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It is shown that the multiple scattering of fast charged particles does not depend significantly on the
sign of the charge at energies & 1 MeV, at least for scatterers of low atomic number.

I. INTRODUCTION

The multiple scattering (ms) of fast charged
particles passing through matter has already been
studied extensively. ' 4 However, the exact depen-
dence of ms on the sign of the charge of the par-
ticle has not yet been fully understood. The inter-
esting experiments of Strong and Roy, ' who studied
2650 electron and 188V positron tracks in nitrogen
by cloud-chamber technique may be mentioned in
this connection. They obtained a mean difference
of (3.4 + 2.6)% between the angles of ms for par-
ticles with opposite charges. The theory of
Moliere, ' which explains qualitatively most of the
experimental results, does not predict any differ-
ence at all. Following the method of Nigam,
Sundaresan, and Wu, ' Reed' calculated the differ-
ence pertaining to the experiments of Strong and
Roy and obtained a mean difference of 0.8~, in
marginal agreement with the experiments. How-
ever, the accuracy of this method is open to ques-
tion, since it fails to explain the experimental re-
sults when Thomas-Fermi (TF) potential is as-
sumed for the scatterer, even of high-Z values.
As an alternative, we calculated' ' the ms distri-
bution function, making use of the distorted-wave
Born approximation for the single-scattering
cross section. ' The results were in good agree-
ment with the experimental results of Hanson et al.o

In this note, we shall use the same method to
study the dependence of ms on the sign of the
charge 6(=+1). It may be mentioned that the effect
is small, and we are calculating it by a method
which itself is based on two approximations. The
approximation we made in calculating the single-
scattering cross section' is slightly better than
the second Born approximation. There is also the
small-angle approximation, which is typical of
the theory of ms. Whether one expects any sig-
nificant 5 dependence within the accuracy of the
above two approximations, is the question we
shall attempt to answer here. The conclusions
drawn will, however, be of general validity.

II. CHARGE DEPENDENCE OF THE
SCREENING ANGLE

One interesting aspect of Moliere's theory is the
fact that the entire dependence of the ms distri-
bution function on the single-scattering cross sec-
tion enters through a single parameter, the screen-
ing angle 0 . The situation in our case is slightly
more complex, there being another quantity X.
The screening angle nevertheless plays a major
role. It will, therefore, be useful to first de-
termine the dependence of 0 on 6. We follow the
method developed earlier' and obtain the following
expression for 0 for an electron beam:

A, lng =A, lngo+e~' ' ~ a g ' ' ~ ~ k)in& -2H, e g
-1 in '(~ /e)
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where we have assumed Moliere's representation
of the TF potential for the scatterer, viz. ,

8, =1/pr„g, = b, e, . (3)

V(r) = (a'/r)g a, e ~" '0
k=&

(2)

with c' = aZ, the momentum P and the energy &

being measured in units of mc and mc', respec-
tively. Also

The quantity A is given by

6)2 2 0 io'(e /P)
A =e~' '~~ Re g P a~a, ,~ . ~ ' (4)
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The function a, (x) is Euler's dilogarithm defined
by
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* ln(1 —y)a, (x) =- dg ~

0

Our definition of g is

A. lng =- —,A. —lim dg-A, lng, , 6
s q(8)

e- 0

whereas Moliere's 8„ is given by Eg. (6) with
A. =1. Noting that
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We can simplify the expression (1), viz. ,
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III. RESULTS

As a check on our arguments, we have made a
model calculation for g and g for a particle mo-
mentumP =1 and Z=V.05. The Euler dilogarithms
a, (x) have been evaluated by an IBM 1620 com-
puter, and the calculated results are

A. lng =A. lng, +0.0743,

zing =Zing, +0.0726.

These may be compared with the first Born approx-
imation results

lng~ = 1,n go+ 0.0793

and that of Moliere,

lng~ = lngo+ 0.0699,

calculated for the identical problem.
These results agree with our expectations for

low-Z values, although the three methods give
results which differ considerably as Z increases.
The electron-positron difference in g, as shown
in Eg. (11), does not lead to any significant dif-
ference in ms, which is described by the reduced
distribution function

where

bl 2~6 1 bk-blx, , ln
k l k

(6)
oo n' 8' n'f (rp t) =—' pe J,(yq) exp ——+ —ln—

4

(14)

x„=a'(e/p) In(bs/bg ) . (9)

The expression for g, relevant for positron, is
obtained by changing the sign of a' everywhere in
the expression (6). The expression gives a clear
criterion as to where a significant difference
between g and g may be expected. Since all the
terms within the curly brackets are even in a', the
only difference comes through the exponential
factor, g"('/~)(ek'el)/2. Hence, the 5 dependence
will be more pronounced either for large a' and/or
at small momentum. Our method (as well as any
other available method) is not, however, reliable
for very-high Z or at very-low momenta. The
general limitations of these methods are well
known. The fact that the electron-positron differ-
ence comes through a term which is a product of
two small quantities g and go is indicative of the
fact that we do not anticipate any significant 5
dependence, at least in the region where these
methods will work.

For small values of Z, the dependence of A, on
5 is also negligible. For example, for electrons
and positrons of energy 1.5 Mev, scattered from
nitrogen (the effective Z being 7.05, the case
studied by Strong and Roy), we have

&=0.997 and X=0.995.

where y = x/8, (BX)'~', x being the spatial angle of
scattering and g, the characteristic scattering
angle. The parameter B is determined by g

through the relation

B—lnB = 1n(et 8', /y '8'),
where lny = c is Euler's constant. From (15), we
get

= ——.'(B—1)(5B/B) .
go

(16)

Since B is usually a large number (in the present
case B& 5), a small fractional change in 8„leads
to a still smaller fractional change in B. Thus,
while the reduced distribution function f(y, t) will
show hardly any dependence on 5, even the scale
of the reduced angle y relative to the spatial angle
of scattering x will exhibit vexy little dependence.
In the case we are considering (p =1), we found
A=5.128 and B=5.134.

One may argue that for Z small, the TF potential
is not realistic and a more accurate potential
should be considered. However, use of a different
potential will not alter the situation appreciably.
This can be shown from (15), which we can write
as
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B—lnB = 3.642 —2 ln(6, /80),

with e, =0.106. The second term, which accounts
for the effect of screening, is of order W.15, and
obviously no reasonable modification of the poten-
tial can bring in an appreciable 6 dependence in the
value of B.

In conclusion, we do not anticipate any significant

5 dependence in multiple scattering by low-Z
scatterers at energies ~1 MeV. This is, of course,
not an obvious result since the single-scattering
cross section does show an appreciable dependence
on 6. A small electron-positron difference for
large values of Z is, however, not ruled out.
Further experiments in this direction will be use-
ful for a clarification of the situation.
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