merge [Fig. 2(c)] is exact. The same is
true for the equation to which it is coupled [Fig.
2(d)],

Fs = ys+ I4G2G (s. 1v)

in which the interaction kernel Is = 5Z(12)/ecs(56)
is represented by a box.

Because the last quantity is the derivative of Z
with respect to Ga the equations represent the
complete description of the interacting system in
terms of four equations, two for Z and Fs in terms
of ys and G~, and two others which close the sys-
tem by determining G& and Gz in terms of y&, yz,
and ys. Specifically, with the abbreviation
[Gs] '(l2) =-its (9/St&)5(t, —ts) —ys(12) we have'

rs = ys+ (5Z/ecs) Gscs rs
1

ys G3GBFs

G,'= [G',]-'- y, G, —Z,
[G,] G, --'. y,C, --.'y, c,=y, .01 -1

(3. 18)

We remark in passing that, by extending the num-

ber of components of 4 and generalizing [Gss] '
to the situation in which there is no time derivative,
the same four equations are valid when there are
many-body forcess6 as mell. The difference be-
tween the equations for G, and Gz and the equation
for Fs is fundamental.

The degree to which the equations can be ap-
proximately solved depends primarily on the degree
to which some small parameter can be found for
approximately treating the first two of these equa-
tions. The standard technique, however, is to use
the first two to generate a power-series expansion
for ys in powers of Fs. In terms of that power
series the last tmo equations determine G& and Ga.

We have already commented on the first approxi-
mation

ys Fs

[Gss] ' = Gs'+ yscg+ s rsGscsrs

[Gs' Ci='ysc~+ yscs+» ~
011 j 2

(3. 19)

The second approximation mould invol, ve, in addi-
tion to the last equation [cf. Figs. 3(a) and 3(b)],

y, = r, —F,G,F,G,F,G, ,

[Gs] '(l l )- yscs —G,'(l l ) (s. 2o)

= -.' [r,c,c,r, ] (11 )-![r,c,c,r,c,r,c,c,r, ] (11') .

There are a number of other statements one can
make about the structure of the diagrams in nth
order. A variational principleS~ can be presented;
the fact that the equations really are power series
in one parameter (rscssts) can be formulated in a
more useful form s (the renormalization group);
and theorems on the properties of vertices Fs re-
lating to conserved quantitiesss (Ward identities)
can be presented.

In the body of this paper, however, me mould
like to make our equations, more, rather than
less concrete by discussing the two systems intro-
duced above.

aEI+ ~11 1 1 4 ~11 (

FIG. 3. Self-consistent equations for the vertex and

self-energy.

IV. SIMPLE APPROXIMATIONS AND REDUCTION
TO PREVIOUS SYSTEMS OF EQUATIONS

As a first illustration of how these equations be-
have me examine the problem in mhich they refer
to the Navier-Stokes equations. Because me are
interested in them when a system is in stationary
turbulent configurations, it mill be useful to sup-
pose, as did Wyld, that the system is stirred by
a random Gaussian force, translationally invariant
in time and space. In such a system it is not dif-
ficult to show that this random force may be rep-
resented by an additional term Us(+ irt; —i r t )
= (f' (irt)f'*'(i r t ))=X or ys( —irt; —i r t ) = X,
all other components vanishing. The spatial
homogeneity implies that G, vanishes, and con-
sequently, we have
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(b)

FIG. 4. Dyson equations with external driving X. (o)

—5- v%25- Z
eg 12

). (&&)

+ —~ 2

Taking into account the spatial symmetry, we have

(X(k&u) + Z»(ktu)
Gm k(d

I-i re + vk —Z,*,(km)

i &u+ uk —Z»(km)) FIG. 5. Simplest approximation to the self-energy and
an exact equation using vertices.

D(ho) =
~
i&a+ vk —Z„(k&o)

~

(4.2)

= Ga~(k - (u) = G~, (ho)~, (4. 3)

Gqg(k&o) = G,z(k&o)[X(ho)+ Z»(k~)]Gaq(ko)

Into these equations we must insert X(hu), Z» (hu),
and Zzz(ho). Diagrammatically we may write the
first as in Fig. 4(a), with the light line standing
for ( —m+ vk ) ~. We represent the second in Fig.
4(b). Into these equations we must insert Zz and

Zzz. In matrix form, both are represented by

~ ys GG I'3. To first order the only nonvanishing
element of ys is the element U3 that involves two

g and one {{ [Fig. 5(a)]. Since the Fourier trans-
form of a product is the convolution of the Fourier
transforms the product involves a convolution of
the unknown function.

so that the elements 6,&
of the matrix 63 are given

by

Ggg (k(t) ) = [—iQP + Pk —Zap (kQP)]

To the next order we may either expand in the
true or the bare vertex. We have argued that an
expansion in terms of the true vertex is preferable.
However for comparison purposes let us merely
first note that the exact equation is given in Pig.
5(b).

A term invoke. ving three wiggly lines entering a
three-point vertex is the unique term contributing
to the connected part of ((g g g),) and, therefore,
must vanish. This has been checked to each or-
dex, recalling that 6» is retarded, but since it fol-
lows from our general construction we shall not
reproduce the perturbative proof. The remaining
three equations for the nonvanishing elements of
I's derived from Eq. (3. 16) with the self-energy
[Fig. 5(a)] are shown in Fig. 6. If we also replaced
each curly line by a '%are curly" line (Fig. 7),
and eliminated the heavy line in favor of a light line
we would obtain the 44 fourth-order dia-
grams enumerated by Wyld with the proper
weightings. We ask the reader to believe the
verif ication.

We see that beyond fourth order in y3 the renor-
malization is not as he surmised. Three different
vertex functions having the significance mentioned

e + + +
{

(

+ 0(&3 )

i La.
IP

(I + + O(I, )
5

1

FIG. 6. First approximation to the
vertex functions.

& L
)I

+ 0(Y~ )
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G„(11 ) = [G„] '(ll ) —Z, ~(ll ) (4. 5)

FIG. 7. Change in notation vrhich yields the diagram-
matic equations of Wyld.

in the Introduction (in principle there could be
four) are required in order to have a closed "rig-
orous" theory. Two of them satisfy homogeneous
equations. Wyld introduced only I 3~".

Likewise, with a label to distinguish magnetic
field and velocity, and the same proliferation pro-
cedure, we could produce all 300 diagrams of
Lee. As Vfyld noted, to second order these equa-
tions are just Kraichnan's direct interaction ap-
proximation (Fig. 8). Their successes and fail-
ures have been the subject of much discussion
and we have little to add. His equations would

be rigorous were it not for vertex renormalization
effects, or to put it differently the whole problem
of strong turbulence is contained in a proper treat-
ment of the vertex renormalization.

It is interesting to note that without random ex-
ternal forces, the equation for the fluctuations of
the classical field are homogeneous. Thus, the
equilibrium fluctuations in a quiescent fluid are
those required by self-consistency or detail. ed
balance. This is in line with the picture that the
Boltzmann-like equations suggest, even though

these equations have faults. The behavior of the
equations for the classical fluid, when it is weakly

interacting, is therefore far from trivial. Of
course, this is not a great surprise since for a
weakly interacting system, close to equilibrium,
the phase-space fluctuation function, discussed in

Eq. (2. 3), has been shown to satisfy a Fokker-
Planck equation which gives interesting corrections
to the Boltzmann equation, modifying the velocity
of sound, etc.

It is instructive to reduce these equations to
more familiar ones by introducing the quantities

8.(»') = n(f, —f,')((&C(I)~y(I'))),

Ggs(II') =Ga(11') =&(&4{I)&4{I)).&, (4 4)

(&g(1)&g(1 )) =8„(11)+8„(11)=-8(11 ) .
We have the equations

8„(11) = 'g(11 )G„(1l)Z (11 )G (1 1 ) = 'qS(ll )

Applying [Goa] ' to the equation for Sa, denoting

by 8(ll ) =8(ll ) &(f& —f&), and noting that Gz~(11 )
vanishes when t, & t„we obtain

Gs'(11)8„(II ) = 8(11 )+ ri{tg —tg)[Zgg(II)G„(l 1)]

+ 6(tg —'tg)[Zgp(l1)8„(1 1)]

When both the density and potential are weak,
(4. 4) and (4. 5) should reduce to the equation
studied by Forster and Martin ' in connection with

a meakly interacting fluid. It was shown in that
paper that because the fluctuation dissipation the-
orem determined 8 in terms of the frequency spec-
trum of S and the equilibrium value of (g), that
the scheme determined all properties to the required
order in the potential. At present, the reduction
has been verified insofar as eollisional terms are
concerned but only incompletely for second-order
effects. ~

If me neglected the last two terms me mould obtain

8„(11) = Gs(11)8(II ),
and hence a single equation for Ss (or Ga) in terms
of itself and the instantaneous value of 8(11 ), i. e. ,
8(ll )=8(ll )&(f, —f, ).

In particul. ar, we would obtain to second order
in 1"

G = [G„'] '- I,'"G,G„Sr,"' ——.'I","'G„G,I,"',
(4. 6)

where F ' and I' N' are the renormalized vertices
containing {1)and (2) incoming straight lines we
introduced above.

Without further4~ assumptions we have been un-
able to justify, and it appears impossible to re-
duce, the theory near equilibrium to the form as-
sumed by Kawasaki, namely, a form involving only

Sa (or Gs) and the instantaneous value of 8. It is
nonetheless worthwhile to observe that the equations
me have mritten clarify and permit one to attempt
to justify the assumptions implicitly made by
Kawasaki4~ (i. e. , presumably the assumptions
hidden in the assertion of separated time scales
and Gaussian equilibrium correlations). If we were
able to show that the nonhydrodynamic el,ements of
G„were regular, and that the contributions from
the vertex he omits were also regular, we could
introduce the regular quantities.

FIG. 8. Direct interaction
approximation.
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reg

and then write

Gi'= Gi'
reg

m yA

not both
hydr odynaIni c

X Gi Gi Sr 3(1 )
reg reg

hydrodynami c

r &"G,G„Sr,"'

r,"'{irt;mr f; nr t )

the equations for Si and Gi are reminiscent of
some of the earliest approximations attempted for
fluids. In many ways Gi is the function which plays
the role of self -diffusion, that is to say, it de-
scribes the effect of infinitesimally increasing the
probability of finding a particle at r pt. The changed
probability at a later time, a momentum specified
version of the self -diffusion function occurs in
our equations in much the same fashion as in the
Vineyard convolution approximation

ACKNOWLEDGMENTS

+ ~ ~ (reg. terms}.

As we understand it, it is this plausible equation
with which Kawasaki actually works, asserting
plausibly that in it, the vertices are given by in-
stantaneous the rmodynami c functions at the long
wavelengths at which singular terms arise. Need-
less to say, a justification of Kawasaki's strikingly
successful predictions, and an estimate of the er-
rors involved from a microscopic starting point
represents a formidable task. The same is true
for the discussion of long -time correlations away
from the critical point. It is obvious from the
above equations that they will be there unless there
are compensations and cance llations. It is not
obvious that such canc e1lat ions do not occur .

Note that far from equilibrium, even away from
the transition point, the coupled nonlinear equa-
tions for Gs(11 ) and Ss(11 ) do not depend only on
time differences. They give solutions which pre-
sumably are appropriate for a system with spec-
ified initial values for the two- point correlation
functions and averaged values for the unspecified
higher-order correlation functions. The solution
of the equations is probably quite hopeless in this
case. Indeed when Z is set equal to zero, the
equation reduces to the nonlinear Vla sov equation
which is complicated enough to defy any general
discussion. When this mean force term is not
dominant there appears to be little worth saying.

At the other extreme, for equilibrium fluids,
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of correspondence with R. H. Kraichnan after this
paper was completed whi ch has led him and us to
believe that the renormalized equations derived
here can be made to correspond pe rturbatively to
the rules he gene rated, and pursued, partially in
published form and partially in unpublished notes.
We would also like to thank R. Balian and
C. De Dominic is for useful conversations and

G. Mazenko for comments and corrections.

APPENDIX A

Z(11 ) = —,
'

y~(123)G~(24)G~(35)I'~(451 ) (Al )

= —' I' (123)[G (24)G (35)-G (26)G (37)

&& I (67; 89)G (84)G (95)]r, (451 ), (A2)

which is simply related to the "doubly connected"
part of the four-point correlation function. To be
more specific the four-point correlation function
can be written in terms of products of l.ower-order
correlation functions and a connected part as

In this appendix we would like to return to our
exact equations and indicate some additional fea-
tures that may not be apparent to the reader who
has not been involved with field theoretic problems.
First, let us make some simple observations.
The diagrams that we generated for the fluctuations
were symmetrical but the equations are not ap-
parently so. We have written

= [(5/5n(1 )) + &4 (1))] [(5/5n(2 )) + &C (2 ))] [(5/5~(3) ) + & ~ (3))) & ~ (4))

= [(5/5q(1)) +&C (1))l [(5/5q(2))+ &4'(2))] [Ga(34)+ Gg(3)G, (4)]

= [(5/5q(1))+&4(1))][Gq(234)+ G~(2)Gp(34) + G~(3)G3(24)+ G, (4)Gq(23)

+ G, (2)G, (3)G, (4)]

= G4(1234) + Gs(234)Gi (1)+ Gs(134)Gi (2) + GB(124)Gi(3)+ Gs(123)Gi(4)

+ Gq (12 )Gm (34)+ Gq (13)Gm (24) + G~ (14)Gq (23}+ G~ (1}Gg (2)G~ (3)G~ (4)

Tbe connected part, or cumulant, G4(1234), is also given by

(A3)
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Gg(11) 5
- G~(22) 5

- G~(34)

= G (11)G (22)G (33)G (44) [I' (1234)+ I' (245)G (56)1' (631)+I' (235)G (56)I' (614)+ I' (215)G (56)1' (634)l

(A4)

5G, (1)

From the equality

5Gg(i —1) 5G, (l) 5G, (i —2)

5G,{12) 2
5Z(34)

2
5[- G '(34) —y (34)]

5G, (3)5G, (4) „5y~(12) o, 5yz(12)

it follows that

(A5)

G (1234)= 2[5G (12)/5y (34)],—G (14)G (23) —G (13)G (24) + G (ll)G (22)1',(125)G (56)1',(634)G (33)G (44)

(A6)

or in graphical language that the set of graphs in-
volving 1, 2, 3, 4 that cannot be divided into two
parts by cutting a single line,

2 Gq(11)Gq(22)D4(12; 34)Gq(44)Gq(33)

= —G {ll)G (22)[r,(i234)+ I' (135)G (56)I' (246)

+ r, (i45)G (55)I' (362)] G (44)G (33)

is equal to G4{1234}minus the last term in (A6) and
to

5~(&&) 5G,(34)= 2Gq(11)G2(22) 5G (34) 5 (34)
1

= G~(11)G3(22)[I4(1,~ —GqG~I4) ] (12;34)

x G,(33)G, (44)

In this short-hand notation in which 1,~(12;34)
= —,

' [5(13)5(24)+ 5(14)5(23)], and, as before,
[5Z(12)/5G~(34)]~ =f4(12; 34),

(l,~+ g GgGgD4)(12; 34) = (l,~ —GgGQ4) ~(12; 34) .
%e recognize that the combination which occurs

I

in (A2) therefore may also be expressed as

g(11 ) = g y~(123)Gg(22)Gp(33)y~(321 )

+ ~ ys{123)G,(22}Gp(33)D4(23;45)

x Gg(44) G~(55)ys(451 )

= —'y (123)[5G {23)/5y (45}] —'y (451 )

Hence, the expression for the self-energy is
basically the doubly connected part of the four-
point function and likewise the expression for D4
generated as a power series in I'~(G~G~Gz)' by
iteration of the power series for G~G~I4 in terms
of I'3(G~G~G~)' is an expression for the true four-
point function in terms of the true (a renormalized)
three-point function.

APPENDIX B

We have argued that there is an equation that
gives I'z(GzGzGB)' =- I'~ in terms of y~(G3G~Gz)'
= y3 by dimensional reasoning, that is to say, be-
cause the essential ingredient of any graph is a
vertex and half of the propagator legs. To see this
analytically and to generate a single equation which
accomplishes the charge renormalization we pro-
ceed as follows:

5(S- y, (1)G,(1)——.
'

y, (12)[G,(12)+ G, (1)G,(2)]—$ y, (123)[G,(123)+3G, (12)G&(3)]+G&(1)G&(2)G&(3)])

= —y, (1)5G, (1)——,
'

yz(12) 5Gz(12) —yz(12)G, (1)5G, (2) —~ y~(123)5G~(123)

—~ y~(123)G~(3) 5G3(12) —
~ ys(123)Gz(23)5G~(1) —2 y~(123)G~(2)G, (3)5G~(1)

= ——'5Tr ie '
Gz 11 +G& 1 Gq 1 +lnG +-'ye 123 Gz 22 G~ 33 2& 231 &Gq 11 -6 yz 123 &Ge 123

Std

5Tr( ]+LG -1 /2 P G-1/25G 1 G-1 /2G-1/RG-1/2 y 5G1/2G 1 /2G1/2 P
= ——' 5Tr[. . .j—iy (123)51' (123)
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Z. = — P 1 ~~~t 0

FIG. 9. Self-consistent approxi-
mation to the vertex and self-
energy.

I,-=5z/5G, = —,
' r, (5/5G, )c,c,r,

= y G r + —'y G G (5F /5G )

I4=F3-F34F3- 'y3 3+ 'r3(5 3/5r3»
(B2)

I4 = F3 —F3I4F3+ —,F3(l —I4)[(51nF3/51ny3) —1]F3.

Since y3 = (1 —I4)r„ this equation determines I,
as a function of F3 beginning with (Fig. 9)

r3=r3- r3, --,'r3-O(r'3) .
An alternative way of writing I4 in terms of I'~ is
given by

It follows that y~ is a function only of I 3 so that
the theory depends on a single variable as we as-
serted. We may use this fact to obtain an equation
for y3 or I4—= (Gi3I3)3I4(c~z13)3 in terms of F3. One
way to do this is to observe that

5 in(1 —I4)I=r —FIF ——1" (1 —I)
&& F,1 T, r, (B4)

and an alternative form for 1", in terms of y, is

F3 r3+ 4 r3F3+ 4r3(5F3/5r3)F3 ~

The other equations are also given a natural nor-
malization. The equation

determines G3~3[G33] 'G3~3 as a function of F3.
Also we have

[G3] Gl r, + Tr,c,c, + Tr3G3

or with G2 Gy G~ and G2 'y, -=y,

(1+Py, r,)G, = ~y3+ ~r3G, G,

so that G, = G, ' G, is determined in terms of 1",

by the equation

[1+~r (1 - I )r ) G, = y, + 5 [r (1 —I )] [1+G G ] .
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(a) K. Kawasaki, Phys. Rev. 150, 291 (1966); (b) Ann.
Phys. (N. Y.) 61, 1 (1970), and intervening articles.

P. Resibois and M. de Leener, Phys. Rev. 178, 806
(1969); Phys. Rev. 178, 819 (1969); and other articles.

R. H. Kraichnan, J. Fhud:4iech. 5 497 (1g5g); g.
Math. Phys. 2, 124 (1961); J. Math Phys. 3, 205 (1962);
Phys. Fluids 7, 1723 (1964); in Dynamics of Fluids and
Plasmas, edited by S. I. Pai (Academic, New York, 1966).

H. W. Wyld, Jr. , Ann. Phys. (N.Y.) 14, 143 (1961).
S. F. Edwards, J. Fluid Mech. ~18 239 (1964); S.

F. Edwards and D. Sherrington, Proc. Roy. Soc. 90, 3
(1967); S. F. Edwards and W. D. McComb, J. Phys. A

~2 157 (1969). These papers seem closer to the "quasi-
particle" procedures of R. Balian and C. De Dominicis
[Physica ~30 1927 (1964) ) than to the "Green's-function"
methods, and we shall not discuss them further.

Although Kraichnan did not discuss the fully renormal-
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ized theory, he mas apparently aware of the flaws in
Wyld's procedure and the need for three vertices in
fourth order. It seems that Kraichn"n's rules for calcu-
lating the renormalized vertices to a given order generate
the quantities which are given exact nonperturbative de-
finitions here. We are grateful to Dr. Kriachnan for
providing us with old unpublished notes on the fourth-
order vertex, on the basis of which he apparently came
to conclusions similar to those reported here.

~2After our work was completed we became aware of
the work cited in Ref. 10 in which a similar, but not iden-
tical, operator appears to be used. The chronology may
be an indirect argument for its 'naturalness".

The notion of a free-energy functional for dynamics
is normally based on phenomenological considerations
like those in J. Frenkel, Kinetic Theo~ of Liquids (Dover,
New York, 1955), Chap. 7. In the present case it is
possible to cast the equations in terms of a stationary
functional, but we have not seen if and horn the tmo are
related. The use of functional-integral formulations of
coupled nonlinear problems is discussed, for example,
in R. P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1965).
Functional-integral formulations of the turbulence problem
are usually associated with E. Hopf [J. Ratl. Mech Anal.
1, SV (1952)]. Because of the additional operator, the
functional integral associated mith the equations derived
below mould be slightly different. It is generated from
the functional differential equation straightforwardly.
See, for example, P. C. Martin and J. Schwinger, Phys.
Rev. 115, 1352 (1959).

The description of response in classical systems in
terms of Poisson brackets is discussed in various places.
One place where a discussion in the spirit of the present
mork may be found is P. C. Martin, in Many Body Physics,
edited by C. deWitt md R. Balian (Gordon and Breach,
New York, 1968); another is R. Kubo, Rep. Prog. Phys.
23, 255 (1966).

«~This example is only illustrative. The energy is un-
bounded and the system is unstable. If we were not pre-
pared to sacrifice truth for simplicity at this point me

mould have chosen the Duffing, Rayleigh, or van der Pol
oscillatox; Lord Rayleigh, Theo~ of Sound (Dover, New

York, 1945), Vol. I; B. van der Pol, Phil. Mag. 3, 65
(1927); or G. Duffing, Erzsvungenes Schaoingungen hei
Verandlicher Eigenfrequenz (Vieweg und Sohn, Baun;
schweig, 1918). Their equations have been discussed in

a statistical way recently by H. Risken [Fortschr. Phys.
16, 261(1968)] and by J. B. Morton and S. Corrsin
[J. Stat. Phys. 2 153 (1970)]. To include them by the
techniques discussed here, we should introduce a second
dynamical variable that plays the role of the square of
the oscillator displacement. In terms of this variable
the coupling is cubic. This procedure is employed, for
example, in the discussion of A. Migdal (Zh. Kksp. Teor.
Fix. 55, 1964 (1968) (Sov. Phys. —JETP 98, 1088 (1989)j}.
The other procedure would be to keep four-point inter-
actions, as, for examp1e, in C. De Dominicis and P. C.
Martin, J. Math. Phys. 5, 14 (1964); 5, 31 (1964). In
high-energy-physics language, it is convenient some-
times to introduce an intermediate boson instead of
working with a four-fermion interaction. Neither of
those alternatives, in our opinion, merits elaboration
here.

~~This description of classical systems has been uti-

lized by many authors in recent years. %'e cite, for
illustrative purposes, P. C. Martin, Hef. 14, although
there are no doubt earlier references in mhich this view'-

point is stressed.
See, for example, Ref. 14, or I. P. Kadanoff and

P. C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963}.
Cumulants no doubt have a large mathematical litera-

ture. One of the first tabulations in the physics literature
seems to be that of E. Meeron [J. Chem. Phys. 27, 67
0.957)]. They are also discussed in the works of Kubo,
Kraichnan, Martin and Schwinger, and Martin and De
Dominicis.

~SThe relation of the Hartree-Fock method of cumulant
discard is noted in Ref. 13 among other places. When

there are superfluids and the mean value of the field does
not vanish, all terms in the statistical discussion must be
retained. This leads to the approximation of M. Girardeau
and L. Arnowitt [Phys. Rev. 113, 755 (1959)].

2 The corresponding assumption in turbulence theory,
i.e. , the quasinormal approximation is usually asso-
ciated with the names of M. Millionstchikov [C. R. (Dokl. )
Acad. Sci. USSR 32, 615 (1941)];I. Proudman and O'. H.
Reid [Phil. Trans. Roy. Soc. London A 247, 163 (1954)],
and T. Tatsumi [Proc. Roy. Soc, London A 239, 16
(1957)].

'A typical problem of this type concerns the frequency
shift in the energy between atomic levels due to a coupling

U3 which involves the bvo atomic states and the electro-
magnetic fieM. The correction to the photon absorption
spectrum is large at the unperturbed frequency (where it
is changed from a 5-function peak to a small value} and

in the neighborhood of the "true" shifted frequency.
2That is to say if in lowest order G = (z -Ee) and in

next order G '= (z-E,) —X /(z- E~), the ratio AG/G to
second order is a2(s —EP '(z —E,) ', which is large near
E~ and near E&. [Near E„ it describes the fact that the
resonance is shifted to E,+ X /(E&-E~) when X /(E»- Eg
«1, as is discussed in Ref. 21, but it does so in an in-
effective way. ] In the other limit it is even a less con-
trolled approximation. By contrast, the equations G

=z-E, -A. & and ~ =z-E&-X G, which describe the
problem in the second form, give G= (s-Eg ' 9(1+t)
t-=[1-4X'/( -E,)( -E,}]'~', and ~G/G=(1-t)/(1+t),
which is bounded. In the second form, the absorption
which is given by ImG(z) is altered from xb(x-E,) to a
function spread between E» and E»+ 4k~/(E»- Eg when

&/(Eg, -E ) «1 [with a mean value given by E, + A~/

(Eq -E,)] . On the other hand, even when E, = Er, and
z is approximately E,LhG/G is bounded and of this
order for [(s -E,)~SX.

R. H. Kraichnan [in The Pade Approximantin Theo-
reNcal Physics, edited by G. Baker and J. Gambrel Qca-
demic, New York, 1970)] has discussed turbulence ap-
proximations using Pads techniques, and many other ex-
amples are given in the book. The approximants under
discussion here are "matrices", not numbers.

Charge and mass renormalization are discussed in the
classic context in Refs» 1 and 2» They are discussed in
a context closer to the present one by De Dominicis and
Martin, Ref. 15.

2~The degree onnon-Gaussian behavior is characterized
by various aspects of the three- and four-point cumu-
lants, to which names like "kurtosis" and "skewness"
have been given. Estimates for them can be found for
example, in the article by Gibson and Masiello [in Sta-
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tisNca/ Models cnd Zhxbulence, edited by M. Rosenblatt
and C. van Atta (Springex-Verlag, Berlin, 1972)]. They
are not very small, but, unlike the Reynolds number,
they are somewhat less than unity.

For example, by subtracting or differentiating, one
may eliminate all dependence on the bare coupling con-
stant {orReynolds' number) in a differential equation.
The solution to this equation may be found using as a
boundary condition, the observed value of the coupling.
Presumably, if there is a range of wave numbers for
which the behavior is relatively insensitive to the bare
coupling, it is possible to get an approximate solution
in this region, even though at very high wave numbers the
relative insensitivity of the renormalized coupling will
manifest itself in an extreme sensitivity of the high-wave-
number coupling to small charges in its low-wave-num-
ber value.

Thus the "susceptibilities" and derivatives used in
Refs. 5 and 6 are the ones that result fxom the 'Mode
coupling" and are measured-not the bare couplings that
occur in the equations of motion. This point is discussed
from a point of view closer to our own in the article of
J. A. Hertz [Int. J. Magnetism 1, 253 (1971)].

This is the name given to the natural lowest-order
nonlinear approximation by R. H. Kraiehnan [J. Fluid
Mech. 5, 497 0.959)].

Since the only corrections to the direct-interaction
approximation {d.i.a.}Ref. 28 are vertex corrections,
the nature of the approximations of T. Nakano (University
of Illinois, report of work prior to publication) in which,
on the one hand, the d. i.a. is supposed to be corrected,
and on the other, "vertex corrections are not taken into
account, "are difficult to comprehend and seem ad Roc.

One proves, for example, that the charge measured
in Thomson and Compton scattering experiments and by
Coulomb's law are the same even though this charge does
not appear in the "Hamiltonian. " See, for example, Refs.
1 and 2.

3~It is by carrying out this resummation that Wyld ar-
rives at his "renormalized" equations. See M. J. Beran
[Statisticaz Continuum Theories {lnterseience, New York,
1968)]for a resume. Kraichnan also derives his equa-
tions in essentially this fashion.

32L. L. Lee, Ann. Phys. (N.Y.) 32, 292 (1965).
Note that we are referring to a difficulty other than
the problem in Wyld (Ref. 31) set straight by Lee.

Note that with a proper renormalization the "counting"
difficulties which were noted by Morton and Corrsin
(Ref. 15) and which forced them to use a "hybrid" ex-
pansion with both real and bare vertices, do not arise.

The techniques are described in many sources, among
them, Refs. 1 and 2, and, in addition, Kadanoff and
Baym (Ref. 3), Martin and Schwinger (Ref. 13), De
Dominicis and Martin (Ref. 15), ete.

That all the dependence on G~ in Z occurs through the
dependence on G2 can be checked iteraU, vely or formally.
As a result, more explicitly, gZ/BG$}y {l5Zt/6G2)g(y2
& {6G2/6Ggj y

~

y2
The comments made in Ref. 15 concerning the need

only for three-point interactions with an extended field

may now be recalled. There appears little advantage,
practically or esthetically, for working instead with dif-
ferent types of vertices with four points (as also dis-
cussed in De Dominicis and Martin, Ref. 15) or with ar-
bitrary numbers of points discussed by F. Englert and
C. De Dominicis [Nuovo Cimento 53A., 1021 0.968)].
All the additional topological theorems must be restate-
ments of those for the three-point function, as the simi-
larity in proof suggests.

The construction of the variational principle in terms
of the correlation f'unctions from the equations relating .
them is discussed in Ref. 15. Crucial ideas were intro-
duced by J. Luttinger and J. %'ard [Phys. Rev. 118, 1417
(1960)] and by G. Baym [Phys. Rev. 127, 1391 {1962)].

3 The renormalization group is discussed in Bogolyubov
and Shirkov, Ref. 1. There has been a recent resurgence
of interest in view of the work of K. Wilson and others on
phase transitions [K. Wilson, Phys. Rev. B 4, 3174
(1971); Phys. Rev. B 4, 3184 (1971};F. J. Wegner
(Brovtn University, report of work prior to publication)].

Ward identities are discussed, for example, by C. G.
Callan, S. Coleman, and R. Jackiw [Ann. Phys. (N.Y.)
59, 42 {1970)].

40The question of a random force mill be dealt with at
greater length in a succeeding paper, where turbulence is
considex ed more specifically.

D. Forster and P. C. Martin, Phys. Rev. A 2, 1575
{1970).

+While we believe the remai»~& problems are techni-
cal, Kraichnan believes these difficulties are fundamental
in the application to equilibrium fluids.

+See Ref. 6(b), Sec. 4. We have not been able to prove
that the diagrams that give the response to an impulse
{i.e. , G) are consistent with definition (4.3}which is al-
so given for this function. If they are both cox'rect, a
nontrivial theorem must be proven, and we tend to doubt
it. This disbelief also applies to the statement that the
fluctuation-dissipation theorem implies their equality-
at least as we understand that theorem.

+This point has received a great deal of attention re-
cently. See, for example, J. R. Dorfman and E. G. D.
Cohen, Phys. Rev. Letters ~25 1257 (1970); H. H. Ernst,
E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev.
Letters 25, 1254 (1970); Y. Pomeau, Phys. Rev. A 3,
1174 (1971); K. Kawasaki, Phys. Lett. A 32, 379 (1970);
34A, 12 (1971); R. Zwanzig, Proceedings of the IUPAP
Conference on Statistical Mechanics, Chicago, 1971 un-
published). Indeed, as stressed by Resibois, these
theorivs are all similar in spirit to the work of .

Kadanoff and Swift (Ref. 5) from which the same re-
sults can be obtained by techniques they used for the
critical point. To our knowledge no one has really shown
that these caneellations do not occur for transport coef-
ficients, and no computer ~rperiments indicate such non-
exponential tails. For self-diffusion, which is not a
transport process, it is silly to worry about a possible
cancellation in view of the computer calculations of B.
Alderand and T. Wainwright [Phys. Rev. A 1, 18 (1970)].

G. H. Vineyard, Phys. Rev. 110, 999 (1958).


