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A quantum lattice-gas model of adsorbed systems is studied to determine the importance
of quantum-mechanical processes upon order-disorder transition temperatures. The phase
diagram of systems mteractiag with nearest-neighbor attractive and repulsive potentials is
obtained within the Bethe-Peierls approximation. It is found that the transition temperature
depends, in order of increasing importance, upon particle statistics, quantum tunneling,
and the nearest-neighbor interaction strength. The results are applied to systems of heli-
um adsorbed on graphite.

INTRODUCTION

Recent heat-capacity studies of submonolayer
He and He' films adsorbed on graphite indicate
that near temperatures of 3 K and within a range
of densities, an order-disorder transition takes
place in the film. ' The ordered phase is thought
to be characterized by a superlattiee of adsorbed
atoms which is in registry with the triangular
array of adsorption sites provided by the graphite.
%'ithin this superlattice, there is one helium atom
for every three adsorption sites.

The usual approach to the problem of ealeulating

the order-disorder transition temperature of an
adsorbed system is to assume that the adsorbate
may be treated classically. VA'thin this approxi-
mation, the phase diagram depends upon the inter-
particle interaction and the particular array of
adsorption sites. With the further approximation
that the adsorbed atoms are well localized at the
adsorption sites, the system can be described by
a elassieal lattice gas for which numerous methods
for obtaining approximate, and sometimes exact,
solutions are known. ' The phase diagram for the
order-disorder transition of helium on graphite
has recently been calculated within this scheme. s
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The above approximations are probably adequate
over a wide range of densities, provided that the
adsorbate is one of the heavier noMe gases. How-
ever, for the case of adsorbed helium in which
quantum-mechanical effects are more likely to
be manifest, it is unclear a prior for what range
of densities, if any, these approximations are
adequate. A posteriori, the assumption that the
atoms are wel1, localized in adsorption sites is
most likely valid in the density range for which
the heat-capacity signals associated with order-
disorder phenomena are observed. ~ However,
even within this range, it is to be exyeeted that
a classical description will not be entirely ade-
quate and that quantum-mechanical tunneling from
site to site and effects of particle statistics will
be reflected in differences between the He' and
He' phase diagrams.

It is the purpose of this paper to examine anal-
ogous differences within a model of the simpler
system of atoms Rdso1bed onto R squRre array
of sites. In particular, we examine the relative
importance of the interparticle interactions, the
isotopic mass, and the particle statistics on the
order-disorder transition temperature of such
a system. This is accomplished using a quantum
lattice-gas model which is formulated in Sec. I.
It is shown in See. II that mean-fie1d theory is
inadequate to explicate the effects we seek. Vfe
therefore employ the Bethe-Peierls approximation.
The case of a nearest-neighbor attractive inter-
action is treated in this section and that of a
repulsive interaction in Sec. III. Qur results
are summarized in Sec. Vf and applied to the sys-
tems of helium adsorbed on graphite. There
results a qualitative explanation of the initially
surprising experimental result that the lighter
isotope orders at a higher temperature.

I. MODEL

%'e consider N atoms adsorbed on an area which
is divided into cells representing adsorption sites.
For convenience and clarity of the exposition,
we take a square array rather than the more
complicated triangular array appropriate for
graphite. The area of each ee11 is denoted d~.
The Hamiltonian of the system is taken to be the
first finite difference approximation to the usual
many-body Hamiltonian, so that

pair of sites in the substrate, and P, is the oper-
ator which annihilates a particle at the site i.
The cross terms in the kinetic-energy operator
permit the particles to tunnel from site to site.
In the potential-energy operator, an interaction
with an infinite hard core is assumed. The effects
of this hard-core interaction are incorporated
into the model by demanding that the operators
g„and pit obey fermion anticommutation relations
on the same site. This is of course equivalent
to restricting the eigenvalues of the number op-
erator n, = g, iji, to zero or 1 and permit:s us to
ignore the terms involving e« in the two-body
term of the above Hamiltonian. In addition, we
accommodate yartiele statistics by requiring that
all field operators commute on different sites
for bosons and anticommute for fermions. This,
together with the hard-core exclusion, alters the
usual boson relation to read

[$$y i/IJ ] (1 2 sf}5)J

lA 4y j= 24yki&-(g ~

As it is easily shown that the above operators
continue to satisfy the usual commutation rela, tion
with the total number operator,

kf~Z ~j kj —4i ~

the interpretation of g, and g, as destruction and
creation operators remains valid.

For a system of fermions with spin, the effect
of the hard core alters the usual anticommutation
relations between particles with different spin
projection. ' In view of the fact that the spin plays
no fundamental role in bringing about an order-
disorder txansition in our model, we shall avoid
this complication by considering a system of spin-
less fermions. In this case, the usual anticommu-
tation relations

(0& 4r} =&ig

prevent multiple occupation of any site and need
not be modified.

For convenience we include only those two-body
interactions between atoms on adjacent sites and
assign a magnitude g to the strength of the near-
est-neighbor interaction. Thus the Hamiltonian
considered is

+a Qt'gg4i4g4gA PEijtki~ H -pÃ= t Q (Pl( —icit)(gi $g)+ 'U Q nisy p Q sg ~

&gy. & f

where $ =—8 /2md', p is the chemical potential,
(ij ) denotes a sum over all nearest-neighbor We note here that the number g in the above
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model Hamiltonian should be considered as a .

matrix element of the two-particle interaction
taken between states localized on neighboring
sites. e It is therefore a functional of the inter-
paxticle potential and the particle mass. If v is
positive, it is known that the classical lattice gas
undergoes a transition to an ordered state in which
every other site tends to be occupied. At a given
density, the temperature of this transition scales
with v. It is to be expected that the effect of quan-
tum-mechanical tunneling will be to disorder the
system and therefore to lower the transition
temperature. A measure of the relative strengths
of the tunneling and interaction terms is the quan-
tity

y -=(/»» =}I*/2ned*»». (1.4)

If the interaction strength v is negative, the
classical system undergoes a first-order tran-
sition into two phases of different densities. At
the critical density, of course, the densities of
the two phases are the same and the transition is
of second order. Again it is to be expected that
the quantum-mechanical tunneling term will lower
the transition temperature. For completeness,
we consider below both attractive and repulsive
interactions.

Perhaps the simplest approximation that can
be applied to the Hamiltonian of Eq. (1.8) is that
of mean-field theory. In this approximation a
cluster of one particle is considered to interact
with the rest of the system via mean fields. The
Hamiltonian of the one-particle cluster is

ff» -~« =-25(kt»& 0»&+ &g,'&0»)+(45+»&s»& u)«-
(2.1)

where the angular brackets denote ensemble avex-
age. Because of the homogeneous nature of any
phase of the system, this average is independent
of the site index. We now observe that an exact
calculation of the ensemble average of g, must
vanish for a fermion system, as there is no off-
diagonal long-range order in the first reduced
density matrix of such a system. ' This average
also vanishes for a two-dimensional boson sys-
tem. ' Even if this were not the case, the aver-
age would be nonzero only if the Bose system ex-
hibited superfluidity, and this property is not of
concern to us. We therefore set &g»& to zero in

Eq. (2.1). It is then seen from this equation that
the kinetic energy makes no contribution to the
cluster Hamiltonian other than a trivial shift in
the chemical potential. We therefore recover the

1'=- 0 -&+ i»

and c and 5 denote center and edge sites, respec-
tively. It should be noted that there are no terms
in the above cluster Hamiltonian containing mean
fields which couple to the edge-site field opera-
tors themselves (i.e., terms like P Zzf~) The.
reason is that a nonvanishing self-consistent
field P would imply a nonvanishing value of ( g&,
which is contrary to the known exact results
cited above. Therefore we set such fields P to
zero ab initio.

The self-consistency conditions are that the
average occupation number of a center site and

edge site should each be equal to the average
density of the phase, liquid or gas, of the system,
as there is no physical distinction between such
sites. These conditions yield two equations, (2.6)
and (2.V) below, which relate the following four
quantities of the problem: the (dimensionless)
temperature (P»») ', chemical potential Pe, mean
field PV, and density n. The quantity P is (kT) '.
Upon specifying the density and temperature, the
two self-consistent equations may be solved for
the coupling field and chemical potential. The
free energy per site of the system and pressure
are then obtained from the relations

f(»», T) = J,
"i»(s', T) dn',

P(»»», T)d'= f(s, T)+ p(s, T-)»»

(2.4)

= Jo [e(s', T) + 2»]»f»»'»- [e(»», T)+ 2»»] N,

(2.5)

where Eqs. (2.8) and (2.4) have been used.

results of mean-field theory applied to a classical
system and learn nothing of the quantum-mechan-
ical effects. It is necessary then to turn to an

approximation in which the effects of tunneling
and statistics are included, such as the Bethe-
Peierls approximation. e'

In this scheme, we consider a cluster consis-
ting of a "center" site and its four nearest neigh-
bors. All terms in the total Hamiltonian which
connect operators acting on sites within the clus-
ter are treated exactly. Those terms which couple
the cluster to the rest of the system are replaced
by mean fields which are calculated self-consis-
tently. Denoting the mean field which couples
the edge sites of the cluster to the rest of the sys-
tem by p, the Hamiltonian of the cluster becomes

ff„-VN., =«. hg-(4.'4~+4~4. &+(». ~Kn»;

(2 2)

where
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In order to calculate the average occupation
number of the center site or of an edge site, the
cluster partition function is required or, equiv-
alently, the eigenvalues of the cluster Hamil-
tonian, Eq. (2.2). As the cluster consists of a
center site and four nearest neighbors, and each
site can be occupied or empty, there are 2' basis
states for the cluster. It is instructive to consider
the form of the Hamiltonian matrix in the occu-
pation-number representation. The diagonal ele-.
ments are, apart from a shift in the chemical
potential, the classical energies of the various
configurations of the cluster. Because of the
tunneling terms in the cluster Hamiltonian, there
are off-diagonal elements of magnitude $. For
a boson system, these terms are all negative,
which stems from the fact that operators on dif-
ferent sites commute. For a fermion system,
the off-diagonal terms are positive or negative
as operators on different sites anticommute. It
is therefore clear from the form of the Hamil-
tonian matrix that the effects of tunneling and
statistics have been included in the Bethe-Peierls
approximation.

The computation of the eigenvalues of the clus-
ter Hamiltonian is simplified because the Hamil-

() InQ(Ps, t)v, t)V)
()(Ps)

(2.6)

1 () lnQ(Ps, Pv, PV)
4 ()(t)v)

(2.'I)

We have solved these two equations for a given
temperature (Pv) ' for the complete range of den-
sities zero to unity and obtained the chemical
potential as a function of temperature and density.
Thermodynamic instability of the system is sig-
naled when the isothermal compressibility

tonian of Eq. (2.2} conserves the number of parti-
cles in the cluster. Therefore the 32 x 32 matrix
is block diagonal with submatrices of dimension-
ality 1, 5, 10, 10, 5, and 1 corresponding to
states of the cluster with 0, 1, 2, 3, 4, and 5

particles, respectively. The eigenvalues are now
found in a straightforward manner. They are
listed in Table I for both sets of statistics.

Having obtained the eigenvalues and therefore
the cluster partition function Q(Ps, tiv, PV}, we
can now calculate the average occupation numbers
of the center and edge sites, ( n, } and ( sz }, and
set them equal to the average density of the phase
n. This yields the equations

TABLE I. Eigenvalues of cluster Hamiltonian. R~(l, m, s P) =))(s+Iv -mV)ega(s+Iv+eV)t+Pi2]i t.

Fermions

Degeneracy Hoot

Bosons

Degeneracy

-3V

E' +V —V

a+2(v -V)
&+3' -V)
&+4(v -V)
R+ (0, 1, 1, 16)

R (0, 1, 1, 16)

R+(1, 3, 1, 16)

R (1,3, 1, 16)

R+(2, 5, 1, 16)

R (2, 5, 1, 16)

R+(3, 7, 1, 16)

R-(3, 7, 1, 16)

(1)

(3)

(3)

(1)

(1)

(3)

(3)

(1)

(1)

(1)

(3)

(3)

(3)

(3)

(1)

(1)

a+2(v -V)
e+3f -V)
&+4' -V)
R (2, 5, 1, 8)

R (2, 5, 1, 8)

R+ (1, 3, 1, 8)

R (1, 3, 1, 8)

R+ (2, 5, 1, 24)

R (2, 5, 1, 24)

R+(1, 3, 1, 24)

R (1, 3, 1, 24)

R+(0, 1, 1, 16)

R (0, 1, 1, 16)

R'(3, 7, 1, 16)

R (3, 7, 1, 16)

(1)

(3)

(2)

(2)

(3)

(1)

(3)

(3)

(3)

(3)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)
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sp(n, T)/sn becomes negative. The densities of
the two phases coexisting in equilibrium can be
found by a Maxwell construction in the chemical-
potential-density plane. Rather than employ this
construction, we have determined the phase dia-
gram by exploiting the symmetry of the cluster
Hamiltonian under the transformation g~ = g~. Un-
der this transformation n, = 1-g, and n - 1 —n for
both fermions and bosons because of the hard-core
constraint. The cluster Hamiltonian itself be-
comes

e., yN. , =-(a+4-v)N. +k(4+4++4 g.)
+ (V - v+ vn )Q ng+ e+ 4(v —V},

where the upper (lower) sign is for fermions (bo-
sons}. By comparing with the original cluster
Hamiltonian of Eq. (2.2), we see that this trans-
formation could also be accomplished by making
the following replacements in Eq. (2.2):

g-4v, $ gg, V -V+v,

and shifting all energies by 4v+& -4V. It there-
fore follows that for a given temperature

e (1—n, T)= c(n, -T)-4v,

V(1 -n, T) =-V(n, T)+ v.
Equivalently, the functions e (n, T) + 2v and V (n, T)
--,'v are odd functions of n--,' and therefore vanish
at a density n of —,'. The former of these two re-
lations together with Eq. (2.5) for the pressure
implies that the phase diagram is symmetric about
the density —,

' and that everywhere on the phase
boundary

s'InQ(pe, pv, pV) 1 s'InQ(pe, pv, pV}
s (p&) s (pV) 4 s (pV)

0.7

I I I I I I I I I

/=0

That Eq. (2.8} is satisfied everywhere on the phase
boundary is completely analogous to the vanishing
of the magnetic field on the phase boundary of a
ferromagnet.

Solutions of Eqs. (2.6)-(2.8) are shown in Fig. 1
for values of y equal to 0.0, 0.2, and 0.4. The
expression for the phase boundary for the case
of y equals zero is simply the classical result'

kT/~ v
~
=(21n[(x'- I}/(x' —x) ]j ',

x=—[n/(1 —n)] v'.

The difference between the phase diagram for
Bose and Fermi systems is imperceptible on the
scale of Fig. 1.

At a density of —,', Eqs. (2.6)-(2.8) are not suf-
ficient to determine the transition temperature.
The reason is that at this density, Eq. (2.8) is
satisfied at all temperatures. (The analogous
statement for ferromagnets is that for zero mag-
netization, the magnetic field vanishes at all tem-
peratures. ) A limiting procedure is therefore
employed. Equations (2.6) and (2.V) are expanded
about a density of —,

' and subtracted. Because the
transition temperature is a maximum at this den-
sity and Eq. (2.8) is satisfied at all temperatures
there, the resulting equation takes the particular-
ly simple form

e (n, T)+2v=0,

or, from Eq. (2.3},

p, (n, T) =4g+2v. (2 8)

0.6

0.5

This is most easily seen by considering the dif-
ference in pressures of two phases of density n„
and n„which, from Eq. (2.5), is

[p (n„T) -p (n„T) ] d' = f„[e(n', T}+ 2v] dn'

—[~(n„T)+ 2v] n,

+ [e(n„r)+ 2v]n, .

As e (n, T) + 2v is an odd function of n ——'„ the pres-
sure of the two phases will be equal if n, and n,
are symmetric about n of —,

' and Eq. (2.8) is sat-
isfied. In addition, that equation implies that the
chemical potentials of the two phases are equal.
Thus the two phases are in fact in equilibrium.

04
I-

0.3

0.2

O.I—

I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DENSITY

FIG. 1. Phase diagram for the case of attractive near-
est-neighbor interactions.
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This equation together with the fact that V =
~3 and

& =-2g at density —, is sufficient to determine the
maximum transition temperature. A series expan-
sion for the maximum transition temperature as
a function of y for small y can be obtained by ex-
panding the cluster partition function in y~ and em-
ploying the above procedure. We obtain the x esult

6 inq" (P~, 8v, Pvs }
BPe

1 6 ln q" (pe, pv, pV')
4 ePV'

(3.2)

(3.3)

ber of the two sublattices. From Eq. (8.1) the
self-consistency conditions can be written in the
form

r„(y, v) /T„(o, v}=1 —ay'- by'-ey'+ ~ ~ ~,

where

T„(O,v)=(v(/2in2, a=1.32, b=l «.
6 ines ( pe, pv, pV" )

BP&

1 6 inq'(p~, pv, pV")

(8.4)

(3.5)
for bosons and fermions. The effect of statistics
first occurs in the y term. It is found that the
coefficient c is of order unity for both cases but
is slightly larger for bosons. Thus, for equal
masses and interaction strengths, the boson tran-
sition temperature is slightly lower than that of
fermions. That the effect of particle statistics
first occurs in order y within the Bethe-Peierls
approximation is to be contrasted with the expecta-
tion that the difference in exchange effects will
first appear in order y within perturbation the-
ory jl

IH. REPULSIVE INTERACTIONS

Because the repulsive nearest-neighbor inter-
action tends to cause the atoms to form an ordered
array in which alternating sites are preferentially
occupied, we further subdivide the area of adsorp-
tion into two interpenetrating sublattices of A and
B sites in which A. sites have B neighbors and vice
versa. The cluster Hamiltonian of a cluster with
an A center site is similar to that of Eq. (2.2).
It is given by

~nA ] qAT

+ (~."-V') g s&. (3.1}

A similar expression for a cluster with a 8 center
site is obtained from the above by interchanging
A and B superscripts. The eigenvalues of the
cluster Hamiltonian are obtained from Tab1.e I
by affixing the appropriate superscript to V. The
coupling fields V" and V~ are calculated self-con-
sistently by requiring that the average cell occu-
pation density n of an A. site be the same, irre-
spective of whether it is viewed as the center of
an 3, cluster or the edge side of the B cluster, and
similarly for the occupation n~ of a B site. Instead
of the variables n" and n we use as independent
variables the density n= —,'(n" +s ) and the order
parameter q =n~ —ns. This parameter is a mea-
sure of the difference in average occupation num-

This set of four nonlinear equations relates the
six variables of the problem Pe, Pv, PV", P V~,

n, and q. At any temperature and density this
set of equations admits a solution such that the
order parameter vanishes and the two coupling
fields are equal, corresponding to the disordered
phase. In this phase, the chemical potential, and
therefore the free energy, can be found by solving
the two equations obtained from Eqs. (8.2)-(3.5)
when q is set equal to zero and V„ to V~. For all
temperatures and densities, the disordered phase
is found to be stable.

Within a restricted region of the temperature-
density plane, the self-consistency equations allow
a solution with a nonvanishing order parameter
and unequal mean fields corresponding to an or-
dered phase. As in the classical case, it is found
that this phase is stable and that its free energy is
always lower than that of the disordered phase.
The boundary of this phase is a line of second-
order transitions on which the order parameter
goes continuously to zero and the two mean fields
are equal.

To determine this phase boundary, we expand
Eqs. (3.2)-(8.5) about the values g = 0 and V~ =Vs
and seek a solution for which the mean fields are
infinitesimally different from one another. This
yields the equation

6'in@ (pe, pv, pV) 1 6'in@ (p&, pv, pV)
B(Pe)8 (PV) 4 6 (PV)

(8.6)

which is true on the boundary itself. This equa-
tion, in addition to the self-consistency conditions
which reduce to two equations on the phase bound-
ary, is sufficient to determine the line of second-
order transitions. The result of this calculation
for fermions is shown in Fig. 2 for values of y
equal to 0.0, 0.1, and 0.3. %hen y is set to zero,
we recover the classical result'2

ar/v =-(in[(4s-1)(3-4n)/16s(1-s)]k-'.
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earlier, the parameter v is a functional of the
particle mass, so that it mill take different values
in the two systems which me denote by v, and v4.
%'e assume for convenience that 5v= v, —v4 is much
less than v= v, = v, . From Eqs. (3.7) and (3.8) we
find

5T„(y, v ) /T„(0,v) = 5v/v —a'5y'+ ...,
or

5T„(y, v) /T„(0, v) =(1+ 2s'y) 5v/v+ 2a'y 5m /m,

(4.1)

mhere the definition of y

y =-8'/2md'v

has been used. Note that if the interaction
strengths were equal so that 5v = 0, the lighter
mass would have a lower transition temperature.
This is what one might expect, as the lighter mass
tunnels more easily and is therefore harder to
order. However, 5v will not vanish in general.
Recall that v is the matrix element of the inter-
particle potential between wave functions which
are localized at adjacent sites. The mave functions
of the less massive particle will be somewhat less
localized within a site than those of the heavier
particles. This will be reflected in differing val-
ues of v, and v~. %hether Ov is positive or neg-
ative depends on the interparticle potential and
the array of adsorption sites.

It is now seen that the difference in ordering
temperatures of two isotopes has been related,
via the quantum lattice gas, to two different man-
ifestations of the kinetic energy corresponding to
motion between cells and motion mithin a cell.
The former effect appears explicitly in the tunnel-
ing term of the model Hamiltonian, contributes to
the disorder of the system, and causes the dif-
ference in transition temperatures to vary direct-
ly with the difference in mass. The latter effect
appears implicitly in the parameter v(m ) of the
model, does not contribute to the disorder of the
system, and causes the difference in transition
temperatures to vary with the mass difference in
a manner dependent upon the interpartiele inter-
action and the array of adsorption sites. %'e now
apply these results to the system of helium ad-
sorbed on graphite. We expect that Eq. (4.1) re-
mains valid for the system with .coefficients g'
which are appropriate to a triangular lattice. It
is reasonable to assume that these coefficients
will be of order unity as they are for the square
array. To proceed further me need the distance
d between the center of adsorption sites, which is
2.46 L for graphite, and the matrix elements
v, (m, ) and v4(m, ). Because the helium inter-

particle potential is strongly repulsive at 2.46 A
and has a positive second derivative there, it is
to be expected that v3 and v4 will both be large
and positive, with v, somewhat larger. In the cal-
culation of these matrix elements it is clearly
necessary to use a potential which is reasonably
accurate in the repulsive region. The Beck poten-
tial, "whose form in this region is taken from
theoretical calculations" of the helium interatomic
potential, was chosen for this reason. Gaussian
single-particle mave functions were assumed. The
width of the Gaussian was taken as that value
which, in the Hartree approximation„minimizes
the energy of a two-dimensional system of helium
atoms at a density corresponding to one particle
per graphite site. Effects of the substrate poten-
tial are not included in the calculation of the width.
Clearly the matrix elements calculated this way
are not simply the interaction energy between two
isolated atoms on adjacent sites but contain many-
partiele effects as well. However, we believe that
it is entirely adequate for the qualitative under-
standing we seek.

The value of the matrix elements calculated by
the above procedure are"

v, /0 =70.9 K, v, /0 =66.3 K.

As expected, 5v =v, —v, is positive. The corre-
sponding values of y =g /2md2v are

y =0.019, y =0.015.
With such small values of y, it can be immedi-

ately concluded that effects of particle statistics
can be completely ignored. Further, mith g' as-
sumed to be of order unity, it is seen from Eq.
(4.1) that the major contribution to 5T/ T arises
from the term 5v/v, which reflects the fact that,
for small y, the transition temperature scales
with v. This circumstance is most fortunate be-
cause it permits a far greater confidence to be
placed in the result for 5T /T, which is indepen-
dent of the particular sealing factor obtained by
the Bethe-Peierls approximation, than in the re-
sults for 5T or T which depend on this factor.

If g' is taken to be unity, Eq. (4.1) yields

5T / T= 0.082 .
This is to be compared with the experimental re-
sult"

The calculated fractional change is of the correct
order of magnitude. Closer agreement is not ex-
pected, owing to the uncertainties associated with
the calculation of v noted above. Most gratifying
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is the fact that the calculated fractional change has
the correct sign; that is, the calculation yields a
higher ordering temperature for He' than for He .

To summarize, the occurrence of a higher or-
dering temperature for He' can be understood as
follows. Because the relative strength of the tun-
neling term is so small, the transition tempera-
ture of the adsorbed system essentially scales
with the nearest-neighbor-interaction strength
as in a classical system. The major quantum-

mechanical effect is to cause this strength to be
greater for He', as the less localized wave func-
tions of the lighter atoms give greater weight to
the repulsive part of the interatomic potential.
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A three-dimensional theory for the resonant interaction of electromagnetic waves with a gas of two-level

atoms is formulated in terms of macroscopic variables. The theory is utilized to find the steady-state

attenuation of a plane wave in the presence of another plane wave running in the opposite direction with

different amplitude. Contributions are included from the reflection of the oppositely running wave by an

induced standing-wave inhomogeneity in the population inversion of the medium. The resulting attenuation

and reflection coefficients are expressed as velocity integrals of continued fractions. Correspondence is made

with existing gas-laser theories, yielding the formulation of a high-intensity ring-laser theory. Analytic

approximations for the coefficients are presented for the Doppler-limit cases of both waves weak, one wave

weak, and negligible reflection (rate-equation approximation). More-general cases have been calculated

numerically. The attenuation coefficients exhibit a Lamb-dip feature. The relative depth of the dip increases

rapidly with power at low saturation levels, slowly at high saturation, and is greater in the attenuation of
the weaker wave. The width of the dip is nonlinearly power broadened. The shape of the dip is very nearly

Lorentzian, except for one special case at high power in which the line splits. The propagation equations for
the two waves are integrated over long absorption paths. A large resulting attenuation increases the relative

size of the dip while decreasing the power broadening.

I. INTRODUCTION

Saturated absorption, or the nonlinear absorp-
tion of electromagnetic radiation at high power
levels, was first observed in gases by microwave
spectroscopy. ' As the incident power was in-
creased, the percent absorption decreased and the

width of the absorption line increased. A theo-
retical explanation of these effects was given by
Karplus and Schwinger' and independently by
Snyder and Richards. ' Actually such effects first
appeared in the so-called Rabi transition prob-
ability long used by workers in atomic and mo-
lecular beam resonance spectroscopy. Similar


