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simple two-level model (the rising edge of the
delay curve excepted), and that the low-tempera-
ture phase memory in ruby behaves as predicted
by a "direct-process" model; furthermore,

T2=50 nsec near O'K. . This emphasizes the
ability of atomic coherence phenomena to provide
useful information on phase-relaxation mechanisms
in solid-state systems.
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An exact renormalization equation is derived by making an infinitesimal change in the
cutoff in momentum space. From this equation the expansion for critical exponents around
dimensionality 4 and the limit n = ~ of the n-vector model are calculated. We obtain
agreement with the results of Wilson and Fisher, and with the spherical model.

I. INTRODUCTION

Recently Wilson' has developed a powerful meth-
od of calculating critical exponents of the n-vector
model in powers of & =4 —d, where d is the dimen-
sionality of the system. Although he uses some
properties of the renormalization group, his pro-
cedure is not directly based on this group. Here
a renormalization-group equation is derived by
eliminating the Fourier components of the order
parameter in an infinitesimally small shell in
k space (Sec. II). This equation yields the gener-
ator of the renormalization group. The change in
the Hamiltonian under the infinitesimal change of
momentum cutoff can be expressed by a closed
equation. Integration of this equation up to a mo-
mentum-cutoff factor b will presumably yield the
recursion formulae mentioned at the end of the
paper by Wilson and Fisher. '

To demonstrate the usefulness of our equation,

we consider (a} the expansion around dimension-
ality 4 for the n-vector model and rederive crit-
ical exponents to order e and q to order e' (Sec.
III) and (b) the limit n=~ of the n-vector model
(Sec. IV). In this limit the equation for the fixed
point decomposes into several equations which
can be solved successively. The analysis yields
the spherical-model results as expected from
Stanley's proof. '

II. BASIC RENORMALIZATION

GROUP EQUATIONS

In this section we derive renormalization-group
equations by making an infinitesimal change in the
momentum cutoff. We start from an effective
Hamiltonian H,($~j [implicit in H, is the factor P
= (kaT} '] in which S is a, classical field (-~.~ S
~ ~) and S~ are its Fourier components (in Sec.
III we generalize our discussion to an n-vector
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model). It is assumed that Fourier components
with k&1 have already been eliminated; conse-
quently Ho depends only on the N remaining S, with

k & 1. Sometimes it is convenient to expand the
effective Hamiltonian in powers of' 5: Ht*'=-,' Q ~,(a)s,s,

k
(2.7)

Here the prime indicates that the summation is
only over k in the shell. %'e split off the two-spin
interaction

1
HO=Nvo+ —Q v«(a)s«s «2l a

from the Hamiltonian

H, =a~" + H', (2.8)
1

+ 4, Q ~,(a„a„a„a,)
Qg « ~ 4 $4

x s«p ««S««s«4 0««+««+««+«40 (2 ' 1)

and find that the change 5H, in the Hamiltonian,
owing to integrating the partition function over the
shell in k space, is given by

Here only even terms have been retained, odd
terms are easily included. The Fourier compo-
nents S«have been normalized such that ( S,S «)
is of order PP (above criticality or for a e0). The
partition function for the system is given by

where

= II'[~.(a)1 ~' (e='), (2.9)

1Z= Tre ~o=lL — dS e-~o.«y
note that $, is the complex conjugate of S~,

(2.2) 8H' 1, 8'H'
H =Q S«P —+ —Q S«s«. P + see8' 2 8S~ 8Sq~

(2.10)

(2.2)

and that the integral over the complex components
should be understood as

The expectation value in Eq. (2.9) is taken with

respect to H~'~. It follows immediately that 5H,
is given by the cumulant expansion

f dS«dS «
= f d Re(s«) f4 1m(S«) . (2.4)

0H, =,' g Inu, (a)+ (H), —,-'(H, H),

Our aim is to carry out the renormalization pro-
cedure with a momentum-cutoff factor e r Thi
procedure allows the construction of a Hamilto-
nian H, from H, which leaves the partition func-
tion invariant. To obtain H, we take the following
steps (compare Sec. II of Ref. 4): (a) Eliminate
all Fourier components with wave vector [a) &e-',
(h) renumber and rescale the Fourier components
(the transformation to new variables); (c) extend
the system in all linear dimensions by a scale
factor 8'. Vfe perform only an infinitesimal trans-
formation, / = 5; in this way we derive the gener-
ator for the renormalization procedure.

To eliminate all Fourier components with 4& a-'
=1-5, it is convenient to introduce an operator I'
which sets all S~ with k& 1-5 equal to zero:

+~(H H H) + ~ '' (2.11)

.-" =n'(~ jas, )

xexp — S,I' -
2 S,S,P8 k8 k

that is
(2.12)

where the averages are taken with respect to H '
for 0 in the shell. Vfe show in Appendix A that,
in the limit of infinitesimal 5, the only terms which
contribute to 5H, are curnulants involving no more
than two derivatives of H', hence

PH,IS,'f = H,(S,e(1-0-(a( )) . (2.5)

Then the expansion of Ho in powers of the opera-
tors S~ within the sheQ 1-5& k& 1 has the simple
form

1 i sH sH
PsS, PsS, ~ (2.13)

8Sa8S a

HO=PHD+ Q S«P + —Q S«S«, P + ~ ~ ~ .8Ho 1 i 8 Ho

BSp 2 8Sg 8Sgt

(2.6)

There are Nd5 Fourier components in the sheB.
If we replace the sum Q«over the components by
the angular integration (Nd5/0) J d 0, we obtain
finally
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BS,
(2.14)

Here the integral sums over the unit vector e and
P indicates that only components with k&1 are
retained. Readers familiar with Feynman graphs
will realize that we sum only those graphs with
propagators having momentum such that 1-5(

i k [

&1. In the limit 5-0 two types remain which are
represented by the two terms in Eq. (2.14). The
first term corresponds to the sum of all graphs
with one closed loop of arbitrary length, with all
propagators around the loop having momentum e
(no external momentum enters at any vertex),
while the second term is a sum over open lines,
again with momentum e on every propagator on
the line. Only BH/sS and '

tiH/ s'Sere involved
because two propagators at most emerge from a
given vertex.

Now we renumber the Fourier components.
After the elimination of the Fourier components
in the shell, the wave vector q runs up to e
only. If we make the change of variable k- k'
= ke, then q again runs up to 1, but the interaction
potentials v(k. . . ) have been replaced by
v(k'e . . . ). Expanding it is easy to see that the
change in the interaction potential leads to a
change in the Hamiltonian:

Here B» denotes differentiation with respect to k",

the prime indicates that the differentiation should
not be applied to the 5 function in Eq. (2.1}.

After summing over the shell, the number of
Fourier components has been reduced to Nz
=N0e . Therefore, if v„ is replaced by
v„exp[d5(~ —1)J, H~ can be written in the form
(2.1), where N=N~ now denotes the number of
Fourier components. This transformation is
achieved by a change inII of

5H„=d5H ——,
' d5 Q S»

BH
(2.16)

5H, = 5—,'(2-q) P S, (2.17)

this transformation also affects the trace, which
leads to a further contribution

5H, = -
» 5(2-i))N. (2.18}

The operator sH/sl is now obtained by collecting
all contributions:

In addition to the change in H arising from the
elimination of the shell in momentum space,
changes arise from the scale transformation in 8,
which is made in order to obtain the fixed point;
as we wi11 see, this transformation is related to
the critical exponent g. If all spin components $»
are multiplied by a factor exp[-,'(2-ri)5], then H
changes by

5H, =-5+ks, s,
'

BS»
(2.15) 5—=5H, +5H, + 5H„+5+ +5H, ,

BH
B

(2.19)

dg 1 p B p p H p

-Q kS»s, + dH+ p(2 i) d) Q S-» -»(2 g)N.--' 'BS, BS»
(2.20)

This is our basic equation. It describes the
change of H under the renormalization procedure.
Since a fixed point IP' does not change under the
renormalization procedure, it is determined by
sH»/sl = 0. This leads to a nonlinear eigenvalue
equation for EP' with eigenvalue g. We now show
that ri is the critical exponent (for a definition of
the critical exponents see Refs. 5 and 6). If we
add a magnetic field h to H,

=26-dv
~ (2.23)

we obtain

Therefore h, =k0e' "'"; the corresponding eigen-
value as defined in Ref. 4 is y = —,'(2-t7+ d); and we
obtain the gap exponent A = -', (2-n+ d). Using the
scaling law

y = 2a —(2-a)

H =H+ ~ii2S
then we obtain from Eq. (2.20)

—= —+ —2(2-n+ d)kN 'i'S
BH BH
Bl Bl 0

(2.21)

(2.22)

r = ~(2-n); (2.24)

that is, the coefficient q introduced in Egs. (2.17)
and (2.18) is identical to the exponent n defined
by the critical susceptibiiityy, (k) ~k" '.
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III. EXPANSION IN e = 4-d FOR THE n-VECTOR MODEL

Equation (2.20) is easily generalized to an equation for an n-vector model. Denoting the n components of
the vector Sk by Sk we find

lnP y)
8 H

-Q kS, a„+dII+ —,(2-q-d)gf, --,(2-q)Nn.
BH 1 8H

k kgb 'eS (3.1)

H=NnII{(1/N)n(k, k')),
where

(3.2}

Here a'II/aS, aS, denotes the tensor with compo-
nents a'H/aS, aS, . If we limit our considerations
to Hamiltonians H which are isotropic in $ space,
we may write

n(k, k' ) = (1/n) S,S„.
Then, noting that

8H BII
as, ~ a[(1/N}n(k, k )] '

and

(3.3)

(3.4)

a'a
aS, aS5, a[(1/N)n(e, -e)] a Nn ~», a[(1/N)n(e, k)]a[(1/N)n( e, k'-)]

(3.5}

we find that Eq. (3.1) reduces to

8H d eE
al 2Q

dQ ln 2Pa[(1/N) (,—)]
+

2Q J
dQ [ln(1+ hn)) „

d " ~ BI7 BH BH
Q ~ ~» a[(1/N)n(k, e)] a[(l/N)n(k', -e)) a[(1/N}n(e, -e)]

Here the matrices h and n are given by

8+
a[(1/N} (k

(3.6)

and

=2 ~H
N a[1/N)n(e, k)] sf(1/N)n(-e, k')]

aa
s[(1/N)n(e, -e}]

(3.7}

~„,= n(k, k ) .

In Sec. IV we will solve Eq. (3.6) to determine the critical behavior in the limit n = ~. However, before
carrying out this calculation we will write down explicitly the equations for the potentials v, to v, and dis-
cuss their behavior as a function of c = 4-d.

As in Eq. (2.1), we expand the Hamiltonian

H = vo+ (1/2N)g vm(k)n(k, -k)

+ (I/8N ) Q vz(k~k~;k~Q )n(k~, kz )n(km, 2 )az + ~ + z +z

+ (1/48N ) Q ve(k, k, ; k2k; k k )n(k„k~ )n(km, km)n(k, k, ) 5. . . ~ (3.8)
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Then substituting in (3.1) and equating powers of n(k, k'), we find'

el
' =dv, --', (2-V)+ f dQ)vv(v), (3.9)

(3.10}

=(4-2)7-d}v,(k,k„k,k, ) -gk, S,, v, (k, k, ;k,k, }

+0 2, , v, k, k, ;k, ;e-e +—,, v, kykj p + VB kgb;kg 8;k2k2

d 1
k'~+ kg, o

dA 1 dQ
v~(k~-k~;e-e) v4(k2-k); e-e) + —

2 v4(k~-k~; e-e)v4(kme;-k -e)
vI(e) 4 l lv 4 2 v n 2(e) 4 1 lv

+—,v, (k,-k;e-e}v,(k,e;-k, -e) — (5,„,+ 5, ,~,), v, (k,e;-k,e)v~(k, e;-k,e),
(3.11)

and

v v

=(6-3q-2d)v, (k, k, ;k,k, ;k,k, ) -Qk, s, v, (k, k, ;k,k„'k,k, )

[v~(k, k, ; kme) v~(k3k, ; k, -e)5' (k,+ k,'+ k,+ e) + 5 permutationsf+ ~ ~ ~ .
(e 4 1 lv (3.12)

&4 =~4O~ (3.13}

ve=-v~~0(f(k, + k, + km) + f(k, + k, + k2)

+ f(k, +k, + k)+f(k, +k, +Q)

+ f(k, + k, + k,) + f(k, + k, + k,}}, (3 14)

with

() 0, kl 1

k ', kl &1. (3.15)

Substituting Eqs. (3.13) and (3.14) into the inte-
grals of Eq. (3.11), we find

The 5 functions appearing in Eq. (3.11) are
Kronecker 5's.

We now attempt to solve Eqs. (3.9)-(3.12) for
small (positive) e =4-d. It is easy to see that a
fixed point sv„*/el = 0 is obtained for )7 =0, v, (k}
=k, v, =l/d, and v~=v, = ~ ~ ~ =0. This is the
Gaussian solution mentioned by Wilson. ' It corre-
sponds to an ideal gas of noninteracting fields 5, .
Next we derive the nontrivial solution obtained by
Wilson and Fisher' and further discussed by
Fisher and Pfeuty, ' and Wegner. " Let us assume
initially that v, is a constant v,o, and v, (e) = l.
Then we obtain from Eq. (3.12), to order (v~,)',

(4-2q-d)v, -g ks, v,

= v,',d(g (k, + k,'}+ (4/n} g (k, + k', )

+(2/n)g (k, + k }+ (2/n)g(k, + k, )}, (3.16)

where

g(k) =(1/0) f dQ f(k+e) and g(0}=—,'. (3.17)

It should be pointed out that the projection oper-
ator P in Eqs. (3.6) and (3.7) limits the value of
the wave vector k in Eqs. (3.10)-(3.12) to being
at least infinitesimally less than 1: hence the inte-
grals in these equations do not contribute if any
wave vector k is a unit vector. This is especially
important for the integral in Eq. (3.12}, which
contains a 5 function. As it follows immediately
that, at least for any case needed in the calcula-
tion, f(k)=0 for lkl=1 [Eq. (3.15)]. For example,
as we only need to calculate interactions of the
form v, (k,k„' k, k, ; e-e} or v, (k,k„'k,e;k, -e), con-
servation of wave vector gives f(k, + k, + k, ) =f(k, ),
and hence f(k) = 0 for

l k l
= 1. However, if we now

define g(0) = —,', as in Eq. (3.17), then g(k) is a con-
tinuous function and Eq. (3.16) follows immediate-
ly from Eq. (3.11): the extra terms come from the
5 functions in that equation.

Then, expanding g(k) and v, in powers of k, we
obtain
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(4-2q-d) v„=v,', d ,' (-1+ &/n) .
As me will see, ga. or&', hence

(3.1&) For q =0 the inhomogeneous term, proportional to
k', on the right-hand side of the equation mould

lead to a nonanalyticity

d(1+ &/n) 2(l+ &/n)
(S.I&) v, (k) —k cck ink . (3.2V)

Moreover, as the k-dependent contributions to v,
are proportional to v4', and therefore proportional
to z, me have

2(1+ &/n)
(8.20)

If me nom substitute this expression for v4 into Eq.
(8.10), we find that, to order e,

2
V40 V4o= ~ ~+ V4o4 2nA n

If, on the other hand, v, (k), as a function of I, is
renormalized according to Eq. (3.10), such a non-
analyticity never arises; but the amplitude of the
0' term is changed. This corresponds to a re-
scaling of 8, with q =0. We choose q so that v, (k)
is analytic. From this condition me find that

q =-', [-2g(1)+ 2g(0) -g'(1)]e'(n+ 2)/(n+ &)'. (3.2&)

From Eq. (S.IV) we find g(l) and g'(1) are given

by

=k — e+O(e ) ~

{n+2}
2 n+&

(3.21)
g(1) =-,'—v'8/4v, g'(1) =IS/2w,

and therefore

(8.29)

%e ean nom calculate q to order &'. %'e note
that, apart from a k-independent contribution, v,
to order e' is given by Eq. (3.16). The reason is
that a change in v4 at order &' affects v, only at
order e' From. Eq. (3.16}we find that

v~(k, k,';k k,')-v4(0)

d k(k, + k, )+ —k(k, + k,)21+& n ' ' n

+ —k(k, + k,)+ -k(k, + k,) + 0(P), (8.22)
2 2

with

-kayak(k) =g(k) -g(0); k(0) =0,

and therefore we obtain from Eq. (8.10)

(2-q)[v, {k)-v,(0)]-ke, v, (k)

(8.23}

k*[8k'(I)+ k'(1)], (8.26)

which, making use of Eq. (8.28), becomes

(2-g)[v, (k)-v, (0)]—ks, v, (k)

, k [-2g(1)+ 2g(0) -g'(1)]+0(k ) .3 e'(n+ 2)
2 (n+ &}'

(3.26)

dQ[k(k+e)-k( }]e. (3.24)
12&'(n+ 2) 1

(n+ &}' 0
The integral on the right-hand side of Eq. (3.24) is
an analytic function of 0; expanding for small k me

find

(2-q)[v, (k) —v, (0)]—ks~ v, (k)

g= ~ze'(n+ 2)/(n+ &)', (3.30)

in agreement mith Vhlson and Fisher.
As explained by%'ilson' and in Refs. 2, 9, and

10, one obtains the other critical exponents by
calculating the eigenperturbations in linear ap-
proximation. For a perturbation growing like e"',
we obtain from Eq. (3.10)

y&v, (k) = (2-q) 6v, (k) —ke, &v,(k }

+ —+—

(3.31)

One can see from Eqs. (3.10)-(8.12) that for e =0
there is a solution y=2, 6v, (k}=(const), 6v, =&v,
= ~ ~ ~ =0, 5v, = --,'5v, . For small & one finds from
Eqs. (S.ll) and (3.12) that 6v4~e'5v, . Therefore
we may neglect 5v4 in Eq. (3.31}to obtain y to or-
der &:

y„=2-(n+ 2)/(n+ &)e . (3.32)

According to the classification in Ref. 9 me have
called this index y„. As is well known "' "the
critical exponents n, P, y, and p can be calculated
from g and y„.

IV. LIMITn=~

Stanley has shown that in the limit m = ~ the n-
veetor model reduces to the spherical model. ' As
this model can be solved exactly, ""it is tempting
to look for its solution within the framework of the
renormalization group. %hen n- ~ the second
term on the right-hand side of Eq. (3.6) vanishes
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because of the factor 1/n. Let us expand the Ham-
iltonian into terms which contain products of zero,
two, three, etc. off-diagonal factors n(k, k') with
k+k' g0:

—= —ln(c+ f')+ (2- d)zf'+df.Bf d
Bl 2

(4 6)

In order to obtain the fixed point f *, when q = 0,
we must solve the equation

H =H+H, +H3+ ~ ~ ~ . (4.1)
2 in(c+ f*')+[(2 —d)/d]zf «'+f *=0. (4.9)

Then 8 depends only on the diagonal terms

(4.2}

since the contributions from H„H„etc. to BH/Bl
contain at least two off-diagonal factors. Similar-
ly aH, /Bl depends only on H, and H„etc. Here
we restrict ourselves to the solution for H." To
solve Eq. (4.4}we make the ansatz

H = (c/2Ã) P k'n~+f (z)+ (2 —q)/2d, (4.5)

n~ =n(k, -k),
H = H (n(k, k') = nq5~+q. j, (4.3)

in which all the off-diagonal terms n(k, k'} have
been put equal to zero. For H we obtain the closed
equation

BH d „„, BP 1, aH
Bl 2g B[(1/N)n, ] ~ N ' 'B[(1/N)n, ]

1 Ba+(2 —rl-d)Q —n~
[( / } ]

——', (2 —rl}+dH,
(4 4)

as a function of f *'. Depending on the value of f *
the line g, cuts g, twice, touches g„or does not
intersect g, ; that is, we obtain two solutions
f«'(f *,z) for f *&fh (z), one solution for f *
=f~ (z), but no solution for f «&f~(z). The limit
curve is given by

8g~ Bg2
&I -g2 "

Bf «i
—

Bf «I ~

that is,

(4.11)

The solution is given in Appendix B; however, as
we will see, in order to determine the critical ex-
ponents it is only necessary to determine the es-
sential singularities of the equation. First, we
consider f *' as a funtion of f * and z. In Fig. 1 we
plot

g, = —,
' ln(c+f *') and g, =[(d —2)/d]zf *' f*-

(4.10)

where

z = —,
' Q(1/N)n, . (4.6}

f~ = —,
' + z in[2(d —2)z/d] —(d —2)cz/d,

which has a maximum at

z =zo=d/2(d —2)c.

(4.12)

(4.13)

Then substituting Eqs. (4.5) and (4.6) into Eq. (4.4)
we obtain the nonlinear differential equation

—= —In(c +f ') + (2 - g —d)zf ' + df - Q k 2n(k),
7jC

Bl =2 2N
(4.7)

which for q =0 becomes a differential equation for
the function f only,

Except at z = z„ the slope f *' at the limit curve

B hmf «P (f )
IIIII (4.14)

is steeper than the gradient of the curve, Bf~/Bz.
Therefore, solutions which reach f~(z) form a
cusp with finite slope at the limit curve. These
solutions have no (real) value on one side of the
cusp and two values on the other side; because of
this unphysical behavior, they are rejected. The
only physical (single-valued) solutions then, either
touch f~(z) at z =zo or they do not touch the limit
curve at all.

We now show that there are no solutions which
do not touch the curve fb (z}. From Fig. 1 it is
apparent that for f *&f~ (z} there is one solution
with

f «'(f*, z)&f «'(fh, z) =d
lim (4.15)

and one solution with

f*'(f' z)~f*'(fz z) =d (4.16)

Fig. 1. Determination off ' (f,z) from gf g2.
If a solution does not touch f~ (z), then it is either
of type
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f +I f gl or f +I ~f Ql (4.17)

Now from Eq. (4.16) we obtain, for z& zo,

f *(z) —f *(zo)& [d/(d - 2)][fh (z) —f~ (zo)] (4.18)

which with a little rearrangement becomes

f *(z)—f~ (z) & [2/(d —2)]f~(z)
—[d/(d —2)]f~ (zo) +f *(zo) . (4.19)

y5f = (,) 5 f'+ (2 —d)z5f'+ d5 f,
which leads to

ln5f =-,'(d —y) jdz/Q(z),

with

d (d —2)zQ()=
4( f )

(4.26}

(4.27)

It is easy to see that the right-hand side of Eq.
(4.19}vanishes for sufficiently large z =z„ there-
fore, the solution f * of f ~' =f1'(f*,z) comes down

to fz (z) for some finite z& z,. In a similar way
one can show that the solution f * of f *' =f*'(f*,z)
comes down to the limit curve for some finite z,
such that 0& z& z,. Therefore all solutions f ~

touch fl. (z): moreover only the smooth solutions
of Eq. (4.9) go through

Since

d d
4( +f*')'4( +[d/(d-2)]f' ]'

f *' = [d/(d- 2)]f'

Q(z) = z(d- 2)5z, (4.29)

only when f *=fe, we see that Q = 0 only at z =z,.
For the solution (4.22) we find

f ~(z,) =--,'inc. (4.20) and for (4.23)

To obtain these solutions we expand Eq. (4.9)
around z = zo and obtain

—' Inc — (f *')'+ (f *')'+1 1
2 4~2 6c'

Q(z) = 5z —[2c(4 —d)'/d(6 —d))(5z)'+ O(5z)',

(4.30}

therefore for the Gaussian fixed point,

which has the solutions

f*=——,
' inc,

2-d
+

d
5zf~'+f *=0, (4.21)

(4.22)

5f = (5z)

and for the nontrivial fixed point

where

(4.31)

(4.32)

Besides the solutions, Eqs. (4.22) and (4.23), con-
sidered here, there is the additional set of solu-
tions discussed in the Appendix B.

We consider perturbations to the fixed-point
solutions f *. We start with a perturbation

5H=5f (z). (4.25)

For this perturbation we obtain from Eq. (4.7) the
eigenvalue problem

f*=--,' inc+ „(5z)'+, (5z)'+ O(5z)'.c'(4 —d), 4c'(4 —d)'

(4.23)

Equation (4.22) corresponds to a system of spine
that only interact via a two-spin interaction; this
is the Gaussian solution. Equation (4.23) does not
exist for d =6, 8, 10. . . . For d =4 it is identical to
solution (4.22). It corresponds to the nontrivial
solution of Wilson and Fisher. ' To first order in
e = 4 —d it agrees with the solution Eq. (3.8), (3.20),
and (3.21) since for c =1

f ~= 4z(z -1)'—
~
'- gf 1 N n~+4e. 4 24

q(z) = c5z + [2c'(4 —d)'/d(6 —d)](5z)'+ O(5z)' .
(4 33)

The perturbations [Eqs. (4.31) and (4.32)] are ana, -
lytic for positive-integer exponents, (d —y)/(d-2)
and —,'(d —y}, respectively; hence

y =d —(d-2)m

for the Gaussian fixed point and

p~ =d —2m

(4.34)

(4.35)

v = 1/y, = 1/(d —2), (4.36)

for the nontrivial solution.
The solution (4.23) and perturbation (4.32) allow

the following interpretation. The Hamiltonian NnH
describes a system of spins interacting via
zcQ k'S~S ~ in a potential Nnf(5z) =Nnc'(4 —d)
&&(5z)'/d. As long as d&4 the potential is attrac-
tive and forces the spins to a mean value of

Q n~/2N~zo, this is no longer true for d& 4 where
the potential is repulsive. The application of a
perturbation of type (4.32}with m = 1 shifts the
minimum of the potential; this corresponds to a
change in temperature. The critical indices are
easily obtained from Eq. (4.35):
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a=2 —dv=(d —4)/(d —2),

y= v(2-»I)=2/(d-2),

(4.37)

(4.38}

p= v{-,'d- I+»I) =-,', (4.39)

in agreement with the results obtained previously
for the spherical model.

We now consider more-general perturbations.
From E»I. (4.4) we find the linear response to a
perturbation 5H,

-d 5H-
(c+f')0 8((l/Ã)n, )

85H~ fq ~ ~ 8((1/N)n~)

(4.40)

g —d =p~ 4+$2 d .
We now calculate a set of eigensolutions

(4.41)

if 5H, and 5H, are solutions of E»I. (4.40) with
eigenvalues y, and y„ then eH, 58, is also an eigen-
solution with

y=d+g (y~» —d). (4.49)

We note that the perturbations 5H, o and 5H~ have
vanishing exponent y. The perturbation 5H, O

cor-
responds to a scale transfoxmation of S. This
transformation can equally well be performed by
differentiating with respect to the parameter c. It
follows that

c8H*
8c (4.50)

pg ] =
pg»I gOg

which is easily checked using E»I. (4.5) and differ-
entiating f with respect to c in E»I. (4.9). This
yields E»I. (4.45) with k, (s) = 8f */8c. The pertur-
bations 58~ arise from a change of scale in k
space. H we had not eliminated the Fourier com-
ponents with k'e2'& 1 but, for example, with k, ee~'

+ k~'& 1 (here k~ is the component of k perpendic-
ular to k, ), then we would find a fixed point that
differed (for infinitesimal I) from H~ by a term
proportional to 61„. These are the components
of the stress tensor.

Finally, we consider the effect of the perturba-
tions beyond linear order. Following the notation
in Ref. 4, we expand

efi»„- = p k "+»r»s(a)n, +5», k, (q)

for l gO or pgO and

5H„=q(z) .
Substituting into E»I. (4.41) we find

y» = 2 —I —2p for l gO or p g 0,

(4.42)

(4.43)

(4.44)

1
+ 2ip»»»»»»»»»»» 0» +' ' ' . (4.51)

The higher-order terms come from the first term
on the right-hand side of E»I. (4.4) and yield the
following relation

(-1)" '(n-l}i 2 "d
Z»»»», - »„O» = c+f' 0

(2 —d —2p)k~(s) = -2q ~+,
)
.8' &ac

eq 2c+
Then using

dc d 2(4- d)'
2( f~i)=2 (4 d)q+ d q +O(q )g

(4.45)

(4.46)

80]"f'"ne&pti. &.

We find from E»I. (4.48) that

8 0» 8 0» 86H~»

8((1/N)n, ) „86H„8((1/H},) '

and introduce functions Q by

{4.52)

(4.53)

we find

d (4- d)
2(2p+d-2} (2p+d-4)

2(4 —d}'—
d(2p d 6) q + (q }~ (4.4V)

85H»
8((1/~„} f,—e,»(q)&» (&).

Then we obtain with

H(p,f„".) =I?4,...(q) ~ ~ ~ —„«IIF, (Il),
d

(4.54)

(4.55)

(4.48)

with

from which we can construct the general eigen-
perturbations

eH=Q eH, -,
Q»»»»» = Q H(P1 111

(-1)" '(n -1)i
(pt)

(4.56)
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aoll = -2d
y

(4.58)

We find, for example,

Bq 1 2(4-d)(d-2)
d(6 d)

{I+o({f')

(4.5V)

From these equations it is easy to calcu1ate the
coefficients a'. For 00 = 1 and 0, = q we find

(810). For a potential which behaves like vo(k)
{x4 ' " for sma11 4 we obtain only a limit
lim, „z,(0), if

d ' d'4
"(o}-m, ;(a) . (4.69}

Since zo(0) is the minimum of an attractive poten-
tial f(z), one finds in the thermodynamic limit
using Eq. (4.6):

g», =2(4- d)(d-2)/(6 —d),
l

~our

(4.59)

(4.60}
=2 .0 (4.VO}

From this we find

fo1» = so1u+ [3/(d 2)]soi1s»x = 2d(d

(4.61)

If fo1» did not vanish in three dimensions, then we

would find a logarithmic singularity in the specific
heat, since 3y, =y, . However, since f„„vanishes
for d = 3, there is no logarithmic singularity in the

specific heat, as is well known for the spherical
model.

Finally we consider the Hamiltonian

APPENDIX A

In this appendix we estimate the order of mag-
nitude in N and 5 of the various contributions to
the cumulant expansion of Eq. (2.11}.

We find

fl Zyl 88 Zyl
PL PX y+Q {g+~t+o o ~ ) /g

8$N 8$nl

usually vanishes; indeed the derivative

(Al }

which is precisely the condition for criticality in
the spher ical model. 3 ~

a = (I/2N) g v(u)n, +f (z)+ (2 —1!)/2d (4.62)

and try to calculate H, . Similarly to Eq. (4.V) we

obtain

~/2

sS" (m -n)!=Z, Z v $ ~ ~ ~ $m kg km-g

(A2)

8v 8v—=(2-1})v-0—,8l 8k
(4.63)

is easily estimated by performing the k summa-
tions to be

8 d dAln[v(e)+f']+(2-1! d)zf'+df-.
8E 20

(4.64}

Integration of Eq. (4.63) yields

v, (k) =e{' ""vo(ke '). (4.65)

(4.66)

with the formal solution'4

(fi) «{d-o+Tl)E z (fle {2 o)l)

d ' d'k
20,-1V (k)+fo'e {o O&1 ~ (4.6V)

For vo(k) = ck' and q =0, one obtains from this
equation

«(f') =«*(f')+e'4 "'[z,(f'e ")
—«'(f'e ")], (4.68)

in which z*(f') ls tile fixed-point sohltlonq Eq.

Differentiating Eq. (4.64) with respect to z and con-
sidering z as a function of f' and l we obtain the
linear differential equation (for the l independent
solution compare Appendix 8)

8 n~l
P ys/2-n Ss-n

tl k

which as the expectation value of a product of p
operatox s $, , is usually of order

(S, ~ S }~~1 P/o (A4)
k1 k

gives (Al) with d, =0. However, strictly speaking
(A4) only holds for the cumulant, which is equal
to the expectation value (A4) only if all factoriza-
tio ns vanish. A factorizatio n is no nvanishing only
if all factors have vanishing total momentum.

Suppose that the product of p spins can be fac-
torized into L + 1 groups of operators, each with
vanishing total momentum; then

(S ~ S }-O(N" ~-»') (A5)
1

The additional factors N~ are not dangerous if
only one or two out of N~ terms under a summa-
tion carry this extra factor. However, if the de-
rivatives in Eq. (Al} can be grouped into 6 +1
groups of operators s"H'/aS", each with vanishing
total momentum, then all terms under the summa. -
tion have the extra factor N~ and we obtain (Al).
These terms must be considered separately.

Next we consider the summations. The cumu-
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lants of Eq. (2.11)are evaluated for products of
S~, h in the shell. Since there are —,'(n+n'+ ~ ~ ~ )
—A independent summations [the expectation values
with respect to H"' factorize exactly to products
of two-spin correlations (S~S,) = I/v, (k} there-
fore, we have —,'(n+n'+ }remaining summations
restricted by the 6 conditions that the total mo-
mentum of each group must vanish] and each sum-
mation gives a contribution of the order N5, we
find

we obtain from Eq. (82) the linear differential
equation

eg d(2-d)z+2f*' f/' 2( f/')

From this equation we obtain z as a function of
f*'. For simplicity's sake 1st us introduce the
function

I, (z)=Q ~ z", m~0, -2, 4, . . . . (85)
1

0 sz +Sf'

Combining (A6) and (Al) we see that a typical
contribution to Eq. (2.11) is of order

(A6) This function satisfies (a) the differential equation

N~(n +n'+' ~ ~ ) l2- 6

Since we consider infinitesimal 5, we keep only
those terms of order N5; that is, those with

2(1 +a) = n+n' +

the mean number of derivatives per group
(n+n'+ ~ ~ ~ }/(1 +a} is two.

The derivative SH'/SS, cannot form a group of
vanishing momentum, as q has to be in the shell;
hence, the number of derivatives per group cannot
be less than two and, therefore, has to be two.
Therefore, as stated in the text, only groups of
the form (BH'/aS~)(sH'/sS, ) and O'H/'aS~sS ~ have to
be considered.

APPEND)IX 8

(b) the recursion relation

zr,.„(z)=L.(z) 1/m, —

(c) the integral representation for m) 0:

~m/2-1
I. &*) x 'j. =-

%e note that

1,(x}=(-x}-"*arctan(V-x), x(0

=x "'arctanh(Wx),

Therefore Eq. (84}has the solution

(BV)

In this appendix we solve Eqs. (4.9) and (4.45).
We differentiate Eq. (4.9) and obtain

(81)

which leads to

d sf*'
2( f~, )

+(2-d)z +2f~'=0. (82)

f*'=[2c(4 -d)/d] &t. (83}

Now 1st us consider z as a function of f*', then

Comparing this equation with Eq. (4.26), we see
that f*' fulfills the differential equation for &I.

Therefore f*' is proportional to &I and comparison
shows

z = (d/2c)E, , „-( f*'/c)+(sf-*')&~ '»', (810)

in which a is an arbitrary constant. The function

f* can be obtained from inserting Eq. (810) into
Eq. (4.9). Then both z and f* are represented as
functions of the parameter f~'. One easily checks
that for a =0 we obtain the solution (4.23), and for
a =~ we obtain the trivial solution (4.22}. We note
that for even d the function I, ~ is not defined. In
these cases the solution of Eq. (84) contains a non-
analytic term proportional to (f*')&~ "~'Inf ~'.
Because of this term we do not obtain analytic
solutions of type (4.23}for d =6, 6, . . . . [For
d =4 the solution (4.23) reduces to the solution
(4.22) because of the factor (4-d) in Eq. (83).
For d =2 we find z =-(2c) ' ln[f*'/(c+ f*')] a.+]

Next we consider the solutions, Eq. (810) with
a 0 and a& ~. For d &4 we may iterate

[z -z. +(d/2c) L. .(-f*'/c) —(d/2c) I. .(0)]'~"-"
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which leads to

f*==,'inc+ («)'I" "d-2
da

-4 a(4 d) z
(«)'h' "+&(a '). (812)

fore it does not cover the whole positive s axis.
Solution (813a), however, behaves asymptotically
like (-',vc-'I'+&a)/f*'. Therefore choosing
a & (-', z)'c ', that is, 0 ~a ' & 16c'/(Qv'), we obtain
a solution analytic in the whole region" 0~a &~:

These solutions are analytic around 5s =0, pro-
vided 2/(d —2) is an integer.

In particular, for d =3 we have

f*==,'lnc+sa '(5z)'--', c 'a '(«)'+0(a ').

(814)

We note that this solution has the same critical
exponents as the trivial solution Eq. (4.22).

For d&4 one finds from Eq. (810)

g (af Al}1/2 for feI )0 (813a)
f*=f,* (z)-(2/d)ao& ~& 2[fe (z)]( 2&/2+0(g4 2)

(815}

s = — — arctanh

+(af*')"' for f*'~0. (813b)

We note that, for ae 0 the analytic functions f*'(z)
around z, are obtained either from (813a) or
(813b) by using both signs of the square root in
the last term. One easily finds that the solution
(813b) has a maximum for some finite z. There

in which f~e(z} is the solution with a =0. Since
f,*~(z) is nonanalytic for d =4, 6, 6, . . . and the
exponent —,'(d —2) is not an integer for de4, 6, 6,
. . . , there is no analytic solution (815) for a =0.

From Eqs. (4.45) and (86}we find immediately
the solution

hp 2d L2 g mp( f /c) gd Lrm g gp[ [2(4 d)/d] &f}
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