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The electron temperatures and the electron energy distribution function in a helium afterglo~, for
pressures of 10—80 Torr and electron densities of 10"—10'3 cm ', are calculated by a technique vrhich

readily allows the determination of the relaxation processes controlling the energy input into the
electron gas. Comparisons are made to existing experimental data. The energy-distribution-function
evaluations sho~ that careful consideration of this parameter must be made, for it can be extremely
non-Maxvrellian.

I. INTRODUCTION

Recently, experimental evidence in a helium
afterglow at 300 'K' of an elevated electron tem-
perature in a pressure range from 10 to 80 Torr
and for electron densities fxom 5&10'0 to Vx 1,0"
cm ', has been presented.

Many investigators have previously assumed,
that, under these experimental conditions, the

electron temyerature is equal to the gas tempera-
ture. The experimental results' have prompted a
theoretical analysis of the electron energy balance
and electron distribution function in the helium
afterglow. Two other measurements also indicate
elevated, electron temperatures. At 10 Torr,
Miller ef; aE.' deduced the electron temperature
from the evaluation of average electron-neutral
collision frequency measurements. At 44.6 Torx,
Collins el al.s using optical spectrometry, eval-
uated the electron temperature from precise
measurements of the continuum radiation. This
characteristic of an elevated electron temperature
in the helium afterglow is supported by the variety
of diagnostic methods used in its determination.
Delpech4 has also reported the observation of an
elevated electron temperatux e, measured with a
transmission-type microwave radiometer, at 20
Tox'x'.

Because of the very energetic electrons produced
by some of the basic processes in the helium after-
glow (Sec. II), it is necessary to examine the
interaction of these "hot" electrons with the baek-
gx"ound electx'ons and neutrals. In this examination
we show the partition of energy between the back-
ground electrons and neutrals (Sec. III). Also in
Sec. III we show the influence of the relaxation of
these "hot" electrons on the Mmovellian energy
distribution function. These two calculations form
the major, contribution of this paper. Standard
analyses" ' have been used for the evaluation of

the quasi-steady-state electron temperature
(Sec. IV). The temperatures calculated are com-
pared to experiment in Sec. V. The effects of the
non-Maxwellian electron energy distribution func-
tion for the case of the electron radiation temper-
ature are presented in Sec. VI.

H. BASIC PROCESSES INFLUENCING THE
ELECTRON ENERGY EUOLUTION DURING

THE AFTERGLOW

During the afterglow, a quasi-steady-state tem-
perature is reached when the processes which
tend to heat the electron distribution balance the
processes which tend to cool it. For this reason
we have divided the basic processes into these
two groups for this discussion.

The major heating processes have been found
to involve the metastable states. Very energetic
electronss are. released by metastable -metastable
interactions,

He(2'8)+ He(2'S)- He'+ He+ e (15 eV),

He(2'S)+ He(2'S)- He+ + He+ e (16.6 eV), (2)

He, (2'Z)+ He, (2'Z)- He'+ 2He+ e (II.2 eV) (sa)

-He,'+ 2He+ e (12.'I eV). (21)

He(2'S)+ e- He+ e (19.8 eV), (4)

The rate constants for these processes and for
the other processes which are described. in this
section are presented in TaMe I. The relative
importance of the above reactions depends on the
relative populations of the three metastable states.
It should also be pointed out that collisions between
different metastable states are possible but that
the rate constants for these are unknown.

Another source of electron energy comes from
electron-metastable collisions:
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TABLE I. Rate constants for the processes discussed in the text, together with the references for their sources.

Process References

(2)

(3)

(4)

p = 1.8 x 10 ~ cm3 sec ~

p =1.8x10-' cm'sec '

y= 7x10-" Z;~' cm' sec-'
for X~&2000'K

y=7x10 ' T, cm3sec

y=7x10 "T,"'cm'sec '

6=3.5x10 ~ cmssec ~

Phelps and
Molnar (Ref. S).

Assumed to be
equal to the rate of process (1).

Phelps (Ref. 13).

Deduced by detailed balancing
from the work of Schultz and
Fox (Ref. 10).

Assumed to be equal
to the rate of process (4).

Assumed to be equal
to the rate of process (4).

Phelps (Ref. 13).

(8) and (S)

(10)

3.7x10 8 e' cmesec for c «3 eV

6.5x10 8 cmssec ~ for ~ ~3 eV

A~~ =7.7x10 ee 3+lnA for e & ~~kg'~

~th lnA =ln f5 x109e(AT~/n~) ~2j

(e in eV)

Analytical approximation
of the values of Brown
(Ref. 14).

Delcroix (Ref. 11).
Spitzer (Ref. 12).

He(2 'S)+ e He+ e (20.6 eV),

He, (2'Z)+ e-2He+ e (17.9 eV),

(8)

(8)

(«) = (2m/M„)((e, }-(eg ) . (9)

Other cooling processes which have been inves-
tigated but found to be negligible are electron-ion

He(2'S)+ e- He(2'S) + e (0.79 eV) . (7)

The last process (7) does not form a significant
heating process, but because of the large rate con-
stant (Table 1) depletes the 2 'S population very
efficiently. During the afterglow the processes
involving the He(2 'S) can be ignored.

Another heating process considered was electron-
ion recombination. Computations utilizing the
experimental analysis of Berlande et al."indicated
the heating due to this process is negligible in
comparison with the processes involving the meta-
stables.

The processes which tend to cool the electron
energy distribution are better known and easier
to identify than the heating processes. In this
investigation the major cooling process was elec-
tron-neutral collisions,

e(e,)+ He(e, )- e(e, -«)+ He(&, + «), (8)

where the average energy transferred in this col-
lision is

collisions, diffusion of electrons, and thermal
conduction. The latter two depend on the spatial
distribution of the electron density; their impor-
tance as cooling processes depend on experimental
conditions, e.g., cell size and pressure. In exper-
iment' these two quantities were negligible.

Processes (1)-(7)each produce electrons which
are too energetic to be considered part of the
background-electron gas. As has been pointed out

by Miller et al.' and Mosburg, ' these hot electrons
are thermalized by electron-neutral collisions
(8) and electron-electron collisions,

e(e,) + e(e,)- e(e, —«) + e(e, + «) . (10)

Each of these processes is well known individually
(Table 1), but their simultaneous actions must be
considered very carefully, because they produce
a partition of energy between the background
electrons and neutrals. In addition, the continuous
relaxation of these hot electrons results in a xesid-
ual population of energetic electrons, which creates
a perturbation to the energy distribution function
of the background electrons. These points are con-
sidered in detail in Sec. III.

III. RELAXATION OF NON-MAXWELLIAN ELECTRONS

TO A MAXWELLIAN DISTRIBUTION

The non-Mamvellian electrons relax in collisions
with Maxwellian electrons (10) and neutrals (8).
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Although the interaction of the non-Maxwellian
electron with the background electrons is typically
calculated on the basis of binary discrete colli-
sions, in reality it undergoes a continuous loss
process because of its long-xange interaction with
the other electrons, and consequently interacts
with all of the electrons within its Debye sphere.
The electron-neutral interaction is a binary pro-
cess, which produces discrete changes in the
electron energy.

Within this framework, the calculation of the

energy transferred to the background-electron
gas is a simple accumulation of the amount of
energy lost to the Mmmrellian electrons between
collisions with neutrals. The scheme of this cal-
culation is shown in Fig. 1. A non-MMDIITeDian

electron is produced at some energy &o by one
of the binary collision processes described above.
It undergoes a continuous loss by interactions with
Mmrwellian electrons until interrupted at a time
1/v„by a collision with a neutral. At this statis-
tical time there is an abrupt loss of energy by
this binary collision. After this interruption, its
electron-electron loss process continues until the
next electron-neutral collision. The energy trans-
ferred to the Maxwellian electrons is then

«ee I

where (&e„)„is the energy lost to the Maamellian
electrons between the (n —l)th and nth collision
with neutrals, and n, is the total number of colli-
sions required in order to provide for the relax-
ation of the non-Mmopirellian electron. The energy
transferred to the neutrals is then

~~en = ~O —+~ee ~

The results of the calculation are shown in
Fig. 2 for a Mammellian background distribution
of electrons at 300'K. In this figure, the para-

meter of variation is the ratio of the electron
density to the pressure of the neutral gas I'. It is
interesting to note that for low values of this ratio,
the energy transferred to the Maxwellian electrons
is almost independent of the initial energy of the
non-Maxwellian electron. For the energy balance
when the &,/P ratio is below 1 x 10", it does not

matter which metastable is considered or which

of the processes previously described produces
the non-Mmrwellian electron —it will transfer
approximately the same amount of energy to the
Maxwellian electrons. Thus, for the calculation
of the energy balance, it is the total density of
metastables which is important. For comparison,
the energy transferred to the Mmovellian electrons
as calculated by Miller et al.' using an approximate
formula is also plotted in Fig. 2 for N, /P equal to
10'0 and 10" cm ' Torr ' (dashed lines).

It is desirable at this point to investigate the
assumption of a Maxwellian electron distribution.
From the calculation scheme described above, the
relaxation time v for a non-MMDIvellian electron
can be calculated by

ne

Examples of this relaxation time are shown in
Fig. 3 for several conditions of electron densities
and pressures. The results of this calculation on
an incremental basis allow the calculation of the
electron energy distribution function. With this
incremental relaxation time and the concept of
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FIG. 1. Calculation scheme for the relaxation of a
non-Maxwellian electron by collisions with Maxwellian
electrons and background neutrals.
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Initiol energy of non- Moxwellion electron

FIG. 2. Heating of a Maxwellian electron distribution
by the relaxation of a non-Maxwellian electron of initial
energy eo. For comparison, the energy transferred to
the Maxwellian electrons at 3pp K calculated by Ref. 2
are given for N, /P = 10~~ and 10~0 cm 3 Torr ~ (dashed
lines) .
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particle conservation in the Qux into and out of
an incremental energy slice, the following rela-
tionship was used to calculate the steady-state
population of electrons within an incremental
energy slice,

n, = r, [n, ,/r, , + ~ Phf' 5(e, —15) + yMV, 5(e,- 19.8)],

(15)f =f„„+&f,
where f is the electron energy distribution func-
tion, f„ is a Mwmellian distribution, and n,f
is the perturbation due to the relaxation of hot
electrons. In the cases illustrated here, the
Maxwellian-electron temperature and the neutral-
gas temperature are both set equal to 300'K. At
a pressure of 10 Torr and electron density of 10"

e (eV)
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X
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X Time (n sec)
FIG. 3. Relaxation time for a 20-eV electron for two

pressures of 10 and 40 Torr and three electron densi-
ties 10ii 5 x 10ii and 10i2 cm 3

Tle o"~io"
10 100 200 300 IOO 500 600 700

(14)
where n, is the population of the energy increment,
and s&, is the relaxation time from increment
i-1 to i. The first term within the square brackets
on the right-hand side of Eq. (14) represents the
flux of electrons which have relaxed from the

preceding energy slice. The second term is the

flux of electrons from atomic metastable-metas-
table ionization (1) at 15 eV with a Dirac &-func-
tion distribution of initial energy. The third term
is again a Dirac 6 function representing the flux
of electrons at 19.8 eV owing to the superelastic
relaxation of the atomic metastable (4). The
solution of Eq. (14) yields the electron population
in each incremental energy slice, which acts as
a perturbation to the Mmcwellian distribution.
Figure 4 shows three examples of this perturbation.
Also included in this figure is the Maxwellian
distribution for comparison. For this calculation,
the metastable density was assumed to be equal
to the electron density.

In this figure the total electron energy distribu-
tion function is given by

IV. CALCULATION MODEL FOR THE
QUASI-STEADY-STATE TEMPERATURE

As has been shown in Sec. III, under the con-
ditions described here, the heating due to the
metastable population is insensitive to the species
of metastable. For this reason a simplification
can be made in the calculations of this section,
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FIG. 4. Three examples of the electron energy distri-
bution function. The incremental energy size for this
calculation was 10 3 eV. For each of the curves, the
metastable density is assumed equal to the electron
density, and the electron temperature of the Maxwellian
part in 300 K. The total distribution function, for each
experimental condition, is the sum of the Maxwellian
part and the perturbation.

cm ', approximately 10o%%d of the energy and 0.1%
of the population are contained in the perturbation
term. Only one metastable species is represented
in the perturbation part of the distribution. If all
of the metastable species were represented in the
theory, there would be four more injection points
visible in Fig. 4. Since process ('l) provides for
a very efficient depletion of the He(2 'S) by conver-
sion to He(2'S), it is reasonable to neglect this
population. However, very little information is
available on the relative concentrations of the
He(2'S) and He(2'Z). The approximation that the
total metastable population can be represented by
a single metastable with the characteristics of the
He(2'S) makes no error for the distribution below
11.3 eV, but the overestimation in total population
which would result, if the molecular metastable
were the dominant metastable in the afterglow,
would be approximately 20%.

It should be emphasized that all of the meta-
stables could easily be accomodated in this type of
calculation if the relative populations were known.

The partition of the energy of non-Maxwellian
electrons and the total energy distribution function
can be very well approximated by analytical cal-
culations as is shown in the Appendix.
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which conserves only one metastable, the He(2'&),
to represent the total metastable population. With
this simplification, heating processes to be con-
sidered are Egs. (1) and (4); the cooling is due to

Eq. (8). The other processes are either negligible
or not appropriate to the one-metastable approx-
imation.

The energy bounce is formed by

3 3m—(~ kT,N, ) = — k,+Ok(T, —To)N, (electron-neutral collisions)
He

+ —,
'

PM ' b,e ' (metastable -metastable collisions}

+ y MN, he„' (superelastic relaxation}, (16)

—(~ kN, T,) = , kN, —'+ , kT, —3 3 5T, 3 MV,
8 (17)

The second term of the expansion represents the
change in the total energy of the distribution by
electrons gained ox lost at the mean energy of the
distribution. This term is sma11. compared to the
terms on the right-hand side of (17}, and can be
ignored. The quasi -steady-state assuxnption
requires

where k is the Boltzmann constant, T', is the
electron temperature, N, is the electron density,
M„ is the mass of the atom, and m is the mass
of the electron; the rate constants k«, P, and y are
defined in Table I.

With the knowledge of the energy transferred to
the electron gas and the validity of the assumption
of the Maxwellian distribution from Sec. III, the
energy balance can be evaluated. The left-hand
side of Eg. (16) can be written as

(3m/M„}k,@P(T, T,)N—, = ,'PM'b, e' —+yMN, he„' .
(18)

The values which satisfy this equation are shown
in Fig. 5 for three sample pressures of 10, 40,
and 80 Torr. In this figure, the variation of
electron temperature is shown as a function of
electron density for constant metastable densities.
At the low pressure of 10 Torr, the temperature can
increase with increasing electron density, even
though the metastable density remains constant
because of the electron-density dependence of the
partition of energy (Fig. 2).

Figure 6 illustrates the variation of the electron
temperature with pressure over the range 10-80
Torr, for constant electron and metastable den-
sities. Two values of the total metastable density
are chosen for each electron density.

V. COMPARISON OF THEORY
TO EXPERIMENT
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Some of the experimental evidence of the elevated
electron temyerature in the helium afterglow, dis-
cussed in the Introduction, is shown in Fig. V.
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authors' have been compiled at 10, 20, 40, and
80 Torr. In this figure the temperatures mea-
sured are shown to be well elevated above the
temperature of the gas at 300'K.

For comparison of experimental results such
as these to the calculations presented here, the
total density of metastables must be known, a,s
well as the electron temperature in a differential
region. The temperatures shown in Fig. 7 are
average values weighted over the cross-sectional
area of the cell.

It is beneficial at this point to examine some of
the implications of the calculations on experiments
such as those described in Ref. 1. It can be shown

by the calculation of temperatures in adjacent
differential regions progressing across the radius
of the cell, that the thermal conductivity between
these regions is insufficient to perturb a spacial
temperature distribution of Bessel-function form
if the metastable and electron densities also have
Bessel-function distributions. This indicates that
the spacial temperature distribution will not be
uniform as is often assumed.

Because the electron-temperature distribution
is nonuniform, the measurements of tempera-
ture"'~ represent weighted average values. This
weighting is toward the maximum values in the
center of the cells and is dependent on the spacial
distributions of electron density and temperature.
Thus, accurate comparisons of these calculations

Te (4K)

and experiments cannot be made without knowledge
of these spacial distributions.

Only in the case of the experiment of Miller
et al.2 were the densities of the He(2'S) also
reported. By using these densities and the results
of the partition of energy in this work, we have
calculated the quasi -steady-state temperatures,
on the axis of the cell, which correspond to the
conditions of their experiment at 10 Torr. These
are presented in Fig. 8 (dashed line) along with a
replot of their experimental data (large dots). The
experimental data must be considered to be lower
limit to the temperature on the axis of the cell, for
the reasons given above. How closely they repre-
sent this temperature depends on the spacial dis-
tribution. The dotted line in this figure represents
the calculated temperatures of Ref. 2. Their cal-
culations overestimated the energy transferred by
the hot electrons to the background-electron gas
(see Fig. 2), which in turn overestimates the
electron temperature for each differential volume
of the plasma. Moreover, they assumed the tem-
perature to have a uniform distribution with para-
bolic spacial distributions for the electron and
metastable densities. The last curve presented
in this figure (alternating line) is our effort to take
the spacial distributions into account. For this,
we have assumed parabolic distributions of elec-
tron density and temperature. No quantitative
conclusions can be drawn from this curve because
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FIG. 7. Experimental evidences of the elevated electron temperature at 10, 20, 40, and 80 Torr. Experimental re-
sults obtained by the authors (Ref. 1) using a reflection-type X-band radiometer.
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of the sensitive nature of the weighted average
temperature on the assumed distributions; the
results are presented only to indicate that the
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FIG. 8. Comparison of theoretical electron tempera-

tures to experimentally measured values at a pressure
of 10 Torr. The experimental and theoretical results of
Miller, Verdeyen, and Cherrington (Ref. 2) are repre-
sented by large dots and small dots, respectively. The
computed curve obtained with our theoretical model,
using the metastable and electron densities of Miller
et al, . on the axis of the cell is represented by a dashed
line. The weighted average temperature obtained from
the curve above (dashed line) and assumed parabolic
distributions of electron density and temperature is rep-
resented by a line of alternate dashes and dots.

theory predicts temperatures somewhat lower
than the measured values. This discrepancy
could be due to the importance of the helium
molecular metastable. At this pressure and above,
the molecular ion is dominant and one could also
expect the molecular metastable to play a role in
the electron energy balance, but for the experi-
menP this quantity was not measured.

More experimental data on electron temperature
along with the electron and metastable densities
[He(2'S), He, (2'Z)j and their distributions are
needed to confirm the dominance of the meta-
stables as the primary cause of the elevated elec-
tron temperature in the afterglow.

VI. EFFECTS OF THE NON-MAXWELLIAN

PART OF THE ELECTRON ENERGY
DISTRIBUTION FUNCTION

The effect of the perturbation to the Maxwellian
distribution function discussed in Sec. III can only
be examined in terms of the energy dependence of
the quantity being considered. The results the
authors displayed in Fig. 7 utilized a microwave
radiometer to measure the radiation temperature.
This quantity is therefore a good example to ex-
amine in terms of the distribution function. With
the knowledge of the distribution function calcu-
lated in Sec. ID, the radiation temperature was
evaluated by"

00 V v 1 8f(vl .

V +(d p v~p+ (d Psv ~v

where 0 is the Boltzmann constant, T„ is the
radiation temperature, m is the mass of the elec-
tron, v is the velocity of the electron, f(v) is the
distribution function, v, p is the collision frequency,
and ~ is the frequency of radiation. For this cal-
culation, the value of co was taken to be the center
frequency of the experiment, 9375 MHz.

Figure 9 indicates the deviation D from the
Maxwellian as a function of electron density for
two examples of the ratio of metastable-to-elec-
tron density for each pressure The devia.tion D
is calculated as

D= (T~ T,)/T, - (20)

where T„ is the radiation temperature of the elec-
trons and T, is ~De equivalent electron temperature
of the Mmmrellian part of the distribution function.
The value of this temperature was taken in each
case as the quasi-steady-state temperature deter-
mined by the energy balance described in Sec. IV.
In this example, at 10 Torr and for metastable-to-
electron density ratio of 4, a deviation of up to 15%

from the equivalent temperature of the Maxwellian
part can be expected by the measurement of the
radiation temperature. At higher pressures the
deviation is much less sensitive.

A similar analysis for the collision-frequency
determination of the electron temperature, based
on the absorption of the afterglow shows a very
small sensitivity to perturbations to the Maxwellian
distribution of the type shown in Fig. 4.

VII. CONCLUSIONS

Accurate calculations of the partition of energy
between Maxwellian electrons and the background
neutral gas have been made for the relaxation of
very energetic non-Mmcwellian electrons produced
by reactions such as (1) and (4). The basic calcu-
lation has allowed the evaluation of the electron
energy balance and the energy distribution func-
tion. This evaluation was carried out for the
range of electron densities 10"-10 cm ' and
over the pressure range 10-80 Torr. The quasi-
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APPENDIX

In a recent article, Johnson and Gerardo"
suggested that the partition of energy could be
approximated by

Q(aa„)„=f
&,~,»r 1+ (2m/M„)(v„/v„)

This was apparently obtained by assuming that
both relaxation processes could be assumed to be
continuous and writing

(21}

steady-state equilibrium temperatures which
resulted from the energy balance were compared
to existing experimental data.

The model used for the above calculations
assumed only one metastable with the character-
istics of the He(2'8) metastable. The character-
istics of the partition of energy makes this a good
approximation for the electron energy balance.
The energy distribution function has stronger
dependence on the species of metastables, but if
the dominant metastable were the molecular
metastable, He, (2'&) instead of the atomic meta-
stable, then there would be approximately a 20%
overestimation of the perturbation density in the
calculations.

The effect of the perturbation to the electron
energy distribution must be examined in terms
of the energy dependence of the quantity being
considered. As an example, we have chosen the
radiation temperature. The results of this cal-
culation show that extreme care must be taken
in applying the assumptions of a Maxwellian dis-
tribution, and each quantity must be examined in
terms of its energy dependence.

Tp Te

Te
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———40 Torr
------ 80 Torr

10

~lgl'
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~ ~ ~ 0 ~e 4=1
~ggyr

~OWN1 ~ ~ + ~ 1k+1

1012

(
~ -e'tm(2Ay™+eln, f, ( ),~, —2 arctan—

ELECTRON DENSITY (cm-3)
FIG. 9. Effects of the deviation of the energy distribu-

tion function on the radiation temperature of an after-
glovr.

where A = (a/b)'t' and « = (a/c)'t'. Comparison
between the numerical and analytical solutions
we have given show identical results except for
energies near akT, .

In discussions about this work, Allis suggested
the value of an analytical solution would warrant
an additional evaluation of (22). With his aid, we
have found

6k 2ppg

dt " M
He

(22)
= —b(t, —to) for e «3 eV, (25)

where &» I kT„3k'To and the liberation of energy
to the background electrons is

[ln(Q+ ce )]~ = —2c(ti —to) for E~ 3 eV,

d6
88

Equation (21) can be obtained by taking the ratio of
(22) and (23) and integrating. Although the evalua-
tion of this integral was not given, we find the
analytical solution for

p„= a&-'~2,

(2m/M„)v„= be't' for e «3 eV

for &~3 eV,

Q(«.,)„=[Aarctan(e/a}]&", ,",&„,

+ -', «'{-,' in[1 —3«/e/(«+ 4)']
+ W3 arctan(2 ve -«)/«vb't", ;„",

S= yX,u for &&25 eV,

S = yN~M+ 3 PM2 for e ~ 25 eV.

Again the results of the two are identical except

as a solution.
By using this result; in the same fashion as the

relaxation time in the text, we have found the
distribution function to be

2 m3 '~2 8f(&)=
4 b 2 for 6-3 ev,4n 2 a+ bc2

(26)
1 m 't S for e~3eV,

477 2 s+cei
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for energies near & kT, .
It should be pointed out that although the

analytical solutions have been found in these cases,

for other applications perhaps more complex, the
methods described in the text may be more satis-
factory.
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Collision processes Occurring in Decaying Plasmas Produced in Helium-Hydrogen Mixturese

G. E. Veatch~ and H. J. Oskam
Department of Electrical Engineering, University ofMinnesota, Minneapolis, Minnesota 55455

(Received 9 October 1972)

The time dependence of the densities of He', He~', H', H~', H3', HeH', and He~H' ions was measured in the
afterglow period of plasmas produced in helium containing 0.01, 0.02, and 0.1% hydrogen for total gas
pressures varying from 1 to 10 Torr. The rate constant for the ionization of H, by He(2'S) was found to be
5.2 X 10 cm sec '. The studies resulted in the observation, for the first time, of the production of H,+ by
mutual collisions between metastable hydrogen molecules. The radiative lifetime of these molecules was

measured to be 2.7 + 0.2 msec. The occurence of several other collision processes was also established. The
mobility of H,+ in helium was determined to be p,o = 40 + 0.5 cm' (V sec)

I. INTRODUCTION

In 1965, Oskam and Mittelstadt' published a
study of the electron-density decay in helium-hy-
drogen mixtures after cessation of the discharge
pulse. The electron density was measured using
the microwave-cavity method. The measurements
were performed over a total pressure range 1-32
Torr and a range of hydrogen concentrations
10 '-1%. They measured an effective ambipolar
diffusion coefficient D, , which is defined as

(D,po) ~ff
=—p.A' jr~ q

where A is the characteristic diffusion length of
the plasma container related to the fundamental
diffusion mode, P, is the gas pressure reduced to
O'C, and &, is the measured time constant of the
exponential part of the electron-density decay
curve.

For gas pressures between 4 and 32 Torr the
effective ambipolar diffusion coefficient depended
on the discharge-excitation pulse length and varied
from (D,P,),ff = 1350 to 1650 cm' sec 'Torr. The
larger value was obtained for the longest pulse
length, which ranged from 0.01 to 5 msec. No

satisfactory explanation was found for this behav-
ior.

The only other afterglow studies in helium-hy-
drogen mixtures of which we are aware were per-
formed by Adams et al. ' using the flowing-after-
glow method. They reported rate constants for re-
actions of He, ', HeH', HeH, ', and He,H' with hy-
drogen. In order to determine the reasons for the
unusual behavior of the effective ambipolar diffu-
sion coefficient observed by Oskam and Mittelstadt,
the present mass-spectrometer measurements
were performed. In addition, it was believed that
information could be obtained about the collision


