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Energy Loss of Charged Particles in a Plasma
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Formulas for the stopping power of a nonrelativistic ionized gas for electrons, protons, and other

structureless charged particles are derived. The primary velocities considered extend from values comparable

to those of the plasma electrons up to values in the relativistic range. New results are obtained for the lower

primary velocities, in that full account is taken of the effect of the initial velocity distribution of the plasma

electrons on binary collisions as well as on collective excitations. Formulas for the case of non-n. gligible

damping of plasma oscillations are given and comparisons are made with the impact-parameter method and

with particle kinetic theories.

I. INTRODUCTION

The energy loss of charged particles is of inter-
est in several laboratory' and stellar' plasmas.
Among the various possible beam-plasma interac-
tions only the linear ones are encountered when

the primary beam has a sufficiently low intensity.
%8 shall confine ourselves to one aspect of this
linear interaction, the stopping power of the

plasma.
The theory of stopping by inelastic collisions

with atoms has been established already for four
decades. "4 Its generalization to condensed mater-
ials was reviewed by Pano, ' chiefly experimental
reviewse are due to Raether and Powell, and a
more x'ecent extensive tabulation of tile stopping
power of various elements and chemical com-
pounds is due to Pages et a/. ' Many theoretical
papers' ~ have also appeared on the energy loss
in ionized gas and on the energy loss due to the
"free" electron plasma in a metal. The latter two

subjects are closely related to one another in
many respects. A subdivision can be made be-
tween two different approaches of the problem,
the high-energy theox'ies' ~ in which the test par-
ticle is taken much faster than the target elec-
trons, and the particle kinetic theories" ~ in

which the test particle may have about the same
energy and/or velocity as the target electrons.
The high-energy case is almost fully understood
and the final formulas obtained with various tech-
niques' "either agree with each other ox differ
from one another only in minor aspects. In the
particle kinetic theories one or more approxima-
tions are usually made. Pines and Bohm'~" have
studied the collective excitations in dense plasmas
for sufficiently large primary velocities (see Sec.
V). We shall study this intermediate region using
the microscopic high-energy theory, described in
detail by Pano' for atoms and condensed material,
as a starting point for the analysis. The applica-

tion of this theory to ionized gases is briefly sum-
marized in Sec. II. In Secs. ID and IV, stopping-
power formulas are derived for smaller primary
velocities. The effect of thermal motion of the
plasma electrons on binary as well as on the col-
lective excitations is fully accounted for, which is
not done in the high-energy theories. The general-
ization to lower primary velocities is of interest,
for example, to describe the interaction between

plasma electrons, in particular between those of
the tail of the velocity distribution and all other
electrons. In Sec. V, some further comparisons
are made between the various methods used so far
and the results obtained for the stopping power.

H. HIGH-VELOCITY FORMULAS

In this section we first deal with incident parti-
cles of charge ze and mass M, whexe M & m, m

being the electron rest mass. Next the formulas
for incident electrons axe given, which differ from
those for unlike primary particles with M = m. It
is assumed that free electrons, atoms (molecules)
and ions contribute separately to the stopping. The
conditions for which this assumption is justified
are discussed at the end of this section. Unless
otherwise specified, cgs units are used.

A. Free Electrons

Energy losses to "free" electrons can be charac-
terized by the spectrum of discrete and continuum

energy transfers E„and momentum transfers q.
Alternatively, one can make use of the variable Q
instead of q, where

and e is the velocity of light in vacuum. As in Ref.
5, it is convenient to make a subdivision between
(i) high-Q excitations, (ii) intermediate-Q excita-
tions, and (iii) low-Q excitations. In each of the
three Q ranges, different well-established theoret-
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ical approximations can be used to obtain the con-
tributions to the stopping power.

In the tugh-Q range, Q ~ Q, where Q, is taken
much larger than the mutual interaction energies
between the electrons in the nonrelativistic plasma;
more precisely, Q, »I, , where I, is the average
excitation energy of the plasma electrons, as de-
fined by Eq. (6). Consequently, the contribution of
high-Q excitations to the stopping power, the ener-
gy loss per unit path length, is determined by bi-
nary collisions" of the incident particle with indivi-
dual electrons and is given by'

dE, , 2ww'e' Q,2m*v'
ln

ds ' mv' ' I,'

] l

lnI, =, f &u Im —,Inffa&dru,
ÃMp 0 E'~ tu)

where &u~ = (4wn, e'/m)1/* is the plasma frequency.
When Eq. (4) is substituted in (6) we find

lnI, = (I'/2&u)[lnhtu~/sin8+ (3 w —8)/cos8],

8= g al'ccos(l —I /2(up) . (6)
where m*=mM/(m+M), the reduced mass of the
bvo interacting particles, may be replaced by m
for M»m, the case considered in Ref. 5, Eq. (SV).
In Eq. (2), v is the velocity of the primary parti-
cle, n, is the free-electron density, and P = v/c.
Equation (2) accounts for the longitudinal as well
as the transverse excitations. Spin effects, which
are important only when the energy of the primary
particle becomes comparable to (M/m)Mc', are
not included.

In the intenned1'ate grange, Q-, «Q «Q, . In ad-
dition to Q, »I„ the upper limit is chosen such
that simultaneously Q2«2mc2 and Q2«&M@2. The
latter limitation justifies the use of the first Born
approximation. The lower limit is chosen such
that (i) @1&&I~ alld (il) q1»Iq/2mv Condit1o. ns
(i) and (ii) can be fulfilled simultaneously, be-
cause 2mv'»I, . Condition (ii) implies first that
all significant excitations ean take place for Q ~ Q„
as followers from energy and momentum conserva-
tion, and second that the interactions of primary
particle with the plasma electrons can be de-
scribed by an unshielded Coulomb potential. It is
only for Q «I,'/2mv', that the shielding becomes
effective. For the latter bvo reasons, and be-
cause the first Born approximation is valid, one
can directly use Eq. (36) of Ref. 5 for an electron
gas; hence

cK 2ww'e'——(Q «Q«Q)= n In —a.
ds 2 ~g2 + q

In the $oso-Q range, Q ~ Q, and the electron gas
has to be regarded as a continuous medium. In this
case one has to use Eqs. (45) and (47) of Ref. 5,
which represent the longitudinal and transverse
low-Q excitations, respectively. %hen the dielee-
trie function of the electron gas is given by'~ "~

In the limit of smaQ damping, I"-0, sin8- I'/2&@~,

and

When Eq. (4) is used again, the contribution of the
transverse low-Q excitations to dE/ds i-s equal
to zero in both limiting cases F-0 and P-O.

The total stopping power is then given by the
sum of Eqs. (2), (2), and (5):

ds me2

(10)

+ 1 [ I (I PR)1/Q] 3

T=mc'[(I-P') '"-1]being the kinetic energy of
the primary electron.

8. Atoms and Ions

The contribution of atoms and ions in the plasma
to the (electronic) stopping is given by'

The theory of stopping of electrons differs only
in minor aspects from the theory of stopping of un-
like particles. The two interacting electrons are
indistinguishable from each other, which neecessi-
tates the inclusion of exchange and interference
terms in the cross-section formulas. Also, the
upper integration limit of the high-Q range changes.
These aspects are treated in more detail in Sec.
III. By analogy with the known theories~ ~ for
atoms, we can directly give -dE/ds for an elec-
tron gas. The result is

e, (1u) = I —1u,'/(tu'+11" tu), (4)

where I' is the damping constant, Eq. (45) of Ref.
5 can be solved exactly. The general formulas

dE 4ww'e' 2m+v'
ds mv'

/ I/(I p')

for unlike particles with charge se, and by~

(12)
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dZ 2me4 tPl5 T
Qng ln

2( 2)
+ 1 p

—[2(1—P')'"+ P'] ln2

+ -'[1 —(1 —p')"']' (l8)

for incident electrons, where nf is the product of
the number density of atoms or ions of type j times
the number of electrons in this atom or ion. The
summation extends over aQ different, including
excited, atoms or ions, If is defined by

InIq =Q f„q InE„, (14)

where f„& gives the optical oscillator strength dis-
tribution and the summation sign stands for a sum-
mation over all discrete and an integration over
the continuum energy transfers. Equation (9) is
obtained also by substituting f„)= 5(E„-k(uv) in Eq.
(14), as corresponds to free electrons with one
possible (plasma) oscillation frequency arv and
negligible damping.

The total stopping power is obtained by adding
Eqs. (10) and (12), or (11)and (13).

C. Separation of Electrons, Atoms, and Iong

Im[-I/e((u)] = 1m[a, (ru)]/Ie((o) I'

+g 1m[a, ((o)]/Ie((u}I'. (18)

For all tenuous plasmas and also for most high-
pressure plasmas, e.g. , discharges at atmospher-
ic pressure, S~~ «1 eV, For ground-state atoms
or ions and also for many lower excited atoms and
ions, all excitation energies E„=S'm„ lie above 1
eV and &u„»&uv. From the structure of Eqs. (4)
and (16)-(18) it then follows that the first term
on the right-hand side of Eq. (18) only contributes
to lnr for S~«1 eV, and that the second term only
contributes to lnI for Se&1 eV. For S'v&1 eV, the
denominator Ie(&u)I' can be replaced by Ie,(&o)I', be-
cause e~(&u}«l for these small values of ~. For
I'u» 1 eV, e, (&u) is extremely close to unity and,
because y is very small, one may replace Ie(&u)I'
in the second term on the right-hand side of Eq.
(18) by Il+~, (~) I'.

For these reasons, all constituents of the plas-
ma contribute separately to the stopping power
for Sm~«1 eV, and

nlnI=n, lnI, +Qn~ Inl~. (19)

So fax we have dealt separately with the elec-
trons, atoms, and ions. From the derivation giv-
en here and in Ref. 5 it follows that the general
formulas for the high- and intermediate-Q contri-
butions to -dE/ds are obtained by simply replac-
ing n, in Eqs. (2) and (3) by the total electron den-
sity n=n, +g~nI. In the low-Q range, n, and I, in
Eq. (5) have to be replaced by n and I, where

~, =(4vne'/m)'" and e(~) is the total dielectric
function of the plasma. Similarly, the e(v) in Eq.
(47) of Ref. 5 then represents the total dielectric
function. When the density and temperature of the
plasma are not so large as to appreciably affect
the spectrum of energy levels of the atoms and
iona, Ruv«1 eV, and e(&u) may be separated info
contributions from the different constituents of
the plasma,

e( &u) = e,(&o)+pe~(&o) .
f

Here E ((d) is given by (4) and

4me2
e ((o)= n ~nf

2 2 g
g tl

(18)

where S+„=E„and y is a very small damping con-
stant. Using Im[ —I/x]= IxI 'Imx, one finds

HI. EXTRAPOLATION TO LONER
VELOCITIES, v(~ze / K

For nonrelativistic velocities of the primary
particles, the limit P'-0 may be taken, which re-
sults in a simplification of the preceding formulas.
For still smaller primary velocities additional
complications arise. For a "free" electron gas
these complications can be well defined, and ade-
quate solutions can be given, which is the purpose
of this and the following section.

The standard procedure used so far for the high-
Q range is to neglect the motion of the plasma
electrons. Hence, (v,') is taken equal to zero, v,
being the thermal plasma electron velocity, and

is taken equal to E„. For unlike interacting par-
ticles, 2m@ is thus taken equal to (2m*v)'.
When u' is not much larger than (e,') the effects
of recoil and initial motion of the plasma elec-
trons must be accounted for. In the high-Q, the
binary-collision, range we first derive the sepa-
rate contributions to dE/ds of the -plasma elec-
trons with one velocity e„and next integrate over
the speed distribution of these electrons. The
plasma electrons are assumed to have an isotropic
velocity distribution.

A. Unlike Interacting Particles

For unlike primary particles scattered by elec-
t:rons with velocity e, and an isotropic angular dis-
tribution, the double differential cross section per



ENERGY LOSS OF CHARGED PARTICLES IN A PLASMA

d'e = (4wz'e'/v'v, q') dqdE, (20}

where E„is replaced by 8 and q is used instead of
Q =q'/2m. From energy and momentum conserva-
tion it follows that

q /2m - v~q ««E ««q /2m +v~ q (21)

-q'/2M —vq «E «vq —q'/2M .
These limits are more general than those of Ref.
25, in that the possibility of negative E values,
superelastic collisions, is included. If me multi-
ply Eq. (20) by E and integrate with respect to E
between the limits given by (21) and (22), we find

unit E and per unit Q range is given by Eq. (6-3-29)
of Ref. 25. In the present notation,

In the lee-Q range some modifications are also
required. Fano's formula for this range applies
only for v,/v- 0. To find the correction terms
for the low-Q range, we make use of some rela-
tions given by Pines and Bohm. " The first one,
Eq. (23) of Ref. 14, is the dispersion relation for
collective harmonic undamped oscillations of the
plasma electrons,

I =(4we'/m)P((o-Q v, /I) ', (28)

vrhere v~ is the velocity of the jth plasma electron
and &u and j/g are the angular frequency and wave
vector of the plasma oscillation, respectively.
For small q, the denominator in (28) may be ex-
panded in a series of powers of ll ~ v~/h&u. The re-
sult is

d( dE/ds-) = (4wz*e'/m v'q)dq (23)
(@&u)' = (S(o,)'+ q'(v*,) + O(q'& v,'&/(h(o, )'}. (29)

for v ~ v, and q «2m*(v —v,),

d(-dE/ds)= (2wz'e4/v'v, )[(v'- v,')/q'+(v, /m- v/M)/q

+ (1/4M' —1/4m')] dq (24)

for 2m*~v -v, [ «q «2m*(v+v, ), and

d(-dE/ds) = -(4wz'e'/Mvv, q)dq

for v «v, and q «2m*(v, —v). When q in Eg. (23)
ls replaced by Q, and (23) is integrated with re-
spect to Q, one finds again that the intermediate-
and high-Q ranges join smoothly provided q,
=(2m@,)"'«2m*(v-v, ). Before, we have re-
quired that Q, be much smaller than I,. For an
ionized gas I, itself is orders of magnitude smaller
than the mean thermal energy of the plasma elec-
trons. Therefore, Egs. (23) and (24) can still be
used, in addition to the low-Q formula, to compute

dE/ds when -v is only slightly larger than v, .
For v ~ v, +q,/2m*, Eqs. (23) and (24) yield

ln ' + (26)
Mv, v —v, M

In Eq. (26) we still have to average over the veloc-
ity distribution of the plasma electrons. Because
Eq. (N) applies for v, «v —q, /2m~, accurate re-
sults are obtained only vrhen the majority of the
plasma electrons have velocities v, & v. In this
ease it is convenient to expand Eq. (26} first in
powers of v, /v, and next to average over the speed
distx ibution. The result is

(31)
which is equivalent to Eq. (51) of Ref. 14. In the
integration over the low-Q range, Fano has used
the q given by the first term of Eq. (30). When

damping of the plasma oscillations is neglected,
this corresponds to q' =(I~~)'/v, whose relation
must be compared with the first term of Eg. (31}.
For v'» &Pj the two limits are identical with each
other. In the extrapolation to lower primary veloc-
ities, we suggest that the combination of Eqs. (30)
and (31),

q'. =(h(u)'/(v' —(v',)) (32)

should preferably be used to compute dE/ds for
Q «Q, . This new lower integration limit leads to
the correct results both for v'»&Q and non-neg-
ligible damping of collective oscillations, as for
much smaller values of v and negligible damping,

0. Vfe have to impose two further restrictions,

(33)

for all relevant excitation energies, and

q'. «3(@(u~)*/&v*,&. (34)

The latter restriction, Eq. (13) of Ref. 14, is
equivalent to (q /K)*«Xvw, for an electron gas
with an isotropic Maxwellian velocity distribution.
Here, X~ is the Debye length defined by

Prom energy and momentum conservation of the
primary particle it follows that the minimum mo-
mentum transfer is given by

q = (0'&o/v)[1+K&v/2 Mv'+ O((h &a/M v')')]. (30)

For R&o«2Mv', Eqs. (29) and (30) yield

q ~ = (e~,)'/(v' —&v.'&) + O((g~p)'&v,'&/(v' —&v,'&)'),

Sg v~ Xv =AT, /4ws, e' =&v,&/3(o~w (35)
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and k is Boltzmann's constant. In Sec. II we have
taken Q, such that

I,*/v*«2mQ, =q*,«2mI, . (36}

For I,=Std~«m(Q, as is the case for ionized gas-
es, Eqs. (31)-(36) can simultaneously be com-
plied with when v» 4(v',)/3.

For v'» 4(v',)/3 we thus find, using Fano's pro-
cedure for the low-Q range with the more accurate
lower integration limit (32),

and target electrons with zero kinetic energy, it
is not possible after the collision to tell which of
the two is the primary one. The convention is to
put the label primary on the faster of the two. Con-
sequently, E =-,'mv' and, because Q=E, Q

If we adopt the same convention when the
target electrons have a kinetic energy ~zv„ the
one with kinetic energy exceeding —,'m(v'+ v,')
should, for v& v„be labeled the primary one,
QIld

dE 2vz'e'
1

2mQ, (v' —(Q) E & ~(v' —v', ). (40)

+0((v',)/v } . (37}

The total stopping power for unlike incident parti-
cles is given by the sum of Eqs. (27) and (37},

dE 4vz*e' 2m*(v' —(v*.)}

( .')
Mv v

Equation (38) should replace Eq. (10) for small
nonrelativistic values of v& v 2ze'/K. For incident
protons and other heavy particles, M»m, and the
small terms containing m/M are comparable in
magnitude with those of the nuclear stopping,
which have not been included in the analysis.

Equation (40) leads to some arbitrariness when
v approaches v, . In particular, for v=v, only
negative energy transfers would be allowed. How-
ever, in this limit each of the two electrons can
be the primary one. To remove this arbitrariness,
Eq. (40) can be replaced by ~E~ ~ —,'m(v' —v',}. The
formulas resulting for v'& 3v', are lengthy and un-
attractive for practical applications, also because
one further integration over the velocity distribu-
tion of the plasma electrons has to be made.
Therefore, we confine ourselves to values of v'
~ 3v„where the combination of Eqs. (21), (22),
and (40} also ensures

~
E

~
- —,'m (v' —v',}.

If we multiply the direct term of Eq. (39) by E
and integrate with respect to E between the limits
given by (21), (22), and (40), we obtain

B. Primary Electrons
for

d( dE/ds) =-(4we'/m v'q)dq (41)

The preceding high-Q formulas, with M =m and
z' =1, do not apply for primary electrons. The
two interacting electrons in a binary collision are
indistinguishable from each other and Eq. (6-3-30)
of Ref. 25 is to be used. In the present notation,

4ve' 1 v'+ v', —q'/2m' —2E'/q*
v'v, q' m'( v* —v,' —2E/m ('

4
m'q'

~

v* —v', —2E/m (

where 4 is a function" of v, v„q, and E, whose
value lies between zero for v and v, «e'/II, and
unity for v and/or v, » e'/S. In Eq. (39}we have
assumed that the plasma electrons have an iso-
tropic spin orientation. Equations (21) and (22)
with M replaced by m, also apply for primary
electrons. The procedure described for unlike
particles can be used to obtain dE/ds for Q&-Q,
from Eq. (39). We use this procedure, however,
only for the first (the direct} term on the right-
hand side of Eq (39}. The .contributions from the
second (exchange) and third (interference) terms
are obtained more conveniently by reversing the
order of the E and q integrations.

For primary electrons with kinetic energy ~2v'

q ~m[(v'+v', }/2]"' mv„—

d(-dE/ds) = (2we'/v'v, )[m'(v —v', }/16q'

—(1/2m —v, /q) ]dq (42)

for

[(mv' v,'+)/2]'" mv, q-~&m[(v'+ )/v2]"' +m.v

A subsequent integration with respect to q leads to

1 8

The contribution of the exchange and interfer-
ence terms in Eq. (39) to -dE/ds is obtained by
first integrating with respect to q and next multi-
plying by E and integrating with respect to E from

v, up to —,'m(v' —v,'). The result is

dE ~me 2v,' ~v' ~v, 2v'
1++ '++2~++2~4 —(1+4 ') In +

41
V

(44)
The sum of Eqs. (43) and (44) can be expanded in
powers of (v, /v)*, averaged over the electron ve-
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locity distribution and added to the low-Q contribu-
tion to -dE/ds, which for primary electrons is
also given by Eq. (3V). We find

dE 2ve
I

m (v ~& +1 —(I+4') In2
ds mv' ' 2I,'

find

dE 4wz'e 2m*(zv' —&P)" (v —(v,))'"
~ g, ln

ds mv I

where 4' is unity for v» e'/g. Equation (45)
should be used in place of Eq. (11) for small non-
relativistic velocities of the primary electrons.

IV. PRIMARY VELOCITIES v&~ze /k

q =W2(zez/g. v)(k(u/v), (46)

which implies that the reaction time of the atomic
electrons I/&o must be larger than the duration of
the collision. Equation (46) applies directly to an
electron gas, where collisions which last longer
than the rearrangement time of the electron gas,
the "shielding time, " do not lead to energy loss of
the primary particle. Equation (46) is more re-
strictive than Eq. (30) when v& v 2 ze'/II and should
be used in this region. Therefore, the combina-
tion of Eqs. (29) and (30), Eq. (32) is to be re-
placed by the corresponding combination of Eqs.
(29) and (46),

q' = (IIa))'/(zv —(v,')), (4V)

where z = (gv/zze')' —Instead o.f Eq. (38) we then

In Sec. II we have dealt with primary velocities
v» zez/g and simultaneously v» (v',)"'. In Sec. III
we have made an extrapolation to values of v
& v 2zez/II. Here we consider still smaller val-
ues of v, for which the preceding analysis is no
longer completely valid. Firstly, as explained in
detail by Williams, "the Born approximation is
valid only for v» ze'/h. In Sec. II, the Born ap-
proximation was used for the low- and intermedi-
ate-Q ranges. In Sec. III, the exact binary cross-
section formulas were used in the intermediate-
and high-Q ranges. These formulas are certainly
valid for v& &2ze'/II and also for v& &2ze'/g. In
the low-Q range, the momentum transfers are
small compared with the momentum of the pri-
mary particle and the relevant energy transfers
5&v=k'&oe are small compared with —,'mv'. For this
reason one should not expect to find significant
deviations from the Born approximation. How-
ever, one further condition for validity of the Born
approximation is that the collision be sudden. For
stopping of heavy particles by atoms this leads to
the classical limit of the Bohr theory, ~ '"

For primary electrons we find in place of Eq. (45)

dE 2 we' m'(zv' —&tP)}(v' —(v',))
ds mv 2I

—(1+4') ln2+(-', —4') ' +O, (v,) (v,)

(49)
where 4' =0 for v«e'/II.

Equation (46) is not an exact and unquestionable
limit, in contrast to Eq. (30) which is a direct con-
sequence of energy and momentum conservation.
For this reason, Eqs. (48} and (49) are not of the
same accuracy as Eqs. (10), (11), (38), and (45).
If Eq. (4V} is combined with Eq. (34) one finds
v'» 4(v,')/3z which is more restrictive than the
corresponding limitation v'» 4(v,)/3 of Sec. III.

A similar argumentation as described so far in
this section applies to particle kinetic theories of
plasmas, where" ~ quantum theories are used
when the thermal deBroglie wavelength %=II/
(2mkT, )"z is greater than the classical distance
of closest approach 5, = e'/kT„which is the case
when (v,')'" & e'/O'. Classical theories are used
when X& „khe cne for (v',)"'& e'/II.

V. COMPARISON WITH PREVIOUS WORK

The present relativistic formulas (10}and (11)
agree with those obtained by Tsytovich" and
Gould. " The corresponding relations obtained
with the impact-parameter method' (see also Refs.
9, 12, and 26) are slightly different in that they
contain an additional factor 1.123 in the argument
of the logarithmic term. For this reason, me dis-
cuss the impact-parameter method in some detail.

A distinction is to be made between the classical
and the semiclassical impact-parameter method.
In both cases it is assumed that the primary par-
ticle moves along a well-defined rectilinear orbit.
In the first case, corresponding to Sec. IV, the
interaction with the target is also described with
classical mechanics, as is done for example in
Ref. 26. In the second case, corresponding to Secs.
II and III, quantum mechanics is used to describe
the interaction with the target. The concept of a
mell-defined rectilinear orbit is valid when the im-
pact parameters very much exceed the deBroglie
wavelength of the primary particle. This condition
is always fulfilled for heavy primary particles,
M»m, and v'&(v', ). For primary electrons the
concept of a well-defined rectilinear orbit is valid
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only in the low- and intermediate-Q ranges for
large values of v. Therefore, one should prefer
to use the impact-parameter method only for heavy
incident particles. The impact parameters 5 can
be subdivided into a large-5 range, where collec-
tive excitations are described by a macroscopic
theory, a small-$ range, where excitations are
described as binary collisions with individual plas-
ma electrons, and an intermediate-5 range where
collective as well as binary collisions can take
place. In contrast to the situation encountered
when Q or q is used as a variable, we cannot make
use of a sum rule' for the intermediate 5 excita-
tions, because none exists. This results in a
small ambiguity in piecing together the contribu-
tion to -dE/ds of the three 5 ranges. This am-
biguity is responsible for the additional factor
1.123 in the argument of the logarithm.

Particle kinetj. c theories have been used~ 2 to
obtain dE/ds -for charged test particles with
smaller primary velocities. In the standard der-
ivations of the Boltzmann and Fokker-Planck equa-
tions use is made of cutoffs for large and small
impact parameters and the resulting formulas are
not directly comparable with our formulas. How-

ever, Eqs. (7-140a) and (7-140b) of Ref. 22 can be
compared with Eq. (48) when (v',) in the latter for-
mula is taken equal to zero. In that case the for-
mulas agree with one another except for a con-
stant in the logarithmic term, which is equal to
1.781 in Eq. (7-140b) and is equal to W2 in Eq. (48).
The results of Sec. IV are strictly comparable on-

ly with solutions of the classical Lenard-Balescu
equation, in which proper aeeount must be taken
of the indistinguishability of alike interacting par-
ticles. The results of Sec. III should be compared
with solutions of the quantum Lenard-Baleseu
equation. To our knowledge, a solution of the
Lenard-Balescu equation which is fully compa-
rable in accuracy with the present results hes not
yet been given. One of the more. advanced attempts
is due to Lampe' who claims to have solved the
quantum Lenard-Baleseu equation. The basic
cross-section formula, Eq. (10) of Ref. 18, only
contains a direct scattering term, while for alike
interacting particles it should also contain ex-
change and interference terms. Equation (7) of
Ref. 13 does not agree with our formulas with

(v,) =0 and I - 0. It should be noticed, however,
that the Lenard-Balescu equation has a more ac-
curate dielectric function e(q, &u) than the one used
here, Eq. (4), which includes only static damping.

Finally, we should refer to Pines and Bohm"
and Pines, "who have made a detailed study of,
among other things, the influence of the speed dis-
tribution of the plasma electrons on the collective
excitations. For hen~«m(Q, Eq. (48) of Ref. 15

is identical with the present low-Q formula (37).
Pines and Bohm have not considered the high-Q
range in any detail, and have not studied the piec-
ing together of low- and high-Q ranges. Their
final formula for -dZ/ds, Eq. (51) of Ref. 15,
still contains a minimum cut-off impact param-
eter and is not directly comparable with our re-
sults. Equation (48) of Ref. 15 is valid only for
e& &2ze3/g although this restriction was not made.

VI. CONCLUDING REMARKS

The final formulas of this paper, Eqs. (10), (38),
and (48) for the energy loss of unlike primary par-
ticles to the plasma electrons, and Eqs. (11), (45),
and (49) for primary electrons, have a wider
range of validity than the formulas available so
far from literature, in that in the low- and high-Q
ranges proper account is taken of the velocity dis-
tribution of the plasma electrons. From practical
point of view, our results do not differ very much
from those available already, because the argu-
ments of the logarithmic terms are very large for
I,=8+~«1 eV. Therefore, errors in this term or
approximations like I' = 0 and (v',) =0 have a small
effect on -dZ/ds, which effect is typically of the
order of a few percent for n, = 10" cm ', hence
N~~=3. 7x10 ' eV. The corrections are of greater
importance when pg„and therefore also I„be-
comes larger. It is therefore of interest that the
present high-Q formulas are valid also for dense
ylasmas as long as v is large enough to make a
distinction between high-, intermediate-, and
low-Q ranges possible. Furthermore, the veloc-
ity distribution of the target electrons must be
isotropic.

~ The present formulas do not apply for thermal
primary velocities. In that case it is not possible
to make a clear distinction between low-, inter-
mediate-, and high-Q ranges, the expansions in
terms of v, /u are not useful anymore, and the ap-
proximate dispersion relation (29) is not valid'9

for too large values of q.
The aeeuracy of the method is intermediate be-

tween that of the cut-off Fokker-Planek equation
and that of the Lenard-Balescu equation, although
complete solutions of this latter equation are not
yet available. The accuracy of the present formu-
las is limited by (i) the use of an approximate di-
electric function, (ii) the expansion in terms of
v, /v, and for primary electrons by (iii) the approx-
imations used for the function 4 encountered in the
interference term.

ACKNOWLEDGMENT

The author wishes to thank Dr. Y. Itikawa for
some valuable comments on the original manu-

script of this paper.



'J. E. Drummond, P/asma Physics (McGraw-Hill, New York,
1961},pp. 1-32; D. Gabor, E. A. Ash, and D. Dracott, Nature
(Lond. ) 176, 916 (1955); I. Langmuir, Phys. Rev. N, 585 (1925);
H. Boersch, J. Geiger, and M. Topschowsky, in Abstracts of the
Sixth International Conference on the Physics of Electronic and
Atomic Collisions (MIT, Cambridge, Mass. , 1969),p. 263; I Kla-
van, D. M. Cox, H. H. Brown, and B.Bederson, Phys. Rev. Lett.
28, 1254 (1972); P. D. Goldan and W. M. Leavens, Phys. Fluids
13, 433 (1970); R. S. Harp, A. B. Cannara, F. W. Crawford, and
G. S. Kino, Rev. Sci. Instrum. 36, 960 (1965).

P. Morrison, S. Olbert, and B. Rossi, Phys, Rev. 94, 440 (1954);
R. J. Gould and G. R. Burbridge, in Handbuch der Physik
(Springer-Verlag, Berlin, 1967), Vol. 46-2, p. 265.

'H. A. Bethe, in Handbuch der Physik (Springer-Verlag, Berlin,
1933), Vol. 24, p. 273.

H. A. Bethe and J. Ashkin, in Experirnenia/ Nuclear Physics,
edited by E. Segrb (%iley, New York, 1953),Vol. 1, p. 166.

'U. Fano, Annu. Rev. Nucl. Sci. 13, 1 (1963).
H. Raether, Springer Tracts Mod. Phys. 38, 84 (1965);
C. J.Powell, in Nethods of Experirnenta/ Physics, edited by
L. Marton, B. Bederson, and %. L. Fite (Academic, New
York, 1968), Vol. 7B, p. 275.
L. Pages, E. Bertel, H. Joffre and L Sklavenitis, At. Data 4, 1

(1972).
S. Hayakawa and K. Kitao, Prog. Theor. Phys. 16, 131 (1956);
Prog. Theor. Phys. 16, 139 (1956).

J. Neufeld and R. H. Ritchie, Phys. Rev. 98, 1632 (1955).
'~A. I. Larkin, Zh. Eksp. Teor. Fix. 37, 264 (1959) I'Sov.

Phys, -JETP 10, 186 (1960)].

"V. N. Tsytovich, Zh. Eksp. Teor. Fiz. 42, 803 (1962) [Sov.
Phys. -JETP 15, 561 (1962)].

"J.D. Jackson, Classica/ E/ectrodynarnics (Wiley, New York,
1962), pp. 429-463.

' R. J. Gould, Physica {Utr.) 58, 379 (1972};Physica (Utr. )
60, 145 (1972).

' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
'5D. Pines, Phys. Rev. 92, 626 (1953).
'6D. Pines, E/ernentary Excitationsin Solids (Benjamin, New

York, 1963).
' U. Fano, Phys. Rev. 103, 1202 (1956).
"M. Lampe, Phys. Fluids 13, 2578 {1970).
'9R. H. Williams and H. E. de Witt, Phys. Fluids 12, 2326 (1969).' R. Landshoff, Phys. Rev. '76, 904 (1949); M. R. C. McDowell,

Phys. Fluids 4, 1332 (1961)~

'D. C. Montgomery and D. A. Tidman, P/asrna Einetic Theory
(McGraw-Hill, New York, 1964), pp. 84, 93.

'I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski, The
Particle Einetics of P/asmas {Addison-Wesley, Reading, Mass. ,
1966), pp. 242—312, and references herein.

"F.Perkins, Phys. Fluids 8, 1361 (1965).
"Y. Itikawa and O. Aono, Phys. Fluids 9, 1259 (1966).

L. Vriens, in Case Studies in Atomic Collision Physics 1, edited by
E. %. McDaniel and M, R. C. McDowell (North-Holland,
Amsterdam, 1969), p. 335.' H. A. Kramers, Physica (Utr. ) 13, 401 (1947).

'M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
'SE. J. Williams, Rev. Mod. Phys. 1'7, 217 (1945}.' N. G. van Kampen, Physica (Utr. ) 21, 949 (1955).

PHYSICA L RE VIEW A VOLUME 8, NUMBER 1
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A quantum lattice-gas model of adsorbed systems is studied to determine the importance
of quantum-mechanical processes upon order-disorder transition temperatures. The phase
diagram of systems mteractiag with nearest-neighbor attractive and repulsive potentials is
obtained within the Bethe-Peierls approximation. It is found that the transition temperature
depends, in order of increasing importance, upon particle statistics, quantum tunneling,
and the nearest-neighbor interaction strength. The results are applied to systems of heli-
um adsorbed on graphite.

INTRODUCTION

Recent heat-capacity studies of submonolayer
He and He' films adsorbed on graphite indicate
that near temperatures of 3 K and within a range
of densities, an order-disorder transition takes
place in the film. ' The ordered phase is thought
to be characterized by a superlattiee of adsorbed
atoms which is in registry with the triangular
array of adsorption sites provided by the graphite.
%'ithin this superlattice, there is one helium atom
for every three adsorption sites.

The usual approach to the problem of ealeulating

the order-disorder transition temperature of an
adsorbed system is to assume that the adsorbate
may be treated classically. VA'thin this approxi-
mation, the phase diagram depends upon the inter-
particle interaction and the particular array of
adsorption sites. With the further approximation
that the adsorbed atoms are well localized at the
adsorption sites, the system can be described by
a elassieal lattice gas for which numerous methods
for obtaining approximate, and sometimes exact,
solutions are known. ' The phase diagram for the
order-disorder transition of helium on graphite
has recently been calculated within this scheme. s


