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sition of LiIII can be expressed as the sum of
a Lamb shift in the 2s S state of -0.99 cm ' and

a Lamb shift in the 2P I' state of + 0.28 cm '.
Previous measurements in other transitions in
two-electron atoms verify our predictions.

Although the 'P Lamb shifts produce good agree-
ment between theory and experiment, we must
admit the possibility of two other explanations
for the observed Lamb shifts. The first is an
increase of the theoretical ns sS Lamb shifts by
20%. This is unlikely, especially for the 2s'S
state of He I, where the estimated precision of
Suh and Zaidi~ is 10%. However, a similar dis-
crepancy arises in the 1s' 'S Lamb shift of C V,
as pointed out by Edlen and Lofstrand. ' The ob-
served Lamb shift is -178+30 cm ', while
theory" gives -132 cm '. The discrepancy
could be considered as just within the bounds

of the combined experimental and theoretical
error limits. This leads us to another possi-
ble source of error. The total energies of the S
states of two-electron atoms, as calculated by
Pekeris" and Accad et al .' might be too high —by
this small factor, which is proportional to Z4/s',
thus creating a spurious $'-state "Lamb shift. "

The principal exception to these last two possi-
bilities is the close agreement between theory and
experiment for the 2s 'S -2p 'P transition in He I,
and to a lesser extent in C V. The most reason-
able explanation is to assume a very small Lamb
shift for the 'P terms.

A calculation of the 2p'P Lamb Shift in He I and
Li II would be invaluable for comparison with ex-
periment. We hope to improve our precision for
the measurements in Li D and also to remeasure
the 2s'S -2p Ptransition in HeI.
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The nuclear-charge-expansion method is used to calculate the radiative probabilities of the
dipole transitions 2s'2P -2s' ~2P of ionic systems. An extensive comparison with more-
elaborate calculations and with experimental data shows that after a few stages of ionization
the method gives results of uniformly high accuracy.

I. INTRODUCTION

The nuclear-charge-expansion method has been
used by several authors to calculate atomic tran-
sition probabilities for isoelectronic sequences.
Precise calculations performed so far have been
limited to the helium' ' and lithium' ' sequences,

although other systems have been examined in the
Hartree-Fock approximation. The Hartree-
Fock approximation gives the leading term in the
expansion of the transition probability in powers
of Z ' correctly, but not the second term. The
second term can be calculated exactly provided
zero-order mixing does not occur. In this paper
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we calculate matrix elements of the electric di-
pole transition operator correct to first order in
the perturbation, for 2i-2P transitions of the form
1s'2s' 2P~ —1s'2s' '2P +' for those levels for
which zero-order mixing does not occur, and

employ experimental energy differences to obtain
the corresponding transition probabilities. In an
extensive tabulation the results are compared with
other calculations and with the available experi-
mental data obtained mainly from beam-foil life-
time measurements.

II. Z EXPANSION OF DIPOLE MATRIX ELEMENTS
FOR N-ELECTRON SYSTEMS

Consider an X-electron atomic system with nu-
clear charge Z. The Z-expansion method is devel-
oped by choosing the unit of length to be Z ' a.u.
and the unit of energy to be Z2 a.u. so that the non-

relativistic atomic Hamiltonian H can be written
as

H= H, + (1/Z)H, ,

where

1
H, =P—

i Cj ij

and r& is the position vector of the ith electron.
The eigenfunctions of II can then be written as a
perturbation expansion

4= 4,+(I/Z)4;+ ~. . .
For our purposes it is convenient to follow Chis-
holm and Dalgarno' and write, using a LS-cou-

pling scheme, the zero-order eigenfunctions 4, in
the form

e, (rLS~N) = p g (r,L,s„r,L,S,)}rLS)
~1L1S1

x{e,(rL,S,~2), e, (rL,S,~N-2)}, (1)

where {g(I",I,,S,~2), 4, (rL,S,~N —2)} is a vector-
coupled product of normalized antisymmetric two-
electron eigenfunctions 4, (I;L,S,M~,Mz ) 2) and nor-
malized antisymmetric (N- 2)-electron eigenfunc-
tions g(r, L S M M )N 2), -and (I,L,S„rL,S ~}''' '2.'
rLS) is a two-particIle fractional parentage coef-
ficient. 4„which satisfies the equation

(H, —E, ) e, +(H, —E, )e, =0, (+, i + ) =0,

can be written

p (r,L,s„rL,S,(}rLs)
PL S PLS

1 1 1 2 2 2

x {4',(I,L,S, ~ 2), 4 (I'L S )N-2}},
where A is the antisymmetrizing operator and
@,(&L,s, (2) is a first-order two-electron eigen-
function

( ——,
'
V,' ——,

'
V,' —1/r, —1/r, —E, ) 4', ( I;L,S, ~

2)

+ (1/r„—E,)4'o (I L S I 2) = 0 ~ (2)

It then follows that, through first order in the
perturbation, an off-diagonal reduced-matrix ele-
ment of a one-electron operator Qz(N) =gf q(f)
is a linear combination of two-electron reduced-

TABLE II. Zero-order (Io) and first-order (Ii) coef-
ficients in the Z expansion of the reduced dipole transi-
tion-matrix element for 1s 2s'2p -ls 2s' 2p~ transi-
tions. cri =32410/3, 02 -—73/1920, and 03 =17/64.

TABLE I. Zero-order and first-order reduced-tran-
sition-matrix elements for heliumlike systems.

N a b Transition i/Io

Transition

1s2s S-1s2p ip

Zero-order First-order
matrix element matrix element

19997&3
38

3 1 0

4 1 1

S-2P

3P -3P
iP iD

~6
a/io

cri +502
cri —cr2

1s2s S-ls2p P

2s2p iP-2p2 iD

2s' 'S-2s2p 'P

2p "$-2s2p 'P

2s2p 3P-2p2 3P

3&3

3&6

14941@3
38

-73~10
640

51&6
64

73vY
64

7a/e
128

5 1 2

7 2 3

8 2 4

9 2 5

4P 4$

D-2D
P -2D

4S-4P
D-D
D-2P

3p 3p
'D-'P

2P 2$

Sv3
3(15/2)'n

-3(15/2)'"

Sv3
3(15/2) i/2

(15/2)'n

-Sv 6
svTo

cri + 10cr2

~, +7~,
cri + cr2

cri+ cr3

cri + cr3 + 302
cri+03+ 902

cri +03 + 502
cri+ cr3+11cr2

cri + cr3 +1002
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matrix elements:

&y(rLSIN) I IQ„yr)I I@(r L's' Ix)& =&+, («slh') I I Qx(&)l I~.(r'L's' I»&

+(I/z) [&~,(rLSI&) I I Q (&) I le,(r'L's' Ih')&

+&a,(rL s I x) I I @ (N) I I e,(r'L' s'
I &)&] + ~ ~ ~

=I +(1/2) I, + ~ ~ ~

We have, by E(l. (1),

I,= &e,(r Ls IN) I I Q (&) I I e.(r'L' s' IN) &

(r,L,s„r,L,s, l}ILs)(r,'L,'s,', r,'L,'s,' I} r'L s )
I &L yS y T2L2S2 ~j. 1 ~i ~ 2L2 2

x & fe,(r,L,S,12), y,(r,L,S, I
x- 2) j I I Q, (2& I I je,(r,'L,' s,'12),e,(r,'L,'s,'

I
z- 2) &,

which can be simplified to

I = —[(2L+1)(2L'+1)]' Q Q Q (-1}~i'"' . '~ ',', (I',L,S„I',LS, I j I'LS)
2 rLS r

x (r L s r L s l)r L s )i&4 (r L s, l2)IIQ (2) lie, (r;Llsl 12)&t&, ;'5...; |)s,.;, (2)

L2L~ L
where „,, is a Wigner 6-j symbol. "

Invoking the orthogonality of 4'(rL Sgl} and 4(r' L'S' IN), we similarly find

1,=(e («s l&)IIQ&(&)lie {r'L's' I&)&+&@,(«sl&)IIQ (&)ll~(r'L's' I&) &

[(2L+1)(2L'+1)]"' g g Z (-1)'~'"""' 2, , (r,L,s, , r,L,s, l}rLS)
1 pe Q r,L,S., r,'~S& L' L,'

x(r', L', s, , r,L.s.l}r'L's') [&+.(r L s, l2)IIQi(2)lle, (r,'L,'s,'12)&+&+,(r,L,S,I2)IIQi(2)II+.(rlLlsll2»1

x& (4}

where, by the Wigner-Eckart theorem, "the reduced-matrix elements are given by

(e();I Spr, M, )2) I ()„,(2) Ie()' zs M, M;Im')&.',='(-),) ' -,",)' ' '
) (e(r I,S

I
2 II g, (2) )le(r, &.', s,')2)&,

TABLE GI. Transition probabilities for 1s 2s2P P-1s 2P P transitions in the beryllium isoelectronic sequence, in
units of 108 sec

Present
calculation

Other
calculations Experiment

2650.6
1624.0

1175.7

4.185
8.51

12.95

43
8.4,e 8.8

13 3 e 14 3

4.13+ P.12, 4.2 + 0.2, 4.3 + 0.4
7 3+0.5, 8.p+0.4, 7.7+Q.4, ' 0.0+ .o

12,7+ Q,4 j 12.5 + p.6,k 13.5 + 1.4, 10.8+ 2.0

7
8

10

923.15
760.36
561.59

17.39
21.84
30.90

18.8'
23.3,' 22.38 ~

32.5 '

14.3 + 1.1," 15.3+ 1.5, 15.4 + 2.3
21.7 + 2.2 ['

Reference 20.
Reference 26.
Reference 31.
Reference 32.

Reference 21.
f Reference 22.
g Reference 23."Reference 33.

' Reference 25.
j Reference 24.
"Reference 27.
~ Reference 29.

Reference 30.
"Reference 28.

Reference 56.
& Reference 34.
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TABLE IV. Transition probabilities for 1s 2s2p P-1s 2p D transitions in the beryllium isoelectronic sequence, in
units of 10 sec

9
10

3451.4

2296.9

1718.5

1371.3

1139.5
973.6

Present
calculation

0.77

1.56

2.47

3.46

4.51
5.61

Other
calculations

050 054

1,57,8 1.25, 1.38

2.57,g 2.32,a 2.]7b

3.62, ~ 3.31 ~

4 50
6.73,g 5 5 U

Experiment

0.64+0.03, 0.78+0.06, 0.72+0.04, 0.63+0.02

1.35+ 0.11," 1.4+ 0.04, ' 1.4,~ 1.4,"
1.08+ 0.05,~ 1.33+0.05,~ 1.23 +0.06,m

1.10+ 0.04, 1.39+0.28,"

3.2 + 0.2,0 2.1 k

3.3 + 0,1,P 3.1» k 3.2, &

3.1+0.2, ' 3.4+ 0.2, ' 3.l+0.3
4.35+ 0.20 &

4 95~0 2v

Reference 35.
b Reference 20.

Reference 26.
d Reference 40.

Reference 32.
f Reference 31.

& Reference 25."Reference 38.
' Reference 39.
& Reference 41.
"Reference 42.
~ Reference 37.

Reference 43.
"Reference 30.' Reference 44.
P Reference 45.
& Reference 46.

' Reference 34.
' Reference 47.
' Reference 53.
"Reference 18.
"Reference 36,

considering Q~ to be a spin-independent operator.
The reduced-matrix elements in Eq. (2) can

easily be evaluated directly. Those in Eq. (4) can
be evaluated exactly, in the absence of zero-order
mixing, by use of an interchange theorem. When

Q~ is the electric dipole transition operator,
Q; = g,",r, , and only 2s-2P transitions are con-
sidered, the calculations are rather straightfor-
ward. The necessary reduced-matrix elements
are given in Table I.

Although the above analysis can be applied to
calculate matrix elements correct to first order
for a general N-electron atom, we here restrict
our attention to 2s-2P dipole transitions in second-
row atoms. The required coefficients of fractional
percentage have been tabulated by Chisholm,
Dalgarno, and Innes. "

IH. ZEROARDER MIXING

The analysis has to be modified when zero-order
mixing occurs. Suppose the zero-order eigenfunc-
tion 4, (I'LS(N) is s-fold degenerate so that there
are s eigenfunctions 4,~~ (FLS ( N }, k = 1, . . . , s,
corresponding to the eigenvalue E,(&LS(N). We
choose the 4, to diagonalize H,

so that the O'I~l, k = 1, . . ., s, satisfy Eq. (2}. How-
ever, unlike the nondegenerate case, Eq. (2) does
not define O'I'l uniquely: the solutions of (2) are
arbitrary with respect to the addition of arbitrary
multiples of 4',~, k' = 1, . . . , s.

Define

TABLE V. Transition probabilities for 1s 2s2p P-1s 2p S transitions in the boron isoelectronic sequence, in units
«10 sec

10

1466.0

1010.2

772.1

625.4

526.3

453.3

Present
calculation

19.64

33.61

48.05

62.68

77.17

92.41

Other
calculations

19.8 ~

34 3

49,0,~ 5,7.4e

64.0, 72.8

78.7 ~

93 5

Experiment

16.0+ 1.0
330~1 0 c 320~3 0

52.6*8.0 f

~ Reference 48.
Reference 22.
Reference 27.

Reference 29.
~ Reference 57.
~ Reference 34.
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TABLE VI. Transition probabilities for 1s 2s2p P-1s 2p D transitions in the boron isoelectronic sequence, in

units of 10 sec

Present
calculation

Other
calculations Experiment

10

2511.0

1750.4

1343.0

1087.8

927.0

0.93

1.81

2.83

3.97

4.96

0.64'

1.48, 2.6

2.51, 3.8

3.69

4.80

0.86, 0.89+ 0.22

1.5'

Reference 49.
Reference 50.
Reference 63.

Reference 48.
e Reference 57.

Reference 64.

(k) ~ t(@o IH1l@o ) y(J)
E(y) Co k —1, . . . , s,

o o

kk' 0
k' =i

where the bkk. , which are not at our disposal, are
determined from the second-order equation

(Ho-Eo) 4k +(H, —E, ) 4 =E 4'

Thus

(+("IH, IX("),
E(k) E(k')

1 1

=0, k= k'.

It is clear from the definition of b». that

where the prime on the summation means that

j W k, k = 1, . . ., s, and 4o is an eigenfunction of
H, with eigenvalue E . X,

k is thus a solution of
Eq. (2) with()(, ) )@,k ) =0, k'=1, .. . , s. The
most general solution of (2) can now be written as

bkk' bk'k

The result also follows from the requirement that
(4 k )4' ' ) = Okk. through first order

In the analysis we have assumed that the degen-
eracy is lifted in first order, which is, of course,
the case for 2s'-2P' degeneracies. More-detailed
studies of the degeneracy problem in Rayleigh-
Schrddinger perturbation theory have been per-
formed by Hirschfelder" and by Silverstone, "who

considered the general case in which degeneracy
is first removed in the +th order.

It is interesting to note that the quantities b» do

not affect the second- and third-order energies;
for example,

E(» =(y(k) ~H, E(')
I
y(') )

(y(k) ~H E(k)
j g(k))

which clearly does not depend on bkk. . This is
generally not the case for matrix elements of op-
erators other than II: through first order the re-
sult will involve the b» . In particular, if
4'o( ) (&LS(H) is s-fold degenerate, then, through

TABLE VII. Transition probabilities for 1s 2s2p D-1s 2p D transitions in the boron isoelectronic sequence, in
units of 108 sec ~

10

1323.9

979.9

779.8

647.8

557.0

Present
calculation

7.06

11.23

15.57

20.03

24.20

Other
calculations

5.25

9.52, 4.8
14.15, 19.5
19.07

23.86

Experiment

5.4+ 0.5
10.0+ 5.0, 12.4+ 1.2

Reference 49.
Reference 29.
Reference 57.

Reference 57.
Reference 58.
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TABLE VIH. Transition probabilities for 1s22s22p3 8-1s22s2p44P transition in the nitrogen isoelectronic sequence,
in units of 10 sec

Present
calculation

Other
calculations Experiment

10

1134.6

833.8

658.3

542.8

4.82

8.49

12.72

17.43

8.44, 18.1,

2.8, 8.13&

6.9, 13.7

1.45+ 0.04, 1.39+0.1, 2.3'
2.25+0.45, 1.0+0.1, 1.35+Q.Q7j

8.0 + 0.6

15.0 + 0.5

Reference 57.
Reference 54.
Reference 51.

Reference 33.
e Reference 52.

Reference 55.

g Reference 49.
Reference 59.
Reference 58.

' Reference 60.
Reference 61.
Reference 62.

first order,

&e&'&(FLsjN) jjQ (N) jje(r'L's'jN))

= &+&'&(r L s jr) j j Q„(x)j je,(r'L's' j z))+ (i/z) [&e&'&(FLs j ~) j j@„(x)j je,(r'L's'
j N))

+&x',"(FLsjN) jj@„(x)jje,(r'L's'j i»'))+ p f„,&e,"&(FLS jN) jjg„(N)jje,(r'L's' jx))].

It has been noted by Hirschfelder, Brown, and
Epstein" that 5&;. cannot be calculated by the use
of an interchange theorem. Thus, whereas
&4~t& jjQq(N) j j4', ) and &XI'& j jg„(f»')jj4,) can be eval-
uated exactly, f&;, requires explicit knowledge of
the first-order wave functions, and can therefore
only be evaluated approximately.

IV. TRANSITION PROBABILITIES

where I is the wavelength, in angstroms, of the
photons emitted in the transition and S(FLS, r'L'S)
is defined by

s(FLS, F 'L's)

=(2s+ l) j(e(FLsjN) j j 4 j j+(r'L'sj&)) j', (»

with

The probability of an electric dipole transition
from an upper level 1 L 8 with statistical weight

g to a lower level I"L'S' is given, in terms of the
absolute multiplet strength S(FL S, r'L'S), by

2.026 x 10'8A=, S(FLS, F'L'S) sec ',
A.3g

TABLE IX. Transition probabilities for 1s22s22P 3 D-
1s22s2P 42D transitions in the nitrogen isoelectronic se-
quence, inunits of 10 sec

Present Other
Z A. (A) calculation calculations Experiment

=(2s+ 1)( ') a=i,/f, . (5)

The values of I, and 0 for the transitions consid-

TABLE X. Transition probabilities for 1s 2s22ps D-
1s22s2p 42P transitions in the nitrogen isoelectronic se-
quence, in units of 10 sec

Using our Z expansion of the reduced-matrix ele-
ment on the right-hand side of Eq. (5) and the
screening approximation of Dalgarno and Stewart, "
we can write

s(rI. s, r'L's) =(2s+ l) j f,/z+ f,/z'+. . .
j
'

8 718.5

9 567.7

10 469.8

~ Reference 55.
Reference 57.
Reference 61.

20.7

30.7

41.5

19.8, 34.0 23.0 + 2.5

10

538.3

430.2

358.4

Present
calculation

88.6

125.9

165.1



NUCLEAR-CHARGE -EXPANSION ME THOD FOR. ~ . 45

TABLE XI. Radiative lifetimes of 1s22P32D states of boronlike ions, in units of 10 9 sec..

System
Present

calculation
Weiss

(Refs. 48 and 49) Experiment

Cn

Qrv

1.25

0.77

0.54

0.34

1.7

0.9
0.6
0.35

2.5 + 0.1, 1.8, 2.1+0.2
1.85+0.2, 2.0+0.4, 1.83+0.18

0.97 + 0.3,8 1,04 + 0.04, 0.80+ 0.12, 1.0 + 0.5
0.53+ 0.14, 0.65 + 0.07, 0.9

~ Reference 43.
Reference 41.
Reference 26.
Reference 65.

e Reference 30.
Reference 29.

~ Reference 51.
Reference 64.

i Reference 56.
Reference 58.
Reference 47.

~ Reference 34.
Reference 46."Reference 66.

ered in this paper are presented in Table II.
If I"L'S is the only level to which the level 1 L S

.can decay by emission of electric dipole radiation,
then the mean lifetime of the upper level is
~=A. ' sec. Beam-foil spectroscopy has been wide-
ly used by many workers to measure the lifetimes
of excited states of atomic ions and so, in many
cases, we can make direct comparison with the
experimental results. We use experimental en-
ergy differences"" and tabulate results for a
range of ions in Tables III-X, including, where
possible, experimental measurements and other
calculated values for comparison.

Several general conclusions can immediately
be drawn from Tables GI-X. As expected, the
agreement between our Z-expansion results and
the results of other accurate calculations and ex-
perimental data improves with increasing degrees
of ionization. The 2s2P'g'- 2P' 'D transition in
berylliumlike ions is a good illustration, where
the transition probabilities predicted by the Z-ex-
pansion" method differ by less than 5% from the

nonclosed shell many-electron-theory results of
Nicolaides, Beck, and Sinanoglu" for Ov, Fvl,
and Nevu . Thus after a few stages of ionization,
elaborate calculations are usually unnecessary to
obtain accurate values for oscillator strengths
and transition probabilities, the relatively simple
method of prediction afforded by the Z-expansion
scheme being entirely adequate. The accuracy of
Z-expansion results near the neutral end of the
isoelectronic sequence is often very good, due

partly to the screening approximation (6), which
works well for transitions in which there is no
change of principal quantum number.

The experimentally determined transition prob-
abilities are invariably smaller than our theoreti-
cal values. In the measurement of the radiative
lifetime of an excited ionic level by the beam foil
technique the level is populated not only by excita-
tions in the foil, but also by cascading from higher
levels. The theoretical results suggest that cas-
cading effects may be more important than has
been assumed. "

~Work supported by the U. S. Air Force under Grant No.
AFOSR-71-2132.

tPermanent address: Department of Mathematics, University of
Nottingham, Nottingham, England.
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The degeneracy problem of a hydrogen atom in a uniform weak magnetic field H is considered from
the standpoint of the invariance group that the system obeys. Evidently the degeneracy space has a
constant z component of the angular momentum. Under such a classification, the dynamical invariance
of the problem is shown to be an isomorph to the Lie group of the linear transformation of the
straight line.

I. INTRODUCTION AND THEORY

The degeneracy problem of a hydrogen atom in
a uniform magnetic field seems to be interesting
in the field of dynamical symmetry. When the
field strength H tends toward negligibly small
values and the Coulomb term becomes predomi-
nant, the invariance group for the system is just
the one vrhich the hydrogen atom obeys. This de-

generacy has long been discussed since the Runge-
Lenz vector" was discovered, and has been re-
viemed elsewhere in the textbooks. This in-
variance group, as is well known, is O(4). In the
opposite limit, on the contrary, the Hamiltonian
of a free electron moving in a uniform magnetic
fieM has an invariance group G(0, 1), as pointed
out by the authors previously. '

In this paper the first approach to the intermedi-


