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is the fact that the calculated fractional change has
the correct sign; that is, the calculation yields a
higher ordering temperature for He® than for He*.
To summarize, the occurrence of a higher or-
dering temperature for He® can be understood as
follows. Because the relative strength of the tun-
neling term is so small, the transition tempera-
ture of the adsorbed system essentially scales
with the nearest-neighbor-interaction strength
as in a classical system. The major quantum-

mechanical effect is to cause this strength to be
greater for He®, as the less localized wave func-
tions of the lighter atoms give greater weight to
the repulsive part of the interatomic potential.
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A three-dimensional theory for the resonant interaction of electromagnetic waves with a gas of two-level
atoms is formulated in terms of macroscopic variables. The theory is utilized to find the steady-state
attenuation of a plane wave in the presence of another plane wave running in the opposite direction with
different amplitude. Contributions are included from the reflection of the oppositely running wave by an

induced standing-wave inhomogeneity in the population inversion of the medium. The resulting attenuation
and reflection coefficients are expressed as velocity integrals of continued fractions. Correspondence is made
with existing gas-laser theories, yielding the formulation of a high-intensity ring-laser theory. Analytic
approximations for the coefficients are presented for the Doppler-limit cases of both waves weak, one wave
weak, and negligible reflection (rate-equation approximation). More-general cases have been calculated
numerically. The attenuation coefficients exhibit a Lamb-dip feature. The relative depth of the dip increases
rapidly with power at low saturation levels, slowly at high saturation, and is greater in the attenuation of
the weaker wave. The width of the dip is nonlinearly power broadened. The shape of the dip is very nearly
Lorentzian, except for one special case at high power in which the line splits. The propagation equations for
the two waves are integrated over long absorption paths. A large resulting attenuation increases the relative
size of the dip while decreasing the power broadening.

1. INTRODUCTION width of the absorption line increased. A theo-

retical explanation of these effects was given by

Saturated absorption, or the nonlinear absorp-
tion of electromagnetic radiation at high power
levels, was first observed in gases by microwave
spectroscopy.! As the incident power was in-
creased, the percent absorption decreased and the

Karplus and Schwinger? and independently by
Snyder and Richards.® Actually such effects first
appeared in the so-called Rabi transition prob-
ability* long used by workers in atomic and mo-
lecular beam resonance spectroscopy. Similar
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saturation effects are also well known in magnetic
resonance® and other forms of radio-frequency
spectroscopy.®*”

The recent development of lasers has permitted
the observation of saturation at infrared and opti-
cal frequencies. The predominance of inhomoge-
neous broadening (Doppler broadening for gases)
at these higher frequencies leads to a new phe-
nomenon associated with the concept of “hole
burning.”® When a gaseous system is subject to
a resonant standing-wave field, a narrow spectral
feature may occur having only the homogeneous
linewidth. This feature was predicted mathemat-
ically by Rautian® and in Lamb’s fundamental
paper on the theory of the gas laser.!® When ob-
served in the output power of a gas laser, this
feature is commonly referred to as the “Lamb
dip.” A saturable absorbing medium within a
laser cavity may produce the same feature with
opposite sign or an “inverted Lamb dip.”!*'? Sim-
ilar features have been observed in the fluores-
cence from a saturated level,'® or in the ampli-
fication of a laser beam by a second laser oscil-
lating on a different transition with a common
level.'* By directing laser beams in opposite
directions through an external absorption cell,'s*!¢
Lamb-dip features can be seen without worrying
about threshold conditions or the nonlinear be-
havior of an active laser medium. Altogether
these techniques have shown exciting potential for
studies in spectroscopy,'” " collision broaden-
ing,??+2% and frequency stabilization.?¢™2® A theo-
retical understanding of saturated absorption is
desirable for the interpretation of these experi-
ments.

The present paper provides a theoretical model
for the interaction of a gaseous two-level medium
with two oppositely running waves of arbitrary
amplitude. Mathematically it is an extension of
the theory of high-intensity gas lasers®”2° to the
case of running waves of unequal amplitude, but
treated from the point of view of absorption. Some
known results are included for completeness and
perspective. The emphasis in the new work is on
the amplitude and width of the Lamb-dip feature
as affected by the intensities of the two waves and
the optical depth of the absorption cell. The re-
sults are valid for steady-state conditions with un-
bounded plane-wave fields of the same frequency
and polarization. The model is also restricted to
those relaxation processes describable by simple
velocity-independent decay constants. The inter-
esting case of a three-level medium excited by
two resonant frequencies has been treated else-
where, 30732

In Sec. IT we present a general three-dimen-
sional formulation of the interaction of electro-

magnetic waves with a gas of two-level atoms. By
using macroscopic variables no explicit mention
of the density matrix is required. However, the
theory is based on the same physical assumptions
and is mathematically equivalent to the density-
matrix theories. It is presented here for its gen-
erality and relative simplicity.

In Sec. III we review the saturated absorption of
a single running wave. The heart of the paper is
Sec. IV, where we find general expressions for
the attenuation and reflection coefficients for two
oppositely running waves. Several special cases
are treated analytically, while the more general
case is studied numerically. The results are re-
lated to existing theories of high-intensity stand-
ing-wave gas lasers® ~?° and yield as a bonus a
formulation for a high-intensity ring laser. In
Sec. V we numerically integrate the propagation
equations over the length of an absorption cell to
find the resulting enhancement of the Lamb-dip
feature. Section VI summarizes some of the ex-
perimental implications of the results.

II. MACROSCOPIC VARIABLE
FORMULATION

The following theory is essentially a general-
ization of the author’s elementary maser theory.3
To the time-dependent macroscopic variables used
previously we add spatial and velocity dependence.
The resulting equations of motion encompass a
much wider range of phenomena, but are corre-
spondingly much more difficult to solve.

In our earlier paper we started with the electro-
magnetic field quantized and went over to a semi-
classical theory by neglecting correlations between
the atoms and field. This approach permitted a
determination of the validity of the semiclassical
approximation by evaluating the correlations.’*

On the strength of those results we shall in this
paper consider the electromagnetic field to be
classical from the start. Since our medium will
have a nonlinear susceptibility, we explicitly sep-
arate the medium polarization from the electric
displacement. Maxwell’s equations for a charge-
free nonmagnetic material then give the following
equation of motion for the electric field:
27 o 2

%*2%%"&‘@:‘%1—;’ (1)
where E and P are functions of position T and time
t. The damping coefficient y, may arise from a
finite conductivity of the medium or be absent.
For magnetic dipole transitions a similar equation
holds for the magnetic field driven by the magne-
tization.

For the nonlinear medium we assume a large
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number of identical atoms or molecules located at
positions ?, and traveling with constant velocities
V,. For each atom we shall be concerned with only
two internal states which will be resonantly cou-
pled to the electromagnetic field. We therefore
represent the Hamiltonian for each atom by a two-
by-two matrix:

3= 3w, 0f - < E,(F,, o . (2)

Here 7w, is the energy difference between the two
levels, [ is the induced dipole moment, E, is the
classical field strength evaluated at the position
of the jth atom and the ¢’s are Pauli spin matrices,
independent for each j. The average energy of the
two levels is omitted since it does not contribute
to the dynamics. Only one polarization of the field
E will be considered, p and E henceforth being
written as scalars.®® Treating the Pauli spin ma-
trices as time-dependent operators, we find the
Heisenberg equations of motion

Et— O‘f= - w0°'§ ’
d 2uE
2501 = wof +=E=10 ], (3)

d . _Zu.E[ay

EO’, = 7 i

In the Lagrangian description of fluid mechanics
the motion of individual particles is followed. This
view has been the starting point of most formu-
lations of gas-laser theory. In the Eulerian de-
scription, the properties of particles at a fixed
position are studied regardless of which particles
happen to be there or how they got there. This
latter approach has been fruitful for fluid dynam-
ics and we adopt it here. In this view we can, for
example, define the density of atoms of a given
velocity as a sum over all atoms with 5-function
contributions from each:

N(F,w’z,t)=§; 6(r-T,)8(V-¥,). (4)

The function N is then interpreted as a continuous
function of T and v by considering its variation
only over distances and velocities large compared
to atomic separations and velocity differences. In
other words N is just the total number of atoms
times the Boltzmann function f(?, ¥, t) of kinetic
theory.

We introduce our other macroscopic variables
in an analogous way by adding to N information
about the internal states of the atoms®®:

P(T,¥,t)=3 wlef)s(f-T,)6(v-7,),
]

&F.T,0=2 oD 6F-F)6(7-7), (9

W, v, t)=3) (of) 86(r-1,)8(Vv-7,).
J

The angular brackets represent quantum-mechan-
ical expectation values. W is the population in-
version density. P and @ are the in-phase and
quadrature components of the macroscopic elec-
tric polarization. When integrated over velocity,
P becomes the source function for (1). These
variables now represent the macroscopic prop-
erties of the medium without reference to individ-
ual atoms.

The equations of motion for these variables are
obtained from their total time derivatives. If we
consider the atoms to have classical linear tra-
1ectories between collisions, then '1", has the form
r ,o+'\7,t. Using the properties of 6 functions, the
time derivative acting on T, can be rewritten as a
space derivative and transferred to the left-hand
side to make up the substantive or material
derivative. From (4) we thus obtain the Boltz-
mann equation for force-free noninteracting par-
ticles

a -
<§+V'V) N=0. (6)
With the aid of (3), we find for the other variables
(5)

9 -
<a—t+v-v) P==-w,Q,

(%+v-V>Q=w0P+ ";I_EW, (n

9 - 2
(—a?i-V’V) w= ;i' QE .
The first of these equations could be used to elim-
inate @ from the other two, producing a second-
order equation for P. For stationary atoms ('\7 v
terms omitted), Eqs. (7) would then be the same as
those used by Oraevskii,®” Jaynes and Cummings,3®
or Davis.®® The V-V term is a convenient way of
including the time-dependent interaction seen by
atoms moving through a spatially varying field
and avoids the extra time variable sometimes
introduced.?’*2® Although its use in laser theory
is not new,* only recently have authors taken
advantage of it.28s32,41744

In the important case that E is a nearly mono-
chromatic wave of angular irequency w, the basic
equations (7) can be simplified by removing their
rapid time dependence. Let us introduce complex
amplitudes by defining

P(r,V,t)-iQ(T,V, t)=2uM(T, ¥, ) e~ | (8)
E(T,t)=E,A(T,t)e*“* +c.c., (9)
b=uE,/k . (10)

Then the first two equations of (7) can be combined
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into

(:_t.i.";.v)M:i(w—wo)M—ibWA , (11)
while the third becomes

<58.t_+'\7ov> = ~2ibMA* +c.c. (12)

Rapidly varying terms containing e*?!*“* have been
dropped (rotating wave approximation) so that A,
M, and W are now assumed to vary with ¢

much more slowly than the carrier frequency w.
The validity of this approximation is very good
for b|A| < w.** We similarly rewrite (1) in terms
of A, retaining only the slowly varying terms (cf.
the Appendix of Ref. 33). Using E,=(hw/2¢,V)'/?,
where V is a normalization volume for the field,
we obtain

9 P +EVE - 3
(at+'y‘.+ 5 )A—szfM(r,V,t)d v. (13)

The V? term allows for the propagation of the wave,
including diffraction effects. The parameter b
corresponds to the field-atom coupling constant in
a treatment quantizing the field.?® Similarly |A|?
is the mean photon number in the volume V. The
real and imaginary parts of M correspond to the
variables C and S of Lamb.!°

In (11) and (12) the atoms are considered free
of external influences other than the applied field.
A more realistic model includes the dissipative
effects of finite-level lifetimes and atomic colli-
sions. For mathematical tractability we shall in-
clude dissipation in the simplest way, by adding
phenomenological damping and source terms to
our equations. To allow for different lifetimes of
the upper and lower states, it is necessary to
write separate equations for their individual pop-
ulations. Defining these by

N, =3(N+W) and N, =3 (N-W) ,
we expand (11) and (12) to

(Z+7+94n) Mo=yane-ibMarsiviea, (19

v<%—+'\7-V+'y,,>N,,=y,Ng+z‘bMA*-ibM*A, (15)

(:—t +Ve V+72)M=i(w—w°)M—ib(N; -N,)A. (16)

Here NJ and N9, which may depend on T, ¥, and
t, are the equilibrium values of N, and N, occur-
ing in the absence of the field A. Also, %, and ¥y,
are the relaxation rates of the upper and lower

states, respectively, while y, is the relaxation
rate for the polarization (y, corresponds to 1/7,

in magnetic resonance theory®). The use of three
different relaxation rates accommodates both
finite-level lifetimes and hard collisions.*?*%® Soft
collisions leading to velocity diffusion®” or velocity
changes correlated with internal state changes®®:4®
are not included. The rates are restricted by*?

72 2%(7’1 + Yb) ’ (17)

the equality holding in the absence of phase per-
turbing collisions. Readers familiar with density-
matrix formulations will recognize (14)-(16) since

< N, Me"““>
M*et* N,

is just the total number of atoms times the en-
semble-averaged density matrix p(T, v, t) used by
Lamb'® or Feldman and Feld.?®

Equations (13)—(16) form a complete set of cou-
pled partial differential equations for the inter-
action of electromagnetic waves with a gas of two-
level atoms. They can describe such diverse
phenomena as laser oscillators and amplifiers,
pulse propagation, self-induced transparency,
self-focusing, atomic beam spectrometers, and
saturated absorption. They can be used for multi-
mode problems by including the beat notes in A
(provided the beat-note frequencies are small com-
pared to w). They must be generalized for prob-
lems involving more than two atomic states or
additional frequencies not close to w (parametric
oscillators, harmonic generation).

III. ATTENUATION OF SINGLE
RUNNING WAVE

Before attacking our main problem we introduce
some of the techniques by applying our general
theory to the saturated absorption of a single plane
wave propagating in the z direction. We can rep-
resent such a wave by the field

E =E, cos(kz — wt - ¢) =E, Re(e** e~ * ¢~ 9),

where E; and ¢ are slowly varying functions both
in time and in space (over a wavelength). Com-
paring with (9) we see that A will have the form of
a slowly varying function times e***. Just as we
removed the rapid time dependence in the preced-
ing section, we now remove this rapid spatial
dependence from our equations by defining

A=A and M=M,e'*,
where A, and M, are slowly varying both in time
and space. Equations (13)~(16) then become

9

9 8 AV . 3
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m +V ~V+'y¢>Na='y¢ NO—ibMA¥+ibM}¥A,,  (19)

aiﬁ V4 'y,,> Ny=v, NO+ibMA¥ —ibMFA, ,  (20)

~

(:—tﬁ-v +ikv,+y2>M1 =i (w=w )M, —ib(N, = N, )A, .

(21)

In (18) the z derivative term describes the change
in amplitude of the wave while it propagates, while
the smaller V2 term primarily describes diffrac-
tion by altering the phase front. In (21) the ikv,
term arises from V-V acting on e**, Considered
with the ¢ w, term, it gives the Doppler shift seen
by moving atoms.

Equations (18)—(21) describe the propagation
through a resonant medium of either continuous
waves or pulses of any shape long compared to a
wavelength. They are equivalent to Eqs. (44) of
Icsevgi and Lamb,® who have given a thorough
treatment of their solution. Here we reiterate
just the solution for a steady-state plane wave. In
this case we drop all time derivatives and also the
¥+ V and V2 terms which will be small. Equations
(19)-(21) are then algebraic equations whose solu-
tion is

W=N,-N, =(N3=-N)[1+2a/(1+T?], (22)
M= -i(b/7,) (Ng - Ny )A(1-iT)7, (23)

where we have used the abbreviations T =(w-w,
-kv,)/v, for the detuning,

=20 |A,|*/n7, (24)
for the field intensity parameter, and

N =2Y%/(Ya+ ) (25)

for the effective relaxation rate of the population
inversion W. The « term in (22) represents
Bennett’s “hole’”® “burned” in the velocity distrib-
ution of population inversion by the saturating
wave. In thermal equilibrium, the unsaturated
inversion can be written

NQ - N} =Wfu(¥), (26)
where
fu(;) = .n,—s/zu—s e--;z/u2 (27)

is the Maxwell velocity distribution and the mean
population inversion density

W = =(N2+ N?9) tanh(7w,/2kT)

is negative for an absorbing medium.
The propagation equation (18) then becomes

(Zi%e)a,=i(2) fuaso=-pa,, (9
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where the attenuation coefficient g8 is

_BV(-W) [(L+iD)f(V)d®
T ey, 1+2a+7T?

B . (29)
In the integrand, T depends on v, only, so the in-
tegrations over v, and v, can be done trivially.
The integral over v, can be expressed in terms of
the real and imaginary parts Z, and Z; of the
plasma dispersion function® yielding

B=1"28[Q71Z,(¢)-iZ,(¢)] , (30)
where
_,”I/ZbZV(_W) _"1/2 “2(_W)
- cku T2 heu (31)
Q=(1+2a)/2, (32)

and the complex argument of the plasma disper-
sion function is

C=(w=~wy+1y,Q)/ku=t+inQ . (33)

The real part of g gives the attenuation, while the
imaginary part produces a phase shift equivalent
to a change in the index of refraction (anomalous
dispersion). The real part of the result (30) is
included in the paper of Icsevgi and Lamb®® and
was found for the case w=w, by Gordon, White,
and Rigden.%?

Note that from (28) A, is slowly varying over a
wavelength if (8] < k. This condition also justifies
neglecting the z components of the v +V and V2
terms and will be assumed to hold in the remain-
der of this paper.

The plasma dispersion function simplifies in two
special cases corresponding to the limits of homo-
geneous and inhomogeneous broadening. The
former case, represented by ku<v,, is usually
valid in microwave spectroscopy. Only a very few
extremely fast atoms have appreciable Doppler
shifts, that is, the atoms are effectively station-
ary. We can evaluate this case by replacing f,(V)
in (29) by a 6 function:

- ku (1 +itany)
B— ,".1 2 7’2 (Q2+tan2¢) ’ (34)
where
tany = (w=-wg) /7. (35)

is the detuning parameter. The appearance of @2
in the denominator instead of 1 broadens the homo-
geneous line shape and reduces the attenuation at
line center. The real part of (34) is essentially
the result of Karplus and Schwinger? or Snyder
and Richards® and explains the observations of
Townes' and the more detailed ones of Carter and
Smith.%3

In the inhomogeneous limit ku>>y,, most atoms
have Doppler shifts so large that they are not in
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resonance with the field. The integral in (29)
averages over all nearly resonant atoms with
fu«(¥), a slowly varying weight function. For
nQ@ <1 we have the approximation

B et (Q7 + 2% [Eefat) . (36)

The real part of (36) has just the Doppler line
shape reduced by the factor @ at high powers.
Note that in the homogeneous case (34), saturation
reduces absorption by @2 at resonance and not at
all off resonance. In the inhomogeneous case (36),
the average over detunings gives an intermediate
saturation factor.

If we consider small enough detuning so that
£x1, (36) reduces to

B=By/Q, (37)

independent of tuning. We shall call this approx-
imation the Doppler limit.!° It can be obtained
from (29) by replacing f,(¥) by f,(0) and will be
used for all our analytic results in Sec. IV. Thus
By, defined in (31), is the unsaturated attenuation
coefficient in the Doppler limit (or at resonance).
For the real part of g the Doppler-limit approx-
imation is improved by multiplying by e"z, but
the imaginary part of order £ is not included.

IV. ATTENUATION OF TWO
OPPOSITELY RUNNING WAVES

Consider now the medium to be subject to two
plane waves of the same frequency, one running
in the positive z direction and one in the negative
z direction. The field amplitude A then has the
form

Aleiu +A_1e'““ s (38)

where the amplitudes of the individual waves A4,,
A_, are slowly varying functions of z and ¢{. For
notational convenience we introduce the relative
amplitude A by

A_=-24,. (39)

Generally A would be complex. However, by shift-
ing the origin of the z coordinate we can arrange
to have X real and positive (4, remains complex).
Then A can be written as the sum of a standing
wave and a residual running wave

A =2i\A, sinkz+(1-2)A,e'** , (40)

The zero of z now occurs at a node of the standing
wave in correspondence with laser theories.
Some of the problems encountered with two run-
ning waves can be illustrated by the case of sta-
tionary atoms where an analytic solution is possi-
ble. Accordingly we discuss this case in Sec.IVA
and then develop the complete formal solution for

moving atoms in IV B. Section IV C explains the
relationship of our free-running-wave theory to
existing laser theory. Much of the character of
the solution for moving atoms is revealed by three
approximations leading to analytic results present-
ed in Secs. IV D, IV E, and IV F. Some numerical
results are given in Secs. IV G and IV H.

A. Stationary Atoms

Let us substitute (38) for A in (14)-(16). For
zero-velocity atoms and a steady state the deriv-
ative terms vanish and the equations solve alge-
braically. The result is the same as (22) and (23)
except that A, is replaced by (38), T is replaced
by tany, and a is multiplied by 1-2X cos?kz + A2,
The last change means that both the polarization
M and the inversion density Whave a rapid periodic
variation in z imposed on them by the standing-
wave nature of A. We can represent this variation
by Fourier-series expansion:

M=), M,e'™* nodd, (41)
n

W= W,e!™*, neven. (42)
n

Since Wis real, W_, =W¥*. Of course M and W may
also have a slow secular variation in z because of
such variations in the driving field A. This can be
accommodated by considering the Fourier coeffi-
cients to be slowly varying functions of z defined
by an integral over one wavelength about any value
of z.

Now we insert (38) into the propagation equation
(13). Omitting the time derivative, conduction
loss, and diffraction terms leaves

c(%) et _¢ (ﬂ:‘-)e""' =ibeM d3v. (43)
8z 9z

If A, and A_, are to be slowly varying in z, they
must be driven only by those components of M with
the corresponding rapid spatial variation. By
equating Fourier coefficients, we find

Efl_l.=ﬂ f _M1 d3v ,

9z c

(44)
S BV [y .
8z c

Thus it is only the two Fourier coefficients M,, of
the polarization that are effective in driving the
field.

It has been common practice in laser theory to
describe the saturation effects in terms of the
population inversion instead of the polarization.

If we equate individual Fourier coefficients in the
static solution of (16), we find

M, = —i(b/y,) (1-i tany) ™ (W, A, + WA _,)
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and a similar expression for M_;,. Two terms con-
tribute to M;. The first is the normal attenuation
term proportional to A, and the average population
inversion W,. The second term is proportional to
the amplitude A _, of the wave running in the oppo-
site direction times the first harmonic W, of the
spatial modulation of the inversion. This latter
contribution can be thought of as a reflection of
the backward-running wave from the spatial in-
homogeneity of the medium. The periodicity of the
inhomogeneity leads to phase matching of the re-
flections with the forward-running wave as in one-
dimensional Bragg reflection.>® We can define
separate coefficients for these two contributions:

a4,
Y =-RA -FA,,
(45)
QA _ - -
—?z—BuA—l_BrAl .

Experimentally, however, one does not distinguish
B, and B,, but measures only the apparent atten-
uation of either wave. Using A we can combine

B. and B, into net effective attenuation coefficients
for the two waves

B'=Bi—-MG, B™=B -7 . (46)

For stationary atoms the Fourier coefficients
can be calculated analytically. We find

W, =W, -
o=W/4.q-, ) (47)
W,=(g,-q-)(q,+q)"' W, ,
where
a=1+2a(1%xr)?cos% . (48)

There is no velocity average, so we have immedi-
ately

b’V (-W) 1
cr.(1-itany) (¢,¢-)’
g 1+:_q_> .

H: A <q+ +q- fu

The spatial inhomogeneity and the reflection co-
efficient vanish unless some standing-wave field
is present (A>0). The equality of the coefficients
for either running wave is a special property of
the zero-velocity case and disappears when we
calculate the effective attenuation coefficients:
__vv(-m) 1 (1+A+1-x>

cy,(1-itany) (¢, +q-) \ g, q- /

- bV (-W) 1 1/1+x 1=2X

B = - = - . (51)
cy(1-itany) (g, +q-) 2 \ q, q-

These agree with the results of Rautian or Kuznet-

sova.’® Equations (50) and (51) can be converted

into each other by changing A to A™ with ¢, un-

B =8 =
(49)

B* (50)

changed, that is, by exchanging the amplitudes of
the two waves. This symmetry is merely a con-

sequence of our original freedom to choose which
wave we shall call forward running and which one
backward.

As a function of detuning, the attenuation co-
efficient 8% is approximately a Lorentzian reso-
nance like (34), becoming weaker and broader at
higher intensities. The reflection coefficient g%
behaves more like the square of a Lorentzian and
vanishes at low intensities. Since Ref; is posi-
tive, the reflected wave is in phase with the oppo-
sitely running transmitted wave and increases its
intensity. The increase is relatively greater for
the weaker wave, that is, the weaker wave has a
smaller effective attenuation coefficient. Just the
reverse will be found for moving atoms in the
Doppler limit. The effective attenuation coefficient
of the stronger wave retains the qualitative char-
acter of 8, when the reflection coefficient is added
by (46). But under some conditions (a@>%, and A
not too close to 1), the effective attenuation co-
efficient for the weaker wave has two symmetric
peaks with a central minimum. This minimum
arises from the reflection of the stronger wave
and is not a Lamb dip.

B. Moving Atoms—Formal Solution

The case of moving atoms exposed to two running
waves is more difficult since the moving atoms
see opposite Doppler shifts for the two oppositely
running waves and thus are effectively exposed to
two different frequencies of excitation. Previous
treatments® ™ of atoms exposed to two nearly
resonant frequencies ignored spatial dependence
and considered the amplitude of one exciting wave
to be very weak. Our treatment includes the spa-
tial dependence for two running waves and arbi-
trary amplitudes.

If the two oppositely running waves had different
frequencies in the laboratory frame, the moving
atoms would still see just two frequencies of exci-
tation. In fact, the solution for this case can be
obtained from the results of this part simply by
using the average frequency for our w and shifting
the Doppler weight function f, to be centered at
kv, equal to one-half the difference of the two
frequencies instead of zero. Thus no new informa-
tion is obtained by using different frequencies for
two oppositely running waves. The problem of two
waves of different frequencies running in the same
direction is quite different.®

The discussion of the stationary-atom case gives
us the clue for solving the moving-atom case. When
we introduce the two-running-wave form (38) for A
into (14)-(16), we also introduce the Fourier ex-
pansions®¥+%%(41) and (42) and a corresponding ex-
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pansion for N.** Equating Fourier coefficients then
leads to the following infinite set of coupled partial
differential equations for the slowly varying ampli-
tudes:

9 - .
<8—t +v-V+mkv, +%7¢ +%Yb> Nn+%(7a —Yb)Wn

=(7aN2+7’bNg)6no, n even (52)

9 - .
(5 +V eV +inkv, +3 7, +%n> Wo+3(Ya=7) N,
=(7aN2 =% Ng) 6no,_2ian+1A: -2ib M, -!A:I

+2ibM%, A, +2ibM*,_JA_,, neven

(53)
9 - .
(S-t— +V e V+inky, +72>M,,
=i(w-wy)M, - bW, A —ibW,, A, nodd.
(54)

Here §,, is a Kronecker 6 arising from an assump-
tion that the equilibrium populations N and N9
are not rapidly varying. The complexity of the
problem lies in the inkv, terms, which differ for
each Fourier component. Equations (52)—(54),
together with the generalization of (44),

9 9 CV2 o 3
<at+n+csz +zz-—k>Al-’beMzd v, (59

cv?

5s +§i—k>A_1=ibV M_d%, (56)

(-
ot ¢
form a complete set describing the three-dimen-
sional time-dependent behavior of a two-level
medium subject to two oppositely running waves.
They can be solved approximately by truncating
the Fourier expansions.

In this paper we consider only the one-dimen-
sional plane-wave steady-state solution of (52)-
(56). We therefore drop all derivatives with re-
spect to time and the transverse coordinates. In
(52)—(54) the v, 8/8z terms will be much smaller
than the kv, terms by the assumption of slow z
variation in the Fourier coefficients (valid for
|8]< k). We therefore also drop the z derivatives
in (52)—(54) and similarly the second derivative in
(55) and (56). The medium equations (52)—(54) are
then algebraic coupled recursion relations for the
Fourier coefficients. Their solution is express- !
ible in terms of infinitely continued fractions,
whose development is largely an exercise in con-
densing notation.

First we eliminate N, by solving (52) and sub-
stituting into (53) to obtain

|oo

YWy =P (1 Wy Oy — 2ibM,, , A% — 2ibM, L A*,
+2ibM*, , A, +2ibM*, A ),

-n-=1
where 7,, W, and f, are defined by (25)=(27). The
new dimensionless coefficient is

YaVp 1 + 1
Ya + 7\ Ya+inkv, v, +inku,

neven (57)

Dp = ), n even,

(58)
Note that p,=1. Next we solve (54) for M,:

M, ==i(b/7,) Fy (WpoiAy + Wy Ay) , modd.

(59)
We have introduced
Fr=(1¥itany+iny)™, = odd (60)
wheré
y=kve /7 (61)

is our dimensionless velocity variable and tany
was defined by (35). Inserting (59) into (57) and
expressing A_, by (39) yields a three-term re-
cursion for the W’s alone:

(1+ aan: +ax’® "S;)I'V,, —a)‘ann+1wlrn+2

- O Ry W,y =WfyyOpoy, 7 even
(62)

where
R,=F}+F,;, nodd (63)
Sy=F: +F}_,, neven (64)

and « was defined by (24). Except for the indexing,
R,, p,, and a are the same abbreviations as those
used by Holt.?®

The resonances implicit in p, and F, can be
identified in perturbation theory with z-photon
processes* involving absorption and emission of
photons from the two running waves alternately.

In strong fields these processes interfere to the
extent that they cannot be distinguished and we
make no attempt to distinguish them.

A continued-fraction solution can be developed
directly from (62), but a more desirable form is
obtained by first forming two coupled recursion
relations. We temporarily define W, for z odd by

vVn =VV"_1—W’"+1 , nodd (65)

and try to remember that it is not a Fourier co-
efficient. Using (65) we eliminate W,,, from (62)
to obtain

(1+ap, T,) W, + arpp Ry o Wy iy = aXD, R, W,y

=Wfyb,, mneven (66)

where
T, =S; + %S, - AR, .y — AR,

=(1=-2)(S; - AS;), n even. (67)
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We now introduce the ratio of successive W’s by
letting

C,=aM, R, \W,.,/W, for n=0, even (68)
and

C,=W,,,/W, for n>0, odd. (69)
Then (65) becomes

Cpo=aM, R, /(1+C,), n>0, odd (70)

while (66) becomes
Cpey= @R, P, /(1 +ap, T, +C,), n>0, even.
(71)

Equations (70) and (71) together are the desired
recursion relations for a continued fraction with
alternating structure. In particular we have

Co= aMoR,
1 L QAR D,
1+ap,T, L0 R
1+ aAR.D, .
1+ap,Ty+... (72)

The convergence of (72) is helped by the ny’s in
the coefficients p, and R,, but occurs even for
y=0. Inthe latter case (stationary atoms) all p’s,
R’s, and T’s are equal. The continued fraction
becomes periodic®® and can be evaluated analyt-
ically to recover the solution (47).

To complete the solution we must find a starting
point for our recursion relations, namely, the
inhomogeneous term occurring in (66) when »=0.
We use (68) to express W, in terms of C,, and the
definitions (65) and (63) to show that the W_; term
is the complex conjugate of the W, term. Then (66)
with »=0 has the solution

W/

_.—M__
Wo= 1+aT,+2ReC, (73)

where C, is given by (72). All other W, may now
be obtained recursively from W, and (68)-(71), for
example,

=C,(1+C) MW, . (74)

Finally the attenuation and reflection coefficients
are obtained by inserting (59) into (44). Comparing
the results with (45), we find

B ==(b*V/cy,) [ Fi,W,d®v , (75)

BE==(b2V/cy,) [F4,W,,d% . (76)

Converting the integration variable to y, we can
combine the constants into the unsaturated atten-
uation coefficient at resonance (31) to find

Fte -n2y2 dy
_.Q
f1+aT0+2ReC (M

and similar expressions for the other coefficients.
Here n=1v,/ku is a measure of the ratio of homo-
geneous to inhomogeneous broadening. For large
n, replacing the exponential by 7'/29™1&(y) re-
covers the solutions of Sec. IVA. For small 7,
replacing the exponential by unity yields the
Doppler limit. The coefficients obey the sym-
metry

Bz,r (a’ A, tam(’) = B:.r ( a)‘zy X-’.’ ta-m/’) (78)

associated with the invariance of the problem to
which direction in z is called forward. Equations
(70)—("78) together with the definitions (58), (60),
(61), (63), (64), and (67) comprise our formal sol-
ution for the attenuation of two oppositely running
waves by moving atoms.

C. Connection with Laser Theory

The theory of laser oscillators has most com-
monly been built on the assumption of small gain
per pass and high-@ cavities, even though these
conditions are not always satisfied experimentally.
One then considers spatially fixed eigenmodes of
the optical cavity being amplified or attenuated in
time, rather than running waves varying in space.

We write the field amplitude as a sum of time-
dependent amplitudes for each spatial mode:

A(F, )= 2 A, (0w (@) . (79)
The mode functions are defined by
(V2 + w2 uy (T)=0 (80)

and appropriate boundary conditions. We shall
assume they are orthogonal and normalized to the
volume V:

fu‘ (-l:) uf(?) dér= Vﬁu . (81)

Using (79)-(81) in (13) we find an equation for the
amplitude of each mode

<:t+y‘—zw+zw,>A,=§iwxiA, s (82)

where we have assumed w= w; . The y; include
now not only any conductive losses of the medium,
but also losses at the boundaries, which may differ
for different modes. The susceptibility for the ith
mode appearing in (82) is defined by

XiAg=(2b/w) [ [M(T,V, ) up@) d®rd%.  (83)

Since (14)-(16) are nonlinear, they do not decom-
pose neatly into modes, but lead to coupling be-
tween the different modes.!® Thus y; will in gen-
eral depend on the amplitudes of all excited modes
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and (82) must be considered to be a coupled set of
equations.

Let x{ and x;’ be the real and imaginary parts
of x; . Then in steady-state oscillation, (82) says
that the frequency of the ¢th mode is determined by
the real part of the susceptibility satisfying

Wy - W=7 wxf. (84)

The amplitude of the mode is determined by the
imaginary part of the susceptibility obeying

=X{'=2y; /w; =1/, (85)

where @; is the quality factor of the cavity for that
mode. These are the self-consistency require-
ments of laser theory.!:%¢

To utilize the general solution of Sec. IV B,
consider an idealized ring laser with two eigen-
modes corresponding to forward- and backward-
running plane waves

ul('l’,) = eﬂu, u_l('{.) = e-ikz . (86)

Inserting these mode functions in (83) and com-
paring with (44)-(46), we find the susceptibility is
directly related to the effective attenuation coeffi-
cients

X1 =(2ic/w) B2, (87)

Note that the reflection-coefficient part of g will
appear in (82) as a term coupling the two running
waves, but arising solely from the nonlinear prop-
erties of the medium. Similar coupling terms
attributed to optical properties of the cavity have
been introduced in ring-laser theory®’ to account
for the observed mode coupling properties. The
results of Sec. IVB, together with (87) and (82),
provide a complete formal solution for the high-
intensity ring laser. Previous analyses of ring
lasers®®~™ have been done by perturbation theory,
except for a recent analysis by Takata,™ who
formulates the ring-laser problem for arbitrary
intensities but then looks at special cases without
developing the continued fraction.

Now consider the more conventional standing-
wave laser. A plane standing-wave mode function
normalized by (81) is

Usy =V 2 sinkz . (88)

Expanding the sine function in exponentials, we
find that the standing-wave problem is obtained
from the preceding ring-laser formulation simply
by setting A, = -A_, =A4, /Y2i and equating the
frequencies w; and losses y;. That is, (82) holds
where the standing-wave susceptibility is

X o, =(2ic/w)B*, (89)

with g* evaluated for A=1 and a =8 |A[*/7, 7.
Specifically, the analog of (77) is

i fF:(1+cl)-le-"2”2dy (90)
Xow =g 1+2ReC, ’

where x4'=(2¢/w)B, is the imaginary part of the
unsaturated susceptibility at resonance. The
imaginary part of (90) simplifies further to

Xow =4 2a(1+2ReC,) ° (o1)

Note that for standing waves (A=1), the symmetry
(78) tells us B*= 8" and (67) tells us that all the
T,’s vanish, improving the symmetry of the con-
tinued fraction (72) for C,. The results (84), (85),
and (91) are equivalent to the solutions previously
found for high-intensity gas lasers.?”2°

When an absorption cell is placed within the
cavity of a gas laser,'*'? the behavior of the laser
can still be described by (82), where the suscep-
tibility is now the sum of susceptibilities for the
absorbing and amplifying media. Such an analysis
has been carried out in various approximations™~"®
and will not be treated here. If the internal ab-
sorption cell leads to passive @ switching or mode
locking of the laser, the analysis is best done by
the concept of running-wave pulses rather than
cavity modes.3: 777

D. Perturbation Solution

Lamb originally solved the laser problem by
iterating the nonlinear equations of motion to
obtain the polarization as a power series in the
field amplitude. We could do the same starting
with (52)-(54). However, the result is more readi-
ly obtained by expanding the continued fractions of
the general solution in powers of a.

From (73), (72), and (67), we find to first order
in a

Wy=Wfy(l1-aT,-2Rea)R,)
= Wfy(1-0aS3 - o’ S7), (92)

where a’=)?a is proportional to the intensity of
the backward wave. The S§are Lorentzians cen-
tered at w=w, kv, and represent the Bennett
holes burned in the inversion W, by each of the two
running waves. For running waves of different
amplitude the holes are of different depth. We in-
troduce the approximation (92) into (75) and eval-
uate the y integral in the Doppler limit by contour
integration to find

Bt=B,(1-a-a’cospe'?) . (93)
Recalling the definition of y (35), we note that
cos®P=12/[¥2 +(w=-wy)?] . (94)

Thus the real part of (93) has a Lorentzian dip in
it centered at the atomic resonance frequency with
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the homogeneous linewidth y, and depth proportion-
al to the intensity a’ of the oppositely running
wave. This dip arises from the additional atomic
saturation when both running waves interact with
the same atoms, rather than with atoms of differ-
ent velocities, that is, when the two Bennett holes
overlap. It is the analog in absorption of the Lamb
dip in gas-laser emission. Inserting (93) for g* in
(89) and then solving (85) for @, one recovers
Lamb’s third-order solution for the gas laser in
the Doppler limit. The dispersive (imaginary)
part of (93) also has structure of width ¥, in addi-
tion to the structure of width R« given in (36) and
neglected in the Doppler limit.

From the symmetry (78) we find

Br =B, (1-a'-a cosye'?). (95)

The two attenuation coefficients have the same
form, but the dip is relatively larger in the atten-
uation coefficient of the weaker running wave.
This qualitative result continues to hold when «
and a’ are too large for these perturbation solu-
tions to be valid. Henceforth, we shall define the
forward-running wave as the wave of greater am-
plitude (@ = @’ or X <1) and concentrate on the at-
tenuation of the backward wave.

In the experiments of Hinsch et al.?**"®and
Bordé'® the change in attenuation of the weaker
wave is observed as the stronger wave is switched
on and off. Their diffexence signal then will be
proportional to

S=a’'Re[f(a@=0)-8(a>0)] . (96)
From the approximation (95) for 8~ we find
S=aa’'B,cos’y , (97

a simple Lorentzian line whose strength is propor-
tional to the product of the intensities of the two
running waves.

We neglected the reflection coefficients above
since they are of higher order. From (74) and
(71) we obtain

W, =(aAR,p, +0 )W, .

In the Doppler limit the leading term vanishes upon
integration over y, since all factors F{, R,, and
P, in (76) have poles in the upper half-plane, while
the integration contour may be closed around the
lower half-plane. If the Doppler limit is not taken,
this term can be evaluated in terms of differences
of Z functions™ and will be of order na. A larger
contribution may come from second-order terms
in a. The F_, components of S, appearing in W;(92)
then have poles in the lower half-plane and give

B=-37,arB, [ B, + B,) + @'(B} + B¥)/(1-itany)],
(98)
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where
B, =(2+itany) (1 +itany)™ (2 +7, +2itany)™

and B, is obtained by replacing r, by 7,. The 7;
are the population relaxation rates normalized to
the homogeneous linewidth,

Yi=%i /Ya, 1:=a, b, 1. (99)

The real part of g is a negative resonance func-
tion, narrower than the Lorentzian (94), and some
times becoming positive before vanishing at large
detuning.

If we expand (77) to second order in @, combine
with (98), and apply the symmetry (78), we find
the complete second-order result

Rep™ = Bf1-gla’) - af(a, a’, tany)], (100)

where

gla)=a’'-3a” (101)
fla,a’, tany) = cos®y[1 - aF(tany) - a’G(tany)],
(102)

F(tany) = 3 (1 +2 cos®y) + 3 7,(F, /D, + F, /D,),
(103)
G(tany) =1+2 cos®y +37,(G, /D, +G, /D,), (104)
F,=-1-cos®)+(4+7,)cos*yp, (105)
Go=(=-1+7,)+(3+7,) cos®P+(4+7,) cos*yp, (106)
D,=4+7,(4+7,)cos?, (107)

with similar expressions for F,, G,, and D, using
7,. We have used this solution to calculate the
standing-wave laser susceptibility for », +7, =2
and find agreement with the fifth-order perturba-
tion calculation of Uehara and Shimoda.®®

We have introduced f in (100) since the difference
signal (96) is proportional to it:

S=aa'B f(a,a’, tany) . (108)

The effect of the F and G terms in (102) is to
make the signal weaker, broader, and not exactly
Lorentzian. Most easily measured is the broaden-
ing. We find the half-width at half-height

tany,/,=1+ka+k’a’+0a? (109)
where
K=F(0)-H1)=%+%71(Ca +Cb); (110)
k'=G(0) - G(1)=1+37,(C; +C}), (111)
1 2—7,
Ce=5ir. 16787, 122 (112)
c: 3 6+Tr, (113)

= 2+7, 16+ 87, +202°
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and similarly for C, and Cj. Since k' >k, a run-
ning wave is more effective in power broadening
the dip in its own attenuation than is the oppositely
running wave; that is, §* has a broader dip than
B~. The broadening is greatest for equal relaxa-
tion rates (7, =7, =7, =1) for which x=34/39 and

k’ =%. The numerical calculations described in
Sec. IV G confirm these values of « and «’ for a,
a’ <0.1, but give much less broadening than (109)
at higher powers.

The power-series solution is useful only for
quite small values of @ and a’. By setting a equal
to zero, we can find the self-saturation function g
exactly from the solution (37) for a single running
wave

glaN=1-(1+2a")/2, (114)

Thus the power series cannot converge for a’'>3.
We shall see in Sec. IV F that the radius of con-
vergence may be even smaller. Holt*® has found
the power series to be useful in laser theory only
for a up to 0.05 and our numerical calculations
tend to support this. Nevertheless, Tatarenkov

et al ® analytically determined the power broaden-
ing of the susceptibility in second order, while
Shimoda and Uehara® have extended laser theory
to even higher order in a.

E. Solution for One Wave Very Weak

Several experimenters!®:2'* 8% have recently
been using a strong forward-running wave (satu-
rating beam) and a weak backward-running wave
(probe beam). This suggests that a power-series
solution in the amplitude ratio A would be of in-
terest. We here find the lowest-order contribu-
tions to such a solution.

In the limit of small X the inversion density is

W,=Wf,/(1+aS}) . (115)

Only one of the Bennett holes is appreciable. In-
serting (115) into (75) we find G} in the Doppler
limit to be the same as (37) for a single running
wave with corrections of order A*. The tuning dip
has gone to zero with A. For the weak wave, how-
ever, the tuning dip approaches a finite limit:

- @-1
fe ’B°(1' AQ+1 —2itan¢))’ (1)

where @=(1+2a)!/2. The real part of this result
has been obtained previously.®?® The signal (96)
becomes

S= a,Bo(l_Q-l)ﬂc ’ (117)
where £ is a power-broadened Lorentzian function
£=[1+4tan’y/(1+Q)¥] . (118)

|

Note that the width of the Lorentzian is not the
width Qv, of the Bennett hole in (115), but an aver-
age of that with the unsaturated interaction width
¥, of the probe beam.

Since W, is proportional to C, and hence to A, the
reflection coefficients 8f are of order A. From
(46), B then makes a contribution of order »* to
B*. However, f; is divided by A in (46) and makes
a finite contribution to B~ in the small A limit.
This possibility was overlooked by Basov et al.®
From (74), (711), (73), and (76) we find

+ -n2y?
3::.@& Fo (aAR"lji'z)e ‘,,dy+0)x2.
T (1+ap—zs—z)(1+a‘so)

(119)

In the Doppler limit the integral can be evaluated
by contour integration around the sole pole in the
upper half-plane at y=tany +{Q (arising from

1+ aSt). The result is

B = —ahrlﬁo(Q_’l)hzgﬁ*’itanzp)(ha*'hb) (120)
Qhy [y hshohy + 5 ary(hy +hs) (hg+ )] °

where
hy=1+Q-2itany, h,=7,+2Q —2itany,
hy=1+3Q-2itany, h,=7,+2@Q —2itany.

The denominator has @ —Ztany as a factor. Just
like the perturbation result (98), the real part of
(120) is a negative resonance function becoming
positive before vanishing at large detuning. Com-
bined with (116) it effectively increases the atten-
uation, reduces the signal strength, and increases
its width.

The reduction in strength of the signal due to
reflection is found by evaluating (116) and (120) at
resonance:

S(tany =0)
- o, &1 (1 ALDOQNGQer ),
(121)
where
H=(3Q+1)(Q+1)(2Q +7,+7,) +7,(@*-1)
X(2Q +1) +7,7,(@+1)%.

For small a we recover the perturbation intensity
(97). As a increases, the signal intensity slowly
approaches a finite limit, which we can find by
assuming Q is large®*:

S(tany=0) ~a’B,[1 =37, /(6 +27,)] . (122)

For equal relaxation rates (7, =1), the reflection
part reduces the signal by up to 2, a significant
contribution. At a=2 the reductionis about 20%.
This reduction results in an apparent increase in
width (26% at a@=2). In the same limit as (122), g7



|

" becomes small, while 8] does not, so that the
major contribution to the attenuation of the weak
wave is destructive interference by the reflection
of the stronger wave.

Recently results equivalent to (116) and (120)
have been calculated independently.***%* These
authors give special attention to the high-power
case, relating some of their results to the Autler—
Townes dynamic Stark effect.’® In the rest frame
of an atom moving with axial velocity v,, a very
strong field at the Doppler-shifted frequency w
- kv, drives the atom to make successive transi-
tions at the Rabi flipping frequency 2p =[(w-kv,
—w,)? +4b% |A,]?]'/2. This results in modulation
of the inversion density or the introduction of side-
bands on the polarization. The oppositely running
weak wave at the Doppler-shifted frequency w + kv
will resonate with these sidebands if w + kv,
=w=-kv,£2p. These resonances can be found in
the factor (1 + ap _,St,) of the integrand of (119) by
neglecting the relaxation rates.

Haroche and Hartmann* also point out that at
high powers the integrand for 8~ may become
negative at small velocities (but not at zero veloc-
ity). In other words, the reflection of the strong
wave is so intense that atoms of certain velocities
effectively amplify the weak beam, although their
populations are not inverted. Our numerical cal-
culations discussed in Sec. IV G confirm this phe-
nomenon at a=4 with Avalues as large as0.7. The
attenuation by atoms of other velocities will usual-
ly mask the amplification by a few atoms when the
velocity integration is performed. However,
Haroche and Hartmann obtain a net negative value
for 8~ with the parameters a=50, A=0, |tany|<86,
and 7 =0.45 for which the saturation width of the
Bennett hole exceeds the Doppler width.

F. Rate-Equation Approximation

The rate-equation approximation was first sug-
gested by Lamb (Sec. 19 of Ref. 10), but he did not
investigate its validity. Greenstein® used it in his
extensive analysis of the gas laser, as did Balazs
and Tobias.? Subsequently it was related to the
high-intensity laser theory and received its :
name.?” Holt*® has compared it numerically with
better approximations.
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The rate-equation approximation has been de-
scribed®® as the neglect of population pulsations
seen by individual atoms. (The beat between the
two Doppler-shifted frequencies seen by a moving
atom modulates its transition probability). In our
macroscopic theory it can equivalently be de-
scribed as the neglect of the spatial modulation of
the population inversion, that is, we replace the
Fourier series (42) by its constant term W,. In the
coupled equations (52)—(54) we retain only W,, M,,
and M_,. Although we thereby omit some terms
of fairly low order in perturbation theory, the
three remaining equations include the more im-
portant parts of the interaction to all orders and
provide an approximation vastly superior to trun-
cating a poorly converging power series.

Neglecting the spatial modulation in our general
solution means first of all that we are neglecting
the reflection coefficients entirely. To calculate
the attenuation coefficients, we note from (57)
that W, will vanish if we set p, =0 for »+#0. Doing
this in (72) gives us C,= @A R,, the lowest-order
truncation of our continued fraction. We then find
from (73)

W, =Wfy/(1+aS} +a’Sy) » (123)

which, like (92), includes both Bennett holes. The
integrals (75) can be evaluated in the Doppler limit
by contour integration or partial fractions. The
poles are roots of a fourth-order polynomial.
Using the algebraic solution for a quartic,®® we can
express the result by the following sequence of
definitions:

A=2-sec®p+a+a’, (124)
R?=sec®)(secy+2a+2a’), (125)
e=(a-a')tany , (126)
A, =L(3RZ+A%)/2 (127)
Cm=[A(A? - 9R?) +27¢%] /216 , (128)
¢=cos™C,/A%) , (129)
U%=2A,,cos(3¢) ~3A , (130)
X2=U2%+A+¢/U, (131)
Y2=U%?+A-¢/U, (132)

s BlX+Y)(1-itany) *i UX = V)] [(1 +itany)? + U% + XY]
fa = XY[4U?+(X+ Y] : (133)

Here (124)—(126) define the coefficients of the
quartic y*+2A)% +4ey+R?2, (127)=(130) are the
trigonometric solution for the resolvent cubic as-
sociated with the quartic, and the roots of the

—

quartic are U+:X and -U=*7Y.

The solution (133) simplifies in the following
special cases. When the applied field is in exact
resonance with the atoms (tany =0), we have
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B =B(1+2a+ 2a’)t/2, (134)

The equality of the two attenuation coefficients
here is a property of the rate-equation approxi-
mation and is not true when reflections are includ-
ed. Note also that the power-series expansion of
(134) converges only when a+ a’<3, a more se-
vere restriction than that found in Sec. IV D. When
the two running waves are of equal amplitude («a
=a’), we have

[(1 +Ztany)® + R] (1 - itany)
}2[2(1% +_1\)]1/2

The imaginary part of the standing-wave suscep-
tibility obtained from (135) and (89) is the result
of Greenstein.®® When the applied field is off res-
onance much more than the homogeneous width
(tany > @), we have

B =B(1+20)72, gr=g,(1+2a’)?/2,  (136)

In this case the two running waves interact with
different velocity groups of atoms and are attenu-
ated independently as though the other wave were
not present [cf. (37)]. Finally when a’ goes to
zero we recover the solutions (37) and (116) of the
preceding part.

As an analytic solution, (124)—(133) are so com-
plex as to be useless, particularly since X and Y
may be undefined (U and € both vanish) for the
special cases tany=0 or a=a’. However, (124)-
(133) are readily evaluated by computer. As a func-
tion of detuning, the Doppler-limit attenuation

B =ho . (135)

4

T T T

HALFWIDTH tan W'I/Z

INTENSITY o

FIG. 1. Power broadening of dip in attenuation co-
efficients as a function of the dimensionless intensity a
of one running wave for various intensities o’ of the
oppositely running wave. Rate-equation approximation
in the Doppler limit.
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FIG. 2. Line shapes for real parts of Doppler-limit
attenuation coefficients in the rate-equation approxi-
mation. The shallow dip in the attemuation coefficient
Rep* for the stronger wave shows the line-splitting ef-
fect. The much deeper dip in the attenuation coefficient
RepB for the weaker wave is shown for comparison.
The intensities @ and a’ of the two running waves are
8 and 2, respectively.

coefficients are flat with a saturation dip at the
center. The depth of the dip is proportional to the
difference signal (96) evaluated at resonance:

S(tany=0) = a’B[(1+2a") /2= (1+2a+2a") /2] .
(137)

INTEGRAND
o

FIG. 3. Integrand for an effective attenuation coef-
ficient in the Doppler limit as a function of dimension-
less velocity y. The solid curve is the rate-equation
approximation; the dashed curve is truncation case A;
and the dotted curve is truncation case 1 (most accurate).
The intensities a and a’ of the two waves are both 2
and the detuning tan¥ is 2.
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The relative depth is greater if the backward-
wave intensity a’ is weak. The power broadening
of the dip, obtained numerically, is shown in Fig.
1. The width at half-height is not a monotonic
function of a and a’ as the perturbation result
(109) is, because of the changing depth and hence
changing level at which the width is measured.
For fixed detuning, the attenuation coefficients do
decrease monotonically as a or a’ is increased.

The shape of the saturation dip can be well fitted
by a Lorentzian in most cases. However, when «
is large and a’ appreciably smaller, the dip in 8}
splits. This effect arises solely from the nonlin-
earity of the overlap of the two Bennett holes in
(123). To treat it analytically we make a first-
order expansion in a’:

+ o=
Reﬁ:-é"- Sy (1 @Sy >dy

21/ 1+aSt\" T 1+aS?
= (B,/Q) (1 - a’K), (138)
where
K(a, tan¢)= (2Q2— Q+1)£‘2Q(Q- 1)£2 (139)

R*Q+1)

and £ was defined in (118). For large a the
Lorentzian S; is relatively narrow and can be en-
visioned as a 6 function reproducing the remainder
of the integrand. Equation (139) shows a dip that
splits when a exceeds (5+3V17)/16 =1.09, but
larger a values are required for a significant
effect. In the high-power limit we have K~ 2£
x(1- £)/Q, that is, the two components reach a
separation comparable to their width while their
amplitudes diminish. Figure 2 shows an example
of a split line shape for 8} at a high-power level.
For comparison the much deeper dip in g; is also
shown. However, when the attenuation coefficients
are multiplied by the powers in the respective
beams, the signal powers are more nearly com-
parable.

The validity of the rate-equation approximation
depends on the importance of the neglected co-
efficients p,. The p, are complex resonance func-
tions centered at y=0 with a width of the order of
the smaller of 7,, 7, divided by n. Their effect on
M,,() is to add an extra wiggle about y=0, but in
such a way that the changes in area tend to com-
pensate when the integration over y is performed
(see Fig. 3). This compensation is better when
the wiggle is narrower, so the approximation
should be good for either #, or », small. This
conclusion is reinforced by the contour-integration
method, in which we evaluate p_, at poles like
y =tany +iQ obtaining factors like 7, /(nQ+7,
—intany). In the approximate solutions(100)-(107)
and (120) the terms arising from p,, are those
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with factor #,, which is less than twice the smaller
of 7, and 7,. Also in (71) and (72) p, occurs multi-
plied by R,, which peaks at y=tany, so the product
is small for large detuning. Thus the rate-equa-
tion approximation is good in two cases: highly
unequal relaxation rates and large detuning. It is
also valid, of course, at low powers when the co-
efficient aX of p, is small.

G. Numerical Evaluation in the Doppler Limit

Better approximations than the preceding are
found by truncating the continued fraction further
out. This is equivalent to truncating the system
(52)—(54) or the Fourier series (41) and (42).
Physically we are neglecting the higher-order

)

SIGNAL AMPLITUDE S (UNITS OF B

POWER SERIES (0)
0 1 ! 1
0 1 2 3 4
INTENSITY o
0.4 T L T

=3

o

=)

POWER SERIES

SIGNAL AMPLITUDE S (UNITS OF 60)

(b)

INTENSITY o

FIG. 4. Signal amplitude at resonance in the Doppler
limit as a function of saturating beam intensity a for
the three lowest-order truncation cases and the second-
order power series. Probe beam intensities @’ are 0.1
for (a) and 1.0 for (b). In (a) case 1 practically coin-
cides with case A.
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FIG. 5. Power broadening of saturated absorption
signal as a function of saturating beam intensity a for
the three lowest-order truncation cases in the Doppler
limit. The straight line is the second-order power-
series result (109). Probe beam intensities a’ are 0.1
for (a) and 1.0 for (b).

multiphoton processes. The lowest-order nontriv-
ial truncation, which arises by setting p, equal to 0,
was discussed in Sec. IV G. The next lowest trun-
cation is Holt’s case A,?° in which we retain p, but
set F3=0.%" It is equivalent to retaining the vari-
ables W,, M,,, and W,, and is the simplest case
giving a value for the reflection coefficient. We
can obtain Holt’s cases B and C by setting F$ and
F}, respectively, equal to zero. We can also

form intermediate cases by setting p, or p, to zero.

We refer to these as cases 1 and 2, respectively
(case 0 would be the rate-equation approximation).
Fleck’s results [Ref. 63, Eq. (27)] correspond to
case 1 for stationary atoms. The reflection co-
efficient for small A (119) also corresponds to case
1 but changes very little in case A (drop F; from
S*,).

The higher-order truncation cases are too com-
plex to integrate analytically. To see what is in-
volved for numerical integration a representative
sample of the integrand for g8~ in the Doppler limit
is shown in Fig. 3 for the three lowest-order trun-
cation cases. The rate-equation approximation

| oo
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FIG. 6. Signal amplitude at resonance in the Doppler
limit as a function of probe beam intensity @’ for vari-
ous saturating beam intensities a.

gives a smooth peak centered at y=tany. Case A
has a superposed wiggle about y=0 arising from
b, and slightly shifting the peak. Case 1 has addi-
tional narrower wiggles about y =+ 3 tany arising
from R, and T,. The presence of these wiggles
requires a closer spacing of sample points for
numerical integration. On the other hand, the
difference in the area under a wiggle and under the
smooth curve of a lower-order truncation is small.
Thus when the curves shown in Fig. 3 are integrat-
ed, case A differs from the rate-equation approx-
imation by 1.6% and from case 1 by only 0.8%,
even though the integrand values differ by a factor
of 2 at y= - 1. Because of this compensation ef-
fect, noted by Holt,?® truncation of the Fourier
series is a much better approximation than one
would estimate from the convergence of the con-
tinued fraction. None of the calculations reported
here go beyond case B. Lower-order truncation
cases are satisfactory for small « values, large
detuning, or for A" when it differs appreciably
from B~

A computer program was developed to evaluate
the truncated continued fractions and then perform
the velocity integration to obtain the real parts of
B*. (The imaginary parts have not been studied
numerically.) The long Lorentzian tails of the
Doppler-limit integrand are split off and integrated
separately with respect to a reciprocal variable,
thus reducing the number of integrand points re-
quired. The accuracy goal was 0.5% maximum
error in 8*, which makes most values good to
0.1-0.2%.

In Fig. 4 we show the signal amplitude at reso-
nance as a function of a for the three lowest-order
truncation cases and the second-order power se-
ries. The latter is qualitatively wrong for a or
a’>0.2. The rate-equation approximation is qual-
itatively correct, but quantitatively high for a= 3.
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Case A is quite good for a up to 1 or 1.5 and fairly
goodat higher intensities. Case 1 is good for a up
to 3 or 4. Similar results are found for the line-
widths shown in Fig. 5. The rate-equation approx-
imation always gives a narrower line, as can be
seen even in the perturbation results (109)-(111)
by neglecting »,. Case A is quite good. As in Fig.
1 the increase in width for a< a’ comes because
we are then plotting the width of the shallower dip
in the attenuation of the stronger beam.

For a fixed ratio a’/a,the square of the 11new1dth
can often be well fitted by a linear function of
power, even though the deviations are systematic.
However, the extrapolation of such a fit to zero
power comes out greater than y,. Therefore,
using such a fit to remove power broadening from
experimental data is subject to error, usually only
a few percent, but as much as 25% error was found
by fitting data for a=a’ up to «=6. To match the
perturbation results (109)-(111), one might guess
that the half-width tany, ;,=(1+2ka+2k’a’)!/2, Al-
though excellent at low powers, this formual trends
high at high powers (7% at a=a’=1, 13% at a=a’
=4). The three-parameter fit ta.mp1 72=(1.05+
+1.50a +2.46a’)/2 although a bit high at low-power
levels, deviates from numerically calculated
widths by not more than 2% for a’ sa <1 or for o
up to 4 if @’<0.5. For larger a’<a, this formula
is high; for a’> a, it is low unless both a and o’
are small. To double the linewidth by power
broadening requires a values ranging from 0.75
for a’=a to 2.0 for small a’.

The line shape, although not exactly Lorentzian,
can be well fitted by a Lorentzian curve.®® Devi-
ations are less than 1% of the depth for a <1, in-
creasing to 2.5% at a=4. The line-splitting effect
for ' in the rate-equation approximation appears
to be masked by the inclusion of the reflection co-
efficient as no structure showed up in case B with
a as large as 16.

In Fig. 6 we show the signal amplitude at reso-
nance as a function of the strength a’ of the probe
beam. The slope of the curves at a’=0 is given
by (121) but decreases appreciably by the time a’
=0.1. The presence of a maximum in the curves
followed by a slow decline shows that probe beam
strengths should be no larger than necessary to
achieve appreciable saturation.

In the above numerical calculations we have
assumed equal relaxation rates 7, =7,=7, =1 to
bring out the effects of p,. As the relaxatlon rates
become unequal, 7, decreases and the results
approach those of the rate-equation approximation,
roughly in proportion to 7,. In Figs. 4 and 5 the
rate-equation approximation gives somewhat
larger signal amplitudes and narrower lines, sug-
gesting that unequal relaxations would be desirable
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experimentally. However, the comparison was
made for fixed @, while from (17), (24), and (25)
a varies with relaxation rates. Unequal relaxation
rates may also permit the line-splitting effect of
the rate-equation approximation to show up at
sufficiently high powers.

H. Inclusion of Doppler Width

When the Doppler profile factor e~ ™ is retained

in the integrands, all calculations must be done
numerically. The varying weight function distorts
the wiggles shown in Fig. 3 so that area compensa-
tion is not as good. Therefore higher truncation
cases are often required to maintain accuracy.
The tails of the integrand are cut off by the Gaus-
sian. As a function of a reciprocal variable, how-
ever, the tails have a more complex behavior and
require more points for numerical integration.

Figure 7 shows the complete line shapes Ref*
for a=1, a’=0.25, and =0.05. Note that Ref~
>Ref", exactly the opposite of the stationary atom
case. As 7 increases (assuming the other vari-
ables fixed®®), g decreases. The signal amplitude
and power broadening also decrease, but not
appreciably until 2 0.3. The dip in B* disappears
for large 71, although it may persist in 8~ by evolv-
ing into the reflection-created dip for stationary
atoms mentioned in Sec. IV A.

V. INTEGRATION OVER CELL LENGTH

Experimentally one does not measure the attenu-
ation coefficient directly, but the change in ampli-
tude of beams passing through finite lengths of
absorbing medium. To determine the change theo-
retically one must integrate the propagation equa-
tions (45) or the corresponding equations for the
dimensionless intensities

da da’

— = -2Ref"a, -—— =-2Ref o’ 140
52 Fa -5 6 (140)
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FIG. 7. Line shapes of attenuation coefficients for
beam intensities @ =1, a’ =0.25 and Doppler parameter
n=0.05. The upper curve is Ref~ and the lower curve is
Rep*.
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FIG. 8. Attenuation of two running waves traversing
a long absorption cell. The arrows indicate the direc-
tion of propagation of the beams. The Doppler parame-
ter 7 is 0.05 and the detuning tan¥ is 2.

For optically thin absorption cells we can con-
sider B* constant and obtain

[o(2)/a(0)] -1=e 2R B _1~ _2Ref*z  (141)

and a similar equation for a’. Therefore, opti-
cally thin cell measurements do approximately

2.0 . y .
1.5 4
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0.0 1l 1 1
0.0 0.2 0.4 0.6 0.8

OPTICAL DEPTH 28z

FIG. 9. Intensity variation of two running waves in a
high-gain laser. The arrows indicate the direction of
propagation of the beams, which are partially reflected
at the boundaries of the figure. The Doppler parameter
7 is 0.05 and the system is tuned to resonance.
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give the attenuation coefficients. For optically
thick cells the changing intensities will change the
attenuation coefficients and require that (140) be
integrated as coupled nonlinear differential equa-
tions.

For a single running wave in an amplifying me-
dium, the integration has been carried out by
Rigrod® and in greater numerical detail by
Bridges® for the limits of both homogeneous and
inhomogeneous broadening. The first to consider
the integration with two running waves were
Ostrovskii and Yakubovich,* who used expressions
equivalent to (50) and (51) for homogeneous broad-
ening and obtained an implicit analytic result.
Rigrod also considered two running waves,® but
used

Br=B"=R/(1+2a+2a’),

corresponding to homogeneous broadening at reso-
nance with no average over a wavelength. Karlov
and Konev®* integrated the Doppler-limit case far
off resonance for which the waves are independent
[see (136)] and Eqgs. (140) are uncoupled. We have
numerically integrated (140) in the general case
where the coefficients have Lamb-dip features and
must themselves be determined numerically as
described in Sec. IV. The variation of the attenu-
ation coefficients with @ and a’ is sufficiently slow
that numerical integration works well, even with
step sizes as large as 28,Az=0.4.

0.6 T T T T T
0.5} .
0.4 -
3
-
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0.1F e
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-20 0 +20
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FIG. 10. Saturated absorption line shape for laser
radiation traversing a medium and being reflected back
on itself. The upper curve is an assumed input laser
line shape and the lower curve is the output line shape
after attenuation. The peak input intensity @ is 0.5
occuring at a detuning tan¥ =3.08 relative to the ab-
sorber resonance. The ratio of laser to absorber
Doppler widths is 1.54, the Doppler parameter 7 is
0.05, and the optical depth 28yz is 1.2.
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In Fig. 8 we show a representative example of
the attenuation of a saturating beam incident from
the right and a weaker probe beam incident from
the left as they pass through an optically thick ab-
sorption cell. The net absorption is 63% for the
saturating beam and 76% for the probe beam, both
detuned somewhat from resonance. The difference
in absorption of the two beams is less at resonance
(cf. Fig. 7). For a very weak nonsaturating beam,
the absorption would be 86%. In Fig. 9 we show
the intensity variation of two running waves that
might occur within a high-gain laser oscillator
having a 95% mirror on the left and a 50% mirror
on the right. Such a system is not well described
by the standing-wave small-gain theory.

Two methods have been used experimentally to
obtain two oppositely running waves in an absorp-
tion cell external to the laser cavity. In the first
method,'%+17+18+20:95 the laser beam is sent through
the cell and relfected from a mirror back along
the same path. In the second method,'®*2** "7 the
laser beam is split into a strong (saturating) beam
and a weak (probe) beam, which are then directed
into opposite ends of the cell. Both methods cor-
respond mathematically to mixed-boundary con-
ditions for (140). To solve them numerically it is
necessary to guess the intensity of one (or both)
beams at one end. One then integrates both inten-
sities simultaneously to the other end and iterates
until satisfactory agreement with the boundary
conditions has been obtained. A semiempirical
formula for guessing the amplitude of the stronger
beam after traversing the cell has been developed
and permits solving the mixed-boundary-value
problem numerically with only two or three iter-
ations for optical depths 28,z up to about 4.6 (20
dB unsaturated attenuation).

In Fig. 10 we show a numerically generated line
shape corresponding to the first method of obser-
vation. The upper curve is the input line shape of
the laser source (here assumed to be a Gaussian
truncated at half-height) and the lower curve is the
output line shape after two passes through the cell.
The broad depression is the Doppler line of the
absorber,® while the small pip is the saturated
absorption signal or “inverted Lamb dip.” As the
optical depth increases, the output becomes
weaker, but the pip becomes a larger fraction of
the background.

In Fig. 11 we show part of a numerically gener-
ated line shape corresponding to the second meth-
od of observation. The intensities correspond to
those shown as a function of optical depth in Fig.
8. The upper curve shows the line shape of the
weaker probe beam after traversing the absorp-
tion cell in the presence of the saturating beam.
The dotted curve just beneath is the same line
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shape in the absence of the saturating beam. The
lower curve is the difference between the two
upper curves and can be the directly observed
signal. Its height is 48% of the background, its
width is broadened 30% by power, and it has 5%
asymmetry. The asymmetry is due to the assumed
form of the input laser line.

In Fig. 12 we show the probe beam intensity at
resonance as a function of optical depth. The input
intensities are held fixed. When the saturating
beam is present (upper curve) the probe beam is
attenuated less than when it is absent (lower
curve). The difference signal first increases to a
broad maximum about 28,21 (larger at higher
input powers) and then decreases as the beam
weakens in both cases. However, the ratio of the
difference signal to its background (lower curve)
increases monotonically.

The width of the signal line shape decreases
with optical depth, partly because the sides of the
line, being less saturated, are attenuated more
than the peak of the line, but mostly because of
reduced power broadening as the saturating beam
is attenuated. Figure 13 shows the power broad-
ening of the signal in the second method of obser-
vation for various optical depths, but with input
power assumed independent of detuning. For optic-

0.07 T T T —
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FIG. 11. Saturated absorption line shape for two
overlapping beams directed into opposite ends of an
absorption cell. The upper curve is the probe beam
intensity after traversing the cell in the presence of
the saturating beam, the dotted curve is the probe beam
intensity in the absence of the saturating beam, and the
lower curve is the difference between the two upper
curves. The maximum input intensities @ are 0.75 and
0.25 for the saturating and probe beams, respectively,
at a detuning tan¥ =2 relative to the absorber reso-
nance. The laser input line shapes (not shown) and
Doppler widths are the same as in Fig. 10. The opti-
cal depth 28)z is 2.
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FIG. 12. Probe beam intensity as a function of opti-
cal depth. The upper curve shows the attenuation in
the presence of the saturating beam, and the lower
curve in its absence. The difference between the
curves gives the saturated absorption signal amplitude.
Input intensities are fixed at @ =0.72 and @’ =0.25 for
the saturating and probe beams. Input frequencies
are on resonance and the Doppler limit (7=0) used.

ally thin cells the square of the linewidth is a
nearly linear function of power. For optical depths
about 28,2 =2 the linewidth itself is more nearly
linear. For large optical depths the slope of the
linewidth versus power curve is decreasing at
small and very large «, but may increase for
intermediate values such that saturation effectively
makes the medium no longer optically thick. In
any case, extrapolation of the linewidth to zero
power is unreliable unless data at very low powers
(very weak signals) are available.

VI. EXPERIMENTAL IMPLICATIONS

In the design of saturated absorption experi-
ments, whether for spectroscopy, line-broadening,
or frequency-stability studies, one would like to
maximize the signal while minimizing the power
broadening. These goals are somewhat incompat-
ible since we have found both signal and power
broadening increase with power. The best compro-
mise will depend on signal-to-noise considerations,
but is probably with the intensity parameter « of
the order of unity (moderate saturation). Com-
paring Figs. 4(a) and 5(a), for example, we find that
when « is increased from 0.25 to 1.0, the signal
amplitude increases 130% while power broadening
increases only 30%. However, when « is increased
from 1.0 to 4.0, the signal increases only an addi-
tional 45% with a corresponding 63% increase in

(=2
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FIG. 13. Power broadening of saturated absorption
signal in the Doppler limit for various optical depths
2Byz (indicated on the curves). The incident probe
beam intensity is fixed at one-tenth the incident satu-
rating beam intensity.

linewidth. But the dependence on power is slow
enough that power levels are not crucial.

The relative size of the saturation signal com-
pared to the background intensity detuned from the
saturation dip is increased both by observing the
signal on a weak probe beam and by using a long
absorption cell. Since power broadening is also
thereby reduced, these are desirable experimental
features, but should not be overdone. The absolute
signal intensity must be large enough to be readily
detected. The use of long cells may also present
alignment and mode-matching difficulties such
that geometric effects not considered in our anal-
ysis are important. For example, the signal
strength will vary with the overlap of two beams
of finite size, a problem studied by Kompanets and
Letokhov in a simplified model.”’

In studies involving pressure or lifetime broad-
ening, power broadening must be carefully re-
moved, preferably with data at low saturation
levels. Deviations of observed power broadening
from that predicted by our theory may be due
either to effects of transverse geometry or the
inapplicability of our relaxation model, for exam-
ple, if pressures are low enough that atoms tra-
verse a finite beam without collision.

ACKNOWLEDGMENT

The author wishes to thank Dr. F. R. Petersen
for discussions and demonstrations of saturated
absorption experiments.




8 SEMICLASSICAL THEORY OF SATURATED ABSORPTION IN ... 367

IC. H. Townes, Phys. Rev. 70, 665 (1946).

2R, Karplus and J. Schwinger, Phys. Rev. 73, 1020
(1948).

3H. S. Snyder and P. L. Richards, Phys. Rev. 73, 1178
(1948).

‘1. 1. Rabi, Phys. Rev. 51, 652 (1937).

5A. Abragam, The Principles of Nuclear Magnetism
(Clarendon, Oxford, England, 1961).

®A. Kastler, Phys. Today 20, No. 9, 34 (1967).

"For a good physical discussion of saturation in homo-
geneously broadened systems see A. Javan, Phys. Rev.
107 1579 (1957).

“SW. R. Bennett, Appl. Optics Suppl. 1, 24 (1962).

%S. G. Rautian and T. A. Germogenova, Opt. Spektrosk.

17, 157 (1964) [Opt. Spectrosc. 17, 85 (1964)].
W, E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

Up, H. Lee and M. L. Skolnick, Appl Phys. Lett. 10,
303 (1967).

12y, N. Lisitsyn and V. P. Chebotaev, Zh. Eksper. i
Teor. Fiz. 54, 419 (1968)[Sov. Phys. JETP 217, 227
(1968)] .

13C, Freed and A. Javan, Appl Phys. Lett. 17, 53
(1970).

147, Hénsch and P. Toschek IEEE J. Quantum Electron.
4, 467 (1968).

15p, Rabinowitz, R. Keller, and J. T. LaTourette, Appl.
Phys. Lett. 14, 376 (1969).

16C. Bordé, Compt. Rend. 271, 371 (1970).

1R, G. Brewer, M. J. Kelly, and A. Javan, Phys. Rev.
Lett. 23, 559 (1969).

18M. W. Goldberg and R. Yusek, Appl. Phys. Lett. 17,
349 (1970).

193, D. Knox and Y. H. Pao, Appl. Phys. Lett. 18, 360
(1971).

E. E. Uzgiris, J. L. Hall, and R. L. Barger, Phys.
Rev. Lett. 26, 289 (1971).

21M, D. Levenson and A. L. Schawlow, Phys. Rev. A 6,
10 (1972).

22T, Hinsch and P. Toschek, IEEE J. Quantum Electron.
5, 61 (1969).

23T, W. Hinsch, I S. Shahin, and A. L. Schawlow, Phys.

Rev. Lett. 27, 707 (1971).

R, L. Barger and J. L. Hall, Phys. Rev. Lett. 22, 4
(1969).

%5G. R. Hanes and K. M. Baird, Metrologia 5, 32 (1969).

%64, Hellwig, H. E. Bell, P. Kartaschoff, and J. C.
Bergquist, J. Appl. Phys. 43, 450 (1972).

?1s. Stenholm and W. E. Lamb, Jr., Phys. Rev. 181,
618 (1969).

%8B, J. Feldman and M. S. Feld, Phys. Rev. A 1, 1375
(1970).

%Y, K. Holt, Phys. Rev. A 2, 233 (1970).

M. S. Feld and A. Javan, Phys. Rev. 177, 540 (1969).

31B. J. Feldman and M. S. Feld, Phys. Rev. A 5, 899
(1972).

S2T. Hénsch and P. Toschek, Z. Physik 236, 213 (1970).
333, H. Shirley, Am J. Phys. 36, 949 (1968).

343, H. Shirley, Phys. Rev. 181, 600 (1969).
35Consideration of different polanzatlons also involves
treatment of level degeneracy and can be considerably
more complicated. See, for example, the theory of the
Zeeman laser by M. Sargent, W. E. Lamb, Jr., and
R. L. Fork [Phys. Rev. 164, 436 (1967)].

3¢H. Haken [in Handbuch der Physik, edited by
S. Fliigge (Springer, Berlin, 1970), Vol XXV] has pre-

viously used the 6 functions to introduce spatial depen-
dence, but did not consider velocity dependence.

3TA. N. Oraevskii, Radiotekhnika i Elektronika 4,

718 (1959) [Radio Eng. Electron 4, 228 (1959)].

%E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,
89 (1963).

89L. W. Davis, Proc. IEEE 51, 76 (1963).

#A. K. Popov, Zh. Eksper. i Teor. Fiz. 48, 1279 (1965)
[Sov. Phys. JETP 21, 856 (1965)].

4N. L. Balazs and I. Tobias, Phil. Trans. Roy. Soc.
London 264, 1 (1969).

©2E, G. Pestov and S. G. Rautian, Zh. Eksper. i Teor.
Fiz. 56, 902 (1969) [Sov. Phys. JETP 29, 488 (1969)].

$E.V. Baklanov and V. P. Chebotaev, Zh Eksper.

i Teor. Fiz. 60, 552 (1971) [Sov. Phys. JETP 33, 300
(1971)].

48, Haroche and F. Hartmann, Phys. Rev. A 6, 1280
(1972).

45, H. Shirley, Phys. Rev. 138, B979 (1965).

4B, L. Gyorffy, M. Borenstein, and W. E. Lamb, Jr.,
Phys. Rev. 169, 340 (1968).

41T, Kan and G. J. Wolga, IEEE J. Quantum Electron.
7, 141 (1971).

#%S. G. Rautian, Zh. Eksper. i Teor. Fiz. 51, 1176
(1966) [Sov. Phys. JETP 24, 788 (1967)].

49P. R. Berman and W. E. Lamb Jr., Phys. Rev. A 2,
2435 (1970); 4, 319 (1971).

%A. Iesevgi and W. E. Lamb, Jr., Phys. Rev. 185, 517
(1969).

1B, D. Fried and S. D. Conte, The Plasma Dispersion
Function—Hilbert Transform of the Gaussian (Academic,
New York, 1961).

52E. I. Gordon, A. D. White, and J. D. Rigden, in Pro-
ceedings of the Symposium on Optical Masers (Poly-
technic,Brooklyn, N. Y., 1963), p. 309.

5R. L. Carter and W. V. Smith, Phys. Rev. 73, 1053
(1948).

54The properties of a laser using Bragg reflection in-
stead of mirrors for optical feedback have been studied
[H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327
(1972)], but the possible origins of the assumed spatial
inhomogeneity were not discussed.

%5S. G. Rautian, in Nonlinear Optics, edited by D. V.
Skobel’tsyn (Consultants Bureau, New York, 1970),
p. 83; T. I. Kuznetsova, in Nonlinear Optics (Consul-
tants Bureau, New York, 1970), p. 118.

%S, G. Rautian and I. I. Sobelman, Zh. Eksper. i Teor.
Fiz. 41, 456 (1961) [Sov. Phys. JETP 14, 328 (1962)].
STB. Senitzky and S. Cutler, Microwave J. 7, 62
(1964).

58N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37
(1964).

9T, I. Kuznetsova and S. G. Rautian, Zh. Eksper. i Teor.
Fiz. 49, 1605 (1965) [Sov. Phys. JETP 22, 1098 (1966)] -
80S. E. Schwarz and T. Y. Tan, Appl. Phys. Lett. 10, 4
(1967).

81, V. Baklanov and V. P. Chebotaev, Zh. Eksper. i Teor.
Fiz. 61, 922 (1971) [Sov. Phys. JETP 34, 490 (1972)].
623, T. Scott, IEEE J. Quantum Electron. 4, 237 (1968).

833, A. Fleck, J. Appl. Phys. 39, 3318 (1968).

64The use of the Fourier expansion in gas-laser theory
is a concept apparently discovered independently by
several authors (Refs. 27 —29, 41, 62, 63), including
the present one.

85H. S. Wall, Analytic Theory of Continued Fractions



368 JON H. SHIRLEY 8

(Van Nostrand, New York, 1948).

®6H. Greenstein, Phys. Rev. 175, 438 (1968).

8TF. Aronowitz, J. Appl. Phys. 41, 2453 (1970).

8 F. Aronowitz, Phys. Rev. 139, A635 (1965).

89yu. L. Klimontovich, P. S. Landa, and E. G. Larion-
tsev, Zh. Eksper. i Teor. Fiz 52, 1616 (1967) [Sov.
Phys. JETP 25, 1076 (1967)].

C. Whitney, Phys. Rev. 181, 535 (1969).

"K. Takata, Japan J. Appl. Phys. 11, 699 (1972).

"2A. P. Kazantsev, S. G. Rautian, and G. I. Surdutovich,
Zh. Eksper. i Teor. Fiz. 54, 1409 (1968) [Sov. Phys.
JETP 27, 756 (1968)].

V. S. Letokhov, Zh. Eksper. i Teor. Fiz. 54, 1244
(1968) [Sov. Phys. JETP 27, 665 (1968)].

™y. S. Letokhov and B. D. Pavlik, Kvant. Elektron. 1,
53 (1971) [Sov. J. Quantum Electron. 1, 36 (1971)].

H. Greenstein, J. Appl. Phys. 43, 1732 (1972).

"E. M. Garmire and A. Yariv, IEEE J. Quantum Elec-
tron. 3, 222 (1967).

L. W. Davis, Phys. Rev. A 5, 2594 (1972).

8T, W. Hiansch, M. D. Levenson, and A. L. Schawlow,
Phys. Rev. Lett. 26, 946 (1971).

W. Culshaw, Phys. Rev. 164, 329 (1967).
80K. Uehara and K. Shimoda, Japan J. Appl. Phys. 4,
921 (1965).

81y, M. Tatarenkov, A. N. Titov, and A. V. Uspenskii,
Opt. Spektrosk. 28, 572 (1970) [Opt. Spectrosc. 28, 306
(1970)] .
82K. Shimoda and K. Uehara, Japan J. Appl. Phys. 10,
460 (1971).
8N. G. Basov, O. N. Kompanets, V. S. Letokhov, and
V. V. Nikitin, Zh. Eksper. i. Teor. Fiz. 59, 394 (1970)
[Sov. Phys. JETP 32, 214 (1971)].

84Recall, however, that we have assumed oA small in
the derivation of (120), and that the Doppler limit re-
quires the saturation broadening to remain small com-
pared to the Doppler width.

853, Autler and C. H. Townes, Phys. Rev. 100, 703
(1955).

88CRC Standard Mathematical Tables, 14th ed., edited
by S. M. Selby and B. Girling (The Chemical Rubber Co.,
Cleveland, 1964), p. 393.

87Note that this corresponds to setting R;=0 and T', =
(1-A) (F{ -AFY), i.e., retaining part of T\,.

8 The author is indebted to Dr. J. L. Hall for applying
his line-shape fitting program to some numerically gen-
erated data.

89 physically 7 cannot be changed without also changing
By or a, so it is important to specify which parameters
are varied and which are held fixed.

w. W. Rigrod, J. Appl. Phys. 34, 2602 (1963).

Slw. B. Bridges, IEEE J. Quantum Electron. 4, 820
(1968).

921.. A. Ostrovskii and E. I. Yakubovich, Zh. Eksper.

i Teor. Fiz. 46, 963 (1964) [Sov. Phys. JETP 19, 656
(1964)] .

%W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).

%N. V. Karlov and Yu. B. Konev, Radio Eng. and Elect.
Phys. 13, 491 (1968).

%F, Shimizu, Appl. Phys. Lett. 14, 378 (1969).

%The Doppler width of the laser is taken to be 1.54
times that of the absorber, corresponding to CO, laser
radiation absorbed by SiF, [ F. R. Petersen and B. L.
Danielson, Bull. Am. Phys. Soc. 15, 1324 (1970)].

90. N. Kompanets and V. S. Letokhov, Zh. Eksp. Teor.
Fiz. Pis’'ma Red. 14, 20 (1971)[JETP Lett. 14, 12 (1971)].

PHYSICAL REVIEW A

VOLUME 8, NUMBER 1

JULY 1973

Liquid-Aluminum Structure Factor by Neutron Diffraction*

J. M. Stallard
Naval Ordnance Laboratory, Silver Spring, Maryland 20910

C. M. Davis, Jr.T
American University, Washington, D.C. 20016
(Received 4 January 1973)

The structure factor S(Q) for liquid aluminum was measured at 703 and 1029 °C in the region
0< Q<15 A™" using neutron-diffraction techniques. A description of the experimental apparatus .
and procedure is presented, as well as the method of reducing the neutron intensity to the structure
factor. The results are compared with other simple liquid metals, and the electrical resistivity is calcu-
lated using the Ziman formulation. Excellent agreement is obtained between calculated and experi-
mentally observed resistivity, both in absolute value and in temperature dependence. This agreement
lends credence to both the measured structure factor and to the Ziman formulation for resistivity.

I. INTRODUCTION

Over the past decade highly successful statisti-
cal-mechanical approaches have been developed
for predicting the properties of liquified inert
gases.! Recently these techniques have been com-
bined with various model potentials and used to

calculate the thermodynamic and electrical prop-
erties of liquid metals.>*® In these calculations,
the concept of a radial distribution function g(»),
or its transform, the structure factor S(Q), and
their temperature dependences are used. Neutron
diffraction offers the most direct experimental
means for obtaining the above quantities,



