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A hydrodynamic model is used to describe the condensation of a supersaturated vapor near its critical
point. Calculations are based on a statistical theory of nucleation previously developed by one of the authors
(J.S.L.). The method permits careful study of various statistical corrections and a quantitative treatment of
the thermal nonaccommodation effect. Although the theory developed here is based on assumptions which
are quite different from the classical Seeker-Doring theory, numerical predictions of the critical
supersaturation in Xe and CO, turn out to be very nearly the same as the classical results.

I. INTRODUCTION

In a previous paper, ' one of the present authors
has proposed a systematic theory of nucleation
rates in metastable systems. This theory, in
principle, i.s applicable to a broad class of statis-
tical models of first-order phase transformations.
To date, however, it has been applied only to one
specific physical phenomenon, the decay of per-
sistent current in a filamentary superconductor. '
Our purpose in the present report is to outline a
second application, specifically, to the condensa-
tion of a supersaturated vapor in the neighborhood
of its critical point.

The classical theory of nucleation phenomena'
is currently in a state of considerable uncertainty.
The introduction by Lothe and Pound'4 of statis-
tical corrections to the Becker-Boring formula"
has called into question what was previously
thought to be good qualitative agreement between
the classical theory and experimental data. Most
recently, Cahn and Heady' have confirmed earlier
experimental observations by Sundquist and
Oriani' on the nucleation of phase separation in a
two-component fluid, and have concluded that the
classical theory of nucleation must be seriously
in error. Inasmuch as the nucleation picture is
central to our understanding of the kinetics of
first-order phase transformations, it seems im-
portant that the current situation be clarified by
new theoretical and experimental investigations.
The present work is intended as a contribution
to this program of clarification.

The nucleation theory described in Ref. 2 is
basically a classical theory in that the metastable
state decays via thermal activation of a localized
unstable fluctuation; for example, a critically
large droplet. This droplet, however, may be
"nonclassical" in the sense of Cahn and Hilliard. '
That is, it need not necessarily be identifiaMe
as a well-defined nucleus of the condensing phase.
Nor, in our theory, need the probability of forma-

tion of this droplet be related in any simple math-
ematical way to the population of small clusters
which may describe the state of metastabj. e equi-
librium. The most important distinction between
the present theory and the classical one is that
here we need not make any ad hoc assumptions
regarding the over-all fluctuation rate which
drives the nucleation process. This rate comes
naturally out of our basic statistical formulation
of the problem and, under certain circumstances,
turns out to be qualitatively different from that
assumed in the earlier theories.

The scheme of this paper is as follows. In Sec.
II, we restate the main results of Ref. 1 and com-
ment briefly on the meaning of certain terms which
enter into the nucleation formula. In Sec. III, w'e
introduce our hydrodynamic model for the vapor-
liquid phase transition and discuss its limits of
validity, especially the restriction to phenomena
occurring in or near the critical region of the
phase diagram. (Throughout the payer, we shall
refer explicitly only to supercooling and condensa-
tion; but our theory applies equally well to super-
heating and boiling. ) The nucleation formula is
then evaluated for this model in Sec. IV and V.
Section VI is devoted to an analysis of the thermal
nonaccommodation effect. Apart from one im-
portant conjecture regarding the way in which
fluctuations in the shape of a critical droplet are
incorporated into its surface free energy, our
mathematical development in Secs. IV-VI requires
no assumptions other than those built into the
original model. The experimental implications of
these results are described in Sec. VII. Finally,
there is an Appendix in which certain formal
aspects of these calculations are discussed.

As we shall show in Sec. VG, the predictions
of this theory are quantitatively almost identical
to those of the Seeker-Doring theory'6 for the
experimentally accessible situations that we shall
consider. There appear to be no analogs of the
Lothe-Pound corrections; and the new statistical
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factors that me do find turn out to have no dra-
matic effect on the nucleation rate. A careful ex-
perimental test of this theory seems to us to be
feasible and very much needed. The critical
regions of at least two substances, Xe and CO„
have been carefully studied experimentally; and
thus the numerical ingredients of our nucleation
formulas are nearly all available. Moreover,
me believe that homogeneous nucleation should
be more easily observable. near the critical point
than elsewhere, because the critical droplets are
so large that they should not be very sensitive to
small heterogeneities in the sample. A major
discrepancy of the sort found by Cahn and Heady, '
if it exists, should therefore be clearly verifiable
and extremely interesting.

II. GENERAL NUCLEATION FORMULA

The general theory of nucleation developed in
Hef. 1 starts with the introduction of a set of vari-
ables g, , i =1, . . . , %, which describe X degrees
of freedom of the system of interest. In the sys-
tem with which we are concerned, for example,
the q, will be the number densities n(r} and flow
velocities u(r) at positions r in the fluid. Thus,
a sum over the index i represents an integration
over r and a sum over each of the density and
flow fields.

We next introduce a distribution function p(/q}, t),
which is a probability density over configurations
(q} and is also a function of time t We hypot. hesize
that p satisfies a continuity equation of the form

(2.4)

where E is equal to E plus certain constants of mo-
tion of Eq. (2.3). For example, we shall use F =F
—p, N, where N is the total number of molecules
in the system and g is the chemical potential.
The states of stable and metastable equilibrium
lie at or near configurations {g},which locate
minima of E and which therefore maximize p
A phase transition takes place when the configura-
tion ('g} starts at. One such minimum, say (go},
and moves to the vicinity of another minimum of
lomer E. In doing this, it is most likely to pass
near the lowest intervening saddle point of E,
which we denote by (q}. As has been argued
previously, ' (q} will describe a configuration
which is everywhere the same as the initial meta-
stable state {qo}except for the presence of a
single localized fluctuation, i.e., a cxitically large
droplet of the condensing phase. The rate of prob-
ability fiow across the saddle point (q} determines
the desired nucleation rate.

The formula for this nucleation rate, I, as de-
rived in Ref. 1, can be written in the form

I=I 8 (2.5)

We shall write the prefactor Io as the product of
two terms:

where «/2v will be referred to as the "dynamical
prefactor" and 0, as the "statistical prefactor. "
The latter quantity can be written

Bp g BZ(

8t ]-g 87( ~

where the probability current ~ is given by

(2.1}

8E 8p
8( ———QM;~ +pk Ts

8gg 8 gg
(2.2}

8E
8$ ~

(2.3)

We shall restrict all of our analysis to systems
whose underlying dynamical properties can be
described in the form (2.2).

The equilibrium solutions of (2.1) and (2.2) have
the form

Here, M, ~
is a generalized mobility matrix, and

Efq} is a coarse-grained free energy. (The func-
tion E was denoted by E in Ref. 1.) Both of the
latter quantities mill be discussed in detail as they
arise in more specific connections. For the mo-
ment, note simply that Eqs. (2.1) and (2.2) can be
derived via standard statistical techniques by
adding a suitable Langevin force to the equation
of motion:

(2.7}

Each of the ingredients of Eqs. (2.5)-(2.7) will be
defined in the following paragraphs.

The activation energy ~F is

(2.8)

This term is the same as that which has been
computed in considerable detail by Cahn and
Hilliard. '

The statistical factor Qo is a measure of the
volume of the saddle-point region in q space; that
is, 0, is a generalization of the Zeldovich factor. '
The quantities X' ' which appear in 00 are eigen-
values of the matrix

82E

8gg 8'g~

evaluated at the metastable minimum (q,}.Ac-
cording to the definition of (q, },all the A.„'0' must
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be positive. Similarly, the X are eigenvalues of
the above second-derivative matrix, in this case
evaluated at the saddle point fr}. Because (q}
locates the highest point along the path of lowest
energy leading away from (qoj, there must be one
and only one eigenvalue ~„which is negative; and
this is the eigenvalue that we denote by X, in Eg.
(2.V). If E(q j has translational symmetry, then
there must be at least three other eigenvalues

mhich are identically zero, corresponding to
the three independent translations of the position
of the symmetry-breaking fluctuation (droplet)
described by (q}. The product of X's appearing
1n (2.'I) starts with Q = &0+2, where cl, ls the total
number of symmetries of F which are broken by
(q}. The integration over these o.'0 degrees of
freedom defines the factor W in (2.V}. That is, '0

is the volume of the e,-dimensional region of
q space spanned by the set of configurations fq j
which leave Efq} invariant.

The dynamical factor ~ is the exponential growth
rate of the unstable mode of deformation (q j. To
compute ~, we linearize (2.3}about q, =q, That
is, we write

Bv& B2F.' =-~M„. v, ,Bf ~l B~g B~l
(2.9)

where v,. =g,. -q, Then, setting v,. ~e"', we
identify ~ as the positive eigenvalue of the matrix

B2+

gg Yfg
"B B

(2.10}

In the condensation problem, the instability de-
scribed by ~ is just the initial growth of a droplet
which has exceeded the critical size.

III. HYDRODYNAMIC MODEL

The model of condensation of a supersaturated
vapor mhich me shall propose here will be, defined
by our choice of the statistical variables q,. and
the corresponding coarse-grained free energy
E(q} . In fact, this model and its limitations are
almost completely determined by our interpreta-
tion of the coarse-graining process.

The conventional formulation of classical many-
body statistical mechanics in terms of molecular
positions and momenta is not a very convenient
one for present purposes. In the first place, it
does not fit—at least not very easily —into the
theory outlined in Sec. II. It is also much too de-
tailed. We are not really interested in knowing
which pair of molecules is interacting at any given
time and position. Finally, the conventional for-
mulation does not provide a very natural way of
describing processes, such as condensation, which
are characterized by semimacroscopic density

fluctuation involving large numbers of molecules.
For such processes, a hydrodynamic description
in terms of local number density, flow velocity,
and, perhaps, entropy density seems most ap-
propriate.

In principle, the hydrodynamic model can be
derived from the molecular model by a coarse-
graining or cellular method. ' '" That is, one
divides up the macroscopic system into semi-
macroscopic cells of given volume and assigns
specific densities and floms to each of these cells.
The free energy computed by performing a parti-
tion sum subject to the cellular constraints is the
coarse-grained F that me are talking about. There
is no problem, in principle, in summing over the
cellular densities and flows to obtain the true
equilibrium free energy. Moreover, as long as
each cell comes to local thermal equilibrium
rapidly compared to the times required for the
hydrodynamic processes that one wants to con-
sider, then one can use the coarse-grained F
for computing nonequilibrium properties of the
system.

The question which arises at this point is: what
is a suitable size for the coarse-gxaining cells~
In order for the hydrodynamic description to make
sense, the cell volume must be much larger than
the average volume per molecule. For our pur-
poses, homever, the cells cannot have linear
dimensions appreciably larger than a correlation
length. If the cells are chosen to be too large,
phase separation will occur mithin single cells,
and the interesting details of the condensation
mechanism mill be lost in. the process of taking
cellular averages. To put this in another way, we
expect E as a function of the average density n
to be a nonconvex function mith distinct minima
corresponding to the vapor and liquid phases. But,
if the cell size is large enough for well-defined
phase separation to occur w'ithin a cell, then F
must approach its convex envelope and cannot
possibly have the above property. We conclude
that the cell size can be neither much larger or
much smaller than a correlation length.

It is this last requirement which restricts our
theory to the vicinity of the critical point in the
vapor-liquid system. Away from the critical point
the density of the vapor phase is usually so small
compared to that of the liquid that a coarse-grain-
ing cell large enough to be meaningful for the
vapor must necessarily be big enough to contain a
mell-defined liquid droplet. Thus, the cellular
approximation scheme is internally inconsistent
for use in the condensation problem except near
the critical point, where the densities are com-
parable in the two phases and correlation lengths
are larger than intermolecular spacings.
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With this restriction in mind, we can immediate-
ly guess a suitable form for the coarse-grained
free energy E. A systematic development of this
coarse-graining approximation is outlined in the
Appendix. As stated above, we choose as our
basic variables the local density and flow fields,
n{R and u(r). (Strictly speaking, we should in-
clude local entropy or temperature fluctuations as
additional independent variables, especially for
purposes of discussing the thermal nonaccommo-
dation effect in Sec. VI. Inclusion of such vari-
ables is not difficult, but raises technical ques-
tions which are not essential to the present dis-
cussion. ) The free energy E must consist of a
kinetic energy E~ plus an interaction term E~.
The kinetic term is simply

(3.1)

as given in Eqs. (2.5)-(2.V). In this section we
shall consider the statistical prefactor 0,. The
dynamical prefactor a will be discussed in Secs.
V and VI.

Throughout the remainder of this paper we shall
restrict our analysis to the case of classical drop-
lets. That is, we shall consider only the limit in
which the nucleating fluctuation described by {q)
is, indeed, a well-defined sphere of the liquid
phase with a radius B large compared to the inter-
face thickness or the correlation length g. In
principle, we need not make this restriction in the
present theory. As we shall see, however, the
classical limit is the appropriate one in cases of
interest here. By going to this limit, we can do
all of our calculations analytically instead of having
to resort to numerical methods.

The stationary point fq} is given in our model
by u( r) =0 and s( r) =n(r), where r7 satisfies

We shall assume that E~ is a functional of n only,
and that it can be written in the form'2"

sf
}
---KV2n+ = p, . {4.1)

E, (s't = Jl [~K(Vn}'+f (n)] d r, (8.2)

sn(r, t) 1 5E=-—V =-V (su)Bt m &u
(8 8)

su(r, t) 1 &E
at m 5n(r)

where f (n) is the Helmholtz free-energy density
and —,'K(Vn}' is the usual gradient energy.

The equations of motion for n and u, that is,
Eq. (2.3), will be

The dropletlike solutions of Eq. (4.1}have been
discussed in Ref. 9 and in related papers by one
of the present authors. '~'" Everywhere outside
the droplet, N(r) has the value N„, the vapor den-
sity. Within the droplet, n(r) is equal to the liquid
density s, . If r = ~r~ is measured from the center
of the droplet, then n(r) describes a smooth inter-
facial profile at r =R going from n, to n„within
a region roughly the width of the correlation
length $.

The activation energy, in our approximation, is

AE= 3 pgR2, (4.2)

&- &Es=-~ Vu2- —V
m 5n(r) . (3.4}

where cr is the surface energye, i2

Equation (8.3) is the continuity equation, and (3.4)
is the Euler equation. From (8.4), it is clear
that we must identify the last term on the right-
hand side with the gradient of the pressure. That
isy

(8.5)

Note that when n(r} is varying so slowly that the
gradient energy can be neglected, Eq. (3.5) is
consistent with

(4.3)

The actual value of the critical radius R must be
determined in the usual way by the degree of
supersaturation. We shall quote specific formu-
las for R in Sec. VII. For present purposes, it
will be most convenient to use R explicitly as
the single variable which characterizes the size
of the droplet.

We turn next to the eigenvalues X~. The A,~('

are eigenvalues of the operator

8p=s —f,an (3.6)

which is a standard thermodynamic relationship.

IV. STATISTICAL PREFACTOR

Our problem now is to evaluate the various
quantities which enter into the nucleation formula

(4.4)

Because the right-hand side of (4.4) depends on r
only through V', the eigenfunctions of {4.4) are
plane waves with wave vectors, say, q; and the
eigenvalues axe
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(o) ~
82f

=gq~+
Bn2 (4.5)

There is also a set of eigenvalues, formally to
be included among the &(0', which come from the
kinetic term E~. That is, we should include the
eigenvalues of

5u, (r)&u, (r') „„= ms„d, , 5(r —r'), (4 8)

which are all simply equal to mn„and are counted
three to a coarse-graining cell. A more careful
consideration of some of the formal aspects of
this calculation leads one to eonelude that these
eigenvalues are spurious. That is, they do not
describe physically significant velocity fluctua-
tions and, thus, do not appear in the final formula
for any observable quantity. We shall discuss
this point more fully fi.n the Appendix.

At the function-space point N(r) =N(r), the oper-
ator

q:—-2K/ft2. (4.8)

This eigenstate is associated with the instability
of the critical droplet against uniform expansions
or contractions. The next states are the three
p waves, with eigenvalues ~ =0, which come about
because of the broken translational symmetry.
Then there are higher-order partial waves with
positive X's corresponding to volume-conserving
deformations of the shape of the droplet. Finally,
there is a continuum of nonlocalized eigenfunc-
tions of (4.V) starting at X=8'f/Bn'„. These eigen-
functions are similar to the states associated with
the &'0) in that they describe fluctuations in the
bulk vapor; but here these fluctuations are per-
turbed by the presence of the droplet. As before,
the eigenvalues associated with the kinetic part
of E are spurious and can be disregarded.

We now can recognize the products over a and

p in (2.V) as representing fluctuation corrections
to the mean-field excess free energy of the drop-
let given by (2.8) and (4.2). These products have
been evaluated explicitly for a special form of
the function f (n) in Ref. 14, and the result agrees
with an expression given by Zittartz" for the free
energy of a flat surface in the same model. To

(4 V)

is no longer translationally symmetric because
of the r dependence of H. As has been discussed
previously, '4 the resulting spherically symmetric
Schrodinger-like eigenvalue equation has an s-
wave ground state with a radial eigenfunction
proportional to dpi, /dr and a negative eigenvalue

see this, consider Eg. (D41) of Ref. 14 in the
limit of large droplet radius, and compare this
expression with Zittartz's Eq. (4.7}. Our con-
clusion is that the products over eigenvalues X

in (2.V), for the most part, must be absorbed into
the quantity 4E. That is, if we are going to eval-
uate 4E using measured values of the surface
energy and thermodynamic potential, it will be
inconsistent to include fluctuation corrections to
AE in the prefactor 0,.

There is, however, a serious gap in our logical
development at this point. Strictly speaking, the
nucleation formula used here requires that ~E
first be evaluated at the stationary point (q} ob-
tained from Eq. (4.1), and then be corrected by
the fluctuation terms in 00. But this procedure
would imply that the radius of the critical droplet
be determined by the &r given in Eq. (4.2), which
is not necessarily the same as the experimental
surface free energy because of the fluctuation
corrections. What we shall do, instead, is delete
the explicit fluctuation terms in Qo and interpret
o everywhere as the true surface energy; and we
shall make a similar assumption eoncernfi. ng other
thermodynamic quantities that appear. This pro-
cedure possibly can be justified formally by going
beyond the Gaussian approximations for q-space
integrations which were used in deriving Eq. (2.V);
that is, by constructing a renormalized perturba-
tion expansion in the neighborhood of (q}. If this
program ean be carried out, we might also be
able to compute systematically curvature correc-
tions to the surface energy. These corrections
will be omitted here, and we shall focus our atten-
tion on other ingredients of the nucleation formula,
particularly, the dynamical yrefaetor. We hope to
return, in later publications, both to the formal
questions and to the more detailed description of
fluctuations on a curved diffuse interface.

Note, now, that there are n, +1=4 more terms
in the product over the XP' than in that over the
X„ in Eq. (2.V}. This means that the logarithm of
the combined products is not precisely a free-
energy difference. To see what is happening here,
it is useful to think in terms of a one-to-one pair-
ing between the X8

' and the ~~. At the top of the
spectra (large positive X"' and X), both kinds of
eigenvalues correspond to short-wavelength fluc-
tuations which extend throughout the volume of
the system, V. We can pair these eigenvalues
so that each X. will differ from its associated &' '

by an amount of order R'/V, which we can compute
using Rayleigh-Schrodinger perturbation theory.
Summing over the eigenvalues in this regime, we
get a contribution to ~E of order 8', independent
of V. It is only when we get down to the bottom of
the continuum that a finite set of ~'s—those eor-
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responding to localized deformations of the drop-
let—fall appreciably below their associated ~' "s.
Thus, by pairing the X's as described, the correc-
tion to hE remains of order R' in the limit V-,
as it must. This procedure leaves four unpaired
X'0"s at the bottom of the spectrum which axe not
accounted for by the revised bE. Specifically, we
have

«v = -V (tu),

sory

Nl=- —V KV + 2 v~
m Bit

(5.1)

(5.2)

where v =n —n. We can immediately eliminate
u by multiplying (5.2) by n snd taking the diver-
gence. This yields

4 ~(0) 112 1 sIf
2gk~T 2gk~T en2

lim g (4.9)
s mf

mx'v=V n V -KV2+ vBn2 (5.3)

remaining as the sole explicit contribution from
the complicated products over n and P in Eq. (2.V).

Having written down the value for X, in Eq. (4.8},
we need only evaluate the factor M to complete the
calculation of Q,. The formula for relevant to
our model has been given in Refs. 1 and 14. This
ls

3/2

g=V 3 dr Vn

Our problem is to find the positive eigenvalue
m«' of Eq. (5.3). Our strategy will be as follows.
First, we find solutions of (5.3) in each of three
regions: the interior liquid region, x&R —g; the
exterior vapor region, r&R+ g; and the interface
region, R - E&r&R+E. We then evaluate the
relative amplitudes of these solutions by matching
the values of the functions at the boundaries of
the regions. Finally, ave evaluate ~ by applying
the condition

4gR2 0
(4.10) r'v(x}dr =0,

Here we have used (4.3) for o; and we have as-
sumed that dn/dr is appreciable only in a narrow
region near r =R for the classical droylet.

The resulting expression for Qo is

4~R2o @2 gk~TR2 a 2

2gk~T Bn„
(4.11)

If we identify a correlation length g to be given by

v(r) ~ (1/r) e'"
and obtain as a condition for q,

(5.5)

which is a conservation law implied by (5.1).
Throughout this analysis we shall assume that v

is small and vanishes in the limit of infinitely
large R. We shall check this assumption for self-
consistency at the end of the calculation.

Equation (5.3) is relatively easy to solve outside
of the interfacial region where 8 and 8'f/BN' are
independent of x. We assume spherica1ly symmet-
ric solutions of the form

(4.12) DRIP = Sg -Kg + (5.6}

then we can write (4.11) in the form

3 3 ' k
(4.13) SPY K

n(s'f/sn') ' (5.V)

Of the two solutions to (5.6}, the one of interest
to us 1s

The dominant factor here is V/(', which will be
of order 10'2 for V =1 cm'. The other factors
contribute a relatively sma11 number of powers
of 10. Thus, the statistical prefactor is essen-
tially just the volume of the system measured in
units of the correlation length cubed.

U. DYNAMICAL PREFACTOR

If z is small, then this solution will be the one in
which v(r) varies slowly over distances of the
order of a correlation length g. The second solu-
tion of (5.6) is one in which q'$' =-1, and thus should
be important only so near the interfacial region
that (5.6}is no longer valid. We now write the
specific interior and exterior solutions as follows.
For 0&~&R —(,

To compute the quantity x, according to the
prescx iytion given in Sec. II, we must linearize
Eqs. (3.3) and (3.4) about n=n and u=0. The
basic eigenvalue equations to be solved are there-
fore

v(r) = (A/r) sinh(q, r),
PPl K

q' =
n, (s'f/sn', )

For t'&R+ g,

(5.6)
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v =(B/~) e '~'" "'

(s.9)

values of r near ft, the sum in (5.17}will be domi-
nated by its first term T.his is because X, =--2K/
R' vanishes as R becomes large, and

The interfacial region is somewhat more diffi-
cult to deal with. Our method of solution is to
assume that I{: is so small that we can completely
neglect the left-hand side of (5.3} in order to ob-
tain a sufficiently accurate first approximation to
the solution in this region. That is, we write

l (l') = X(&)/&,

and approximate (5.3) by

(5.10)

(5.11)

In addition to dropping ~2, we have neglected a
term of order R ' in the first factor on the left-
hand side of (5.11).

Note now that the only intxinsic length scale
remaining in (5.11}is the correlation length $.
(Strictly speaking, there are several such lengths,
E„, g, , etc. ; but these will be all of the same
order of magnitude near the critical point. ) Since
the exterior solutions vary only extremely slowly
on this scale, we must look for solutions of (5.11)
which approach constant values on either side of
the interface. The most general form of such a
solution is

(s.16)

is sharply peaked at the interface. Therefore,

( )
sR Es dR

26 (5.19)

where 4n-=n, -n„.
It remains now only to apply (5.4}to compute

~, using (5.15) and (5.16) to evaluate the constants
A and B. To lowest order in the small parameter
g/R, it turns out that one can neglect the interior
region (r &R) altogether and neglect terms of
order q„R - (g/R}' ' in the exterior region. The
result is ~-~0, where

mR' ~n (5.20)

(5.21)

Vfith this expression for I{,"0 we can go back and
check the various order-of -magnitude a.ssumptions
that wexe made in its derivation. The quantity
neglected on the right-hand side of (5.11) is of
order

x(r) =a jdr' 0(r, r'j, (5.12)
where 8:-n, =-n„, and we have used

o -K{an}/$ (5.22)

where a is some constant to be determined and
C is the Green's function satisfying

based on Eq. {4.3}. On the left-hand side of (5.11),
we know that

(
d' 8'f-Z „,+, C(~, r')=5(~-r').

dr 2 bn2 (5.13) K dr2 + an2 X 82 X

On either side of the interface, where s'f/sÃ'
becomes constant, (5.12}yields

and, because g is the only length which is in-
volved,

a
x(+) =

( gf/s —g) ~ (5.14) n(Q „ (5.24)

Therefore, from (5.8}and (5.9), we have

Q
A slnh(ig g R) —

( mf/ ~ )

B=
(s'f/sn'. )

'

(5.15)

{5.16)

q'-$/R'&2/R'«1/$'

for both q, andy„.

(5.25)

VI. THERMAL NONACCOMMODATION EFFECT

Thus, the neglected term is of relative order $/R.
In a similar manner, we obtain

Inside the interface, we use the spectral de-
composition of C:

(5.1V)

where the ~„are the s-wave eigenvalues ~„and
the X„are the corresponding eigenfunctions. For

The dynamical prefactor zo that we obtained
in Sec. V is an example of what was called in Hef.
1 the "limit of extreme underdamping. " That is,
the unstable critical droplet was presumed to
expand or contract in response to purely revers-
ible hydrodynamic forces. There are, however,
two irreversible effects which require considera-
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tion —thermal dissipation and viscous damping.
By means of a calculation similar to the one we
shall present in this section, we have tentatively
concluded that viscous forces are not very impor-
tant in the present problem, and shall not discuss
them further here. On the other hand, the so-
called "thermal nonaccommodation effect" 4 ap-
pears to play some role in slowing the nucleation
rate.

Thermal nonaccommodation occurs because the
vapor surrounding the growing droplet is not a
perfect heat conductor, and therefore is unable to
dissipate the heat of condensation arbitrarily
quickly. As a result, the temperature of the drop-
let rises, and its growth is retarded. To analyze
this phenomenon properly, we really should re-
formulate our entire statistical model by including
the local entropy density or the temperature among
the basic field variables. For present purposes,
however, we shall adopt a simpler point of view.
Although we have no proof of this point, it seems
reasonable to us to assume that the statistical
prefactor Qo is unchanged by the inclusion of
thermal degrees of freedom. Accordingly, we
shall focus our attention on the dynamical pre-
factor K, which we shall recompute simply by
adding a phenomenological equation of motion for
the temperature to the hydrodynamic equations
(3.3) and (3.4).

If we choose the temperature T(r, f) as the new

independent field variable, then the new equation
that we must include has the form"

(6.1}

the stationary point and thus, generally, are func-
tions of r in the interfacial region. In particular,
sp/sT is a short notation for (sp/sT) evaluated
at n, T, with p being defined in accord with Eq.
(3.5).

Our procedure for solving the eigenvalue problem
posed by Eqs. (6.2), (6.3), and the continuity equa-
tion (5.1) is much the same as the one we used in
Sec. V. We shall solve the equations separately
in the single-phase and interfacial regions, match
the solutions on the boundaries, and then use (5.4)
plus a similar continuity law for the heat flux to
determine K. In this case, however, we shall
make a few extra simplifying assumptions at the
beginning of the calculation. Ne shall assume
that, as happened in the previous problem, the
density deviation v can be neglected in the interior
of the droplet. In a similar spirit, we shall assume
that the temperature deviation 8 is constant
throughout the interior and interfacial regions,
dropping only very slowly to zero outside the drop-
1.et.

Consider first the exterior solutions. Because all
of the various coefficients n, sp/BT, etc. become
constant for r&R+ E, we can look for solutions
of the form

(6.4)

(6.5)

Moreover, because the values of q that we are
interested in are very small compared to g ', we
can neglect the gradient-energy term EV'v. The
resulting determinantal equation for q is

where Q is the heat flux, P is the pressure, and
c is the constant-volume heat capacity per mole-
cule. We next Iinearize the set of equations (3.3),
(3.4) and (6.1) about the stationary configuration:
n(r}=n(r}, u(r)=0, and T(r)=T =const. We
define K and v as before; and we let 8 denote the
temperature deviation. Then, eliminating u from
the acceleration equation as in Eq. (5.3), we ob-
tain

=-0.

= c„n„«b/A. (6.V)

(6.6)

Approximate solutions of (6.6) are q =q, and q„
where

(6.2)
The dimensionless quantity 5 is defined by

(6.8)

(6.3}
b =1+ T " cn„ (6.9)

Here, ~ is the thermal conductivity, which we
shall take to be independent of n and r. Barred
quantities are functions of n and T evaluated at

~q2 mK X

q', c„n„b'(s'f/sn', )
(6.10)

The approximations (6.V) and (6.8) are valid when
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To the accuracy of this ayyroximation, we have,
for t'&8+ g,

R'A(d, n)'
+A q22=-0.

2g 2 (6.20}

T(&p /sT) A ( s)c„n*„(1—b) r

+ e-e fr-8) (6.12}

&p(r):-(A, /r)s '&(" "&+(A,/r)e 'a&" "& (6.11) A, can be determined in terms of a(~) and 80 by
solving Eqs. (6.15) and (6.16). The quantities q,
and b are given in Eqs. (6.6) and (6.9). It is also
convenient to eliminate a(~) in favor of A by re-
arranging (6.16) and integrating by parts. The
useful form of (6.16}is

Next, we must consider the interfacial region.
Integrating Eq. (6.2) by the same method used in
Sec. V for Eq. (5.3}, we obtain the analog of (5.12),

( )
Rp, (pp„)

R Hing ~ 8 1 dn
(6.2i)

a(r) =a -R80 dr' 1 d ep
n t' dr' aT (6.14)

Here, 80 is the supposedly constant value of 8 at
the interface.

Using (6.13}and (6.14}, we can write down the
matching conditions for the exterior solutions,
(6.11) and (6.12):

(6.15)

p(r)= Jp~'G(v, r')a(r'),

where X and G are defined in Eqs. (5.10}and (5.13),
and

K Il, pp I" (Bp )
1 dp

(6.22)

where ~0 is the frequency defined in Eq. (5.20}.
To complete the calculation of K, we must go

back to the thermal equation, (6.3), and use this
to evaluate the ratio 8,/A. We shall also have to
evaluate the integral on the right-hand side of
(6.22}.

A useful form of Eq. (6.3) is obtained by multi-
plying it by n c and integrating over the volume
of the droplet. We obtain

After all of these substitutions and transforma-
tions have been made, (6.20) reduces to the simple
form

A, ~Pi

( )
+A, — „cR80 T (6.16}

QP
( ', R&'(}—, nzc8, = 4&( --r'drT V u

interface BT

AR'd, n dn =-8 (6.1V)

This pair of equations is the analog of (5.16). We
can also write the interior solution in analogy to
(5.19):

+4gR2A, (6.23}

which simply states the conservation of energy
flowing across the interface. The first term on
the right-hand side of (6.23}must describe the
heat released by condensation of the vapor flowing
into the droplet. That is, we may identify

g =g+ dt'

(6.i6)
At tMs point, it is useful to ayyly the conserva-

tion law, Eq. (5.4). To do this we need consider
only the longest-ranged part of the exterior func-
tion v; that is, the second term on the right-hand
side of (6.11). Specifically, we write

(6.19)

QP Ha+I

4v I rmdrT . V u=4wR'ln„u(R+$),
inter face

(6.24}

where I is the latent heat per molecule and u(R + g)
denotes the velocity of the vapor just outside the
interface.

Using the continuity equation (5.1) and Eq. (6.1V),
we can compute the flow pattern in the interfacial
region. We have

In writing (6.19), we also need q, R«I. The
integration of (6.1V) over the interfacial region
is straightforward as before; and Eq. (5.4) becomes

KA RAn dn
KP =

R 2o

d
(nu) (6.25)
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for s near R. Thus,

«xs««(, «,
)

du ~ARAnn, dn
V u}- n-

dY 20n dr

u(R+ E) =- ~AR(an}'/2an„.

(6.26)

(6.2V)

(6.28)

their critical points.
Throughout the following analysis, we shall use

conventional power-law approximations for ther-
modynamic quantities near the critical point, and
shall assume strong-scaling relations between
the critical indices. The specific quantities that
me shall need are listed below as functions of
e =1- (T/T, ):

(V.l)

n T 8P 1 dn

Equation (6.23) becomes

~A/(an}' A.8,
Sng cg Keo =— (6.30)

where me have divided by 4m B' and have written

Substituting (6.27) and (6.28) into (6.24), we obtain smf

en, =g"

O' = 0'06

E=E e~,
D

The relevant scaling relations are

(7 2)

(V.S)

(V.4)

(7.5}

(7.6}

e(r) =- (R/r) e, (e.sl)

(6.32)

for values of r&R and q~B«1.
Equation (6.30) provides us with the ratio 8,/A

required in (6.22); and (6.29) identifies the integral
specified there. When me make these substitu-
tions, (6.22) assumes the form

'+2p+y' =2,

SP =2-&
y (7.8)

where &' is the specific-heat index. All functions
refer to T & T, and to the vapor side of the coexis-
tence curve The s.trong-scaling assumption (V.a)
[which has already been used in writing (7.4)] and
the mode-mode coupling scheme implied by (V.e)
are probably not exact; but weak deviations from
these lama mill not be important in what follows.

For classical droplets, 8» E, we have

a = Sl'(an}'R/sa Tn, c,

A. = 3A/R n) c,. .
(e.ss}

R = 2a/[6Z( (V.Q)

(7.10)

If the latent heat vanishes, then u = 0 and (6.32) pre-
dicts g = g„as it should. The case of interest tous,
however, is e»1 and ~«X. In the latter limit,
me have x«ao, and thus

A. 2kgT
K Kg (6.34)

Note that a is of order XR ', and is therefore
smaller than ~-A, B ~. In the next section, me
shall verify explicitly for Xe and CO2 that x, «ao,
mhieh mill confirm that the nucleation rate is
limited by the thermal nonaceommodation effect
for those substances.

B~f s~f dn„
one "

an~ gT (V.12)

where 5T is the supercooling and dn„/dT is the
slope of the coexistence curve. %'e can mrite
(7.10) in the form

(V.l 1)

and &p, is the difference in chemical potential
between the supersaturated vapor and the tmo-
phase equilibrium state at the given average den-
sity. If the supersaturation is not too great,

VII. CRITICAL SUPERCOOLING

The standard test of nucleation theory is the
prediction of the critical supercooling ~T, for a
supersaturated vapor. In this section me shall
derive a general formula for &T, and shall. discuss
applications of this formula to Xe and CO, near

n.F/ksT = (7,~/6T)',

0 3 y pg
Similarly,

(V.13)

(V.14)
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(R/():- p0(e/6T),

with

(7.15) 5T, =r,@[in(VJB/I, )+ p inc

- ln(5T, /T, )] "' (7.24)

(7.16}

The quantities entering the prefactor I, can be
written in analogous form. From Eq. (4.13), we
have

which is the form that we shall use for numerical
analyses.

For comparison, we quote the formulas analo-
gous to (V.23) and (7.24) in the Becker-Doring
theory,

Y 3 3 k~T, 6T (V.1V}

IB.D.
c gB.D & (70&I ~~c) (7.25)

For the isothermal case, the dynamical prefactor
1S

where

J =n, (2o0/wm}2". (7.26)

0 0 c eBv -48- P -3(5T}3I

1 12 ~2p3(~s )2 (7.19)

As we shall see shortly, it is Ky rather than Kp

which is relevant to cases of interest here. Thus,
we use (7.19) in writing

IB/V =KQ0/22V =—J'Bee(T,/5T)&

where

(V.20)

0 c 2(B/2&v'-8-02(5T)02 (7 16)m@)3(an )'

where n, is the critical density. When thermal
nonaccommodation is important, we have

Therefore

5Tca =ace[in(VJ /I, )+vine] (7.2'l)

Numerical values for almost all of the quantities
occurring in these formulas are available in the
literature for Xe and CO, . These values are
quoted in Table I. The derived quantities 7„
p„JB.n, J„and p are listed in Table II. It is
clear from Eq. (7.24) that the ratio 5T,/e is only
weakly dependent on e, although this dependence
is slightly stronger in our case than in the Becker-
Doring formula, Eq. (7.2V). For purposes of
comparison with experiment, it is convenient to
summarize both formulas in the form

and

tIC}
=9v' —4P —y'+1 (7.21)

6T, a
e (1 +5 inc)"' (7.26)

8 o 7 2

Snl3 Cl'k (Cc)'c T"'k"') (7.22}

A given nucleation rate, say, I, nucleations per
unit time, will be achieved at a 6T =6T, such that

I,/V = J e2( T /6 T ) e ' o' (7.23)

Solving for 6T„we find

TABLE I. Values of various parameters introduced
in the text for Xe and CO2. Quantities marked with an
asterisk (*) are rough estimates based on high-temper-
ature data (T &T ).

The constants a and b appear naturally in the
Becker-Doring result, Eq. (7.27); and they can
be chosen so as to fit the solution of Eq. (7.24} to
better than 1% in the region 10 4& a &10 '. In
Table III, we list values of a and b for Xe and CO2
for two nucleation rates, I,/V =1 and 10' cm '
sec '.

Given the quantities in Tables II and III, we can
check various approximations and assumptions
used in the derivation of the nucleation formulas.
For both Xe and CO„we use (7.13) and data from
Table III to find aF/12T -55 at &T =5T„which is-
certainly large enough to assure that the thermal
activation picture is self-consistent. To check the

Quantity

Tc
nc

Enp
gp

40
fy p

lp

v'

Units

'K
C IIl
cm

erg Cm3

cm
ergcm

erg
erg/cmsec K

Xe

289.75
5.07x 102'
1.83x1O"
1.63x 10 34

1.84x 10
62.9

2.43x 10 13

4x 10'*

(Ref.)

(18,29)
(18.29)
(18,29)
(20, 29)

(20)
(19)
(23)
(25)

(27)

CO2

304.12
6.38x 10"
2.53x 10
1.48x10 '4

0 Sg

77
2.82x 10
3.4 x10 *

0.57
0.34
1.2

(Ref.)

(18,29)
(18,29)
(18,29)
(19,29)

(21)
(22)
(24)
(26)

(27)

Quantity Equation Units Xe CO2

TQ

Pp
p

g B.D.

(7.14)
(7.16)
(7.22)
(7.26)
(7.21)

K
K

cm 3sec ~

cm 3sec i

319
215

3.47x 10 2

2.17x 10"
3.57

255
292

1.43x 1033

5.24x 10"
3.57

TABLE II. Values of derived quantities for Xe and
CO2.
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tc, =5.4x104(6To/«"4) sec '.
Thus, if 6T,/e-40,

(V.30)

assumption of classical droplets, we use (V.15) to
deduce that, for Xe, 8,/(-5; and for CO„&,/$
-10, where R, is the value of R at the critical
supersaturation 6T, . (We give only an order-of-
magmtude estimate for the latter quantity because
of the lack of a value for go for CO, .)

The dynamical faetox s turn out to be, for Xe,

«o = V.9x10'(6T"'/e"") sec ' (V.29)

classical many-body statistical mechanics. The
quasihydrodynamic "cellular" or "coarse-grain-
ing" approximation solves —or at least cireum-
vents —some of these difficulties. In this Appen-
dix, we shall outline a more formal development
of the cellular method than mas presented in Sec.
IG. Some aspects of this development are directly
relevant to the analysis in Sec. IV.

We start by defining cellular basis functions

P„(r) which are unity inside cells of volume A and
vanish everymhere else. Our statistical variables
mill be

«, /«o - I.V x 10-ae-o.oo (V.31) A=I
(Al)

(V.32}

z, =6.5x104(6T'/e"4) sec ' (V.33)

which is much smaller than unity except for in-
aecessibly small values of e where the approxi-
mation used in deriving (V.3}is no longer valid.
Similarly, for CO„me have

2 1 x10o(6T&2/eo 415) sec '

(A2)

where A =1, . . . , N, and N is the number of par-
ticles in the system. The canonical partition
function for this system can be written in the form

andy for 6To/&

«, /«o - 5 x 10-o«-o.oo (V.34)
g g~g) e-z&~.Tjh~r gr

a

It follows that the left-band side of (6.32) is com-
pletely negligible, in accord mith the assumption
made in the derivation of (6.34).

The most important feature of the results shomn
in Table III is that, despite all of the statistical
and hydrodynamical corrections, the nucleation
rates computed here turn out to be only very little
different from the Becker-Doring values. It is
conceivable that, with very careful measurements,
one might detect the slight variation of 6TJe as a
function of ln~, which is predicted here. To the
best of our knowledge, no really systematic study
of nucleation near the critical point of a vapor-to-
liquid phase transition has yet been attempted.
Sengers and Chen" have observed metastable
states in CO„and their data appear to be consis-
tent mith our estimated limits of metastability.
That is, their vapor-pressure curves end near or
somewhat earlier than where we predict they
should. But these experiments were not meant to
constitute a serious test of the nucleation theory.
In view of the uncertainties surrounding the theory
of nucleation phenomena, it seems to us that such
a test mould be extremely worthwhile.

where

(A4)

gjh&T g+g p H(r, P)/A&T

(A5)

Xe

10'
CO2

10'

(a) Becker-Doring theory, Eq. (7.27)

TABLE ID. Values of the parameters a and b ap-
pearing in the formula 6T /e = a/(1+ b inc)~12. (a) Seek-
er-Doring theory, Eq. (7.27)," (b) present theory, Eq.
(7.24).

APPENDIX: COARSE-GRAINING APPROXIMATION
g (K)
b

36.41 39.49
0.007 43 0.008 74

28.97 31.39
0.007 34 0.008 62

The nucleation theory developed in Ref. 1 re-
quires that the system of interest be described
in an essentially field-theoretic language. As
implied in Sec. III of this paper, serious problems
arise in trying to formulate such a description for

36.35
0.0334

39.43
0.0393

(b) Present theory, Eq. (7.24)

28.77
0.0326

31.16
0.0383
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ln Eq. (A5), H( r, p j is the conventional many-
body Hamiltonian; 6~ denotes a Kroneeker 6 func-
tion; and

N

Crap =—,d 't'~d sp~.
N=O ' A=1

The final form of (A4} is valid in the limit of large

From (A5}, we see that the coarse-grained E
is defined by the canonical average of the exact
joint-probability distribution in the space of
coarse-grained variables n~, j~. %'e can simplify
(A5) by the following sequence of operations.
First, we replace the 5 functions in (A5) by their
integral representations. Next, we integrate over
the momenta p„. The remaining integrations over
configuration space ean be performed either by a
perturbation method (Mayer graphical expansion)
or by a simple occupation-number approximation. '
We shall choose the latter method because we are
mainly interested only in the general shape of the
functional E.

Inserting integral representations in (A5} yields

s Elks 1-'

2mk~Tn~

xexp i n 1+„

(A13)

The important, point to note is that E contains the
term

FBI j~ t1lg

f'8 r u r y (A14)

where we have defined the velocity field u by
writing

Thus, the quantity -k~T4 is the free energy for
a system of interacting particles in a random ex-
ternal field whose activity is i (x).

Once we transform from z to I' in (A12}, the
integration over the g's becomes trivial in (AV).
%'e find

,-zy, r
2vi z „(2v}'

xexp '4 sf}I108CI+$ '3 8~ '

(A V)

+OIucf j cI y

and have used the continuum limit,

' -n(r); ~„-u(r); Z-a 'jd'~.
a

(A15)

(A16)

/yap ~ H/k~2'

x exp -i inc r„+ r„p„m
A

The functions z(r) and ( (r) are

lnz(r) =-Q lnz„g„(r);

(As)

(As)

where the z integrations are performed around a
closed contour surrounding the origin, and

If we integrate over the j„in (Als), as we must in
computing the partition function, the Gaussian
integrals exactly cancel the factors (I/2vs ksT) '.
It is this cancellation which enabled us to neglect
the eigenvalues of O'Ez/&u, &u~ in Sec. IV.

So far we have made no approximations. To
make further progress, however, we have to
evaluate the interaction term. The simplest thing
to do is just to go backwards. That is, we write

{Ig q
.' em)(~I n, io(„+a{())

h(r)-=g 5.4.(r). (AIO)
(Rmmk 7) ~ =fa~a'"'

The momentum integration in (AS} is straight-
forward as long as there are no velocity-dependent
interactions in H. The result is

xexp -U r k~T-i lsd r„

(AIV)

The conventional occupation-number approximation
is:

(A11) z ps{))«hsr -0+-" s-v{N«I&sr
~ n~f

(Als)

where U f r ) is the interaction part of H and

i (r}= z(r}exp[-kzr ('(r)/m]. (A12)
where U(s} denotes some effective interaction
energy. If all the n~ are large, we have
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F„/ksT = +g [n„ln(n„/b, )
9 a

—n„-—,
' in(2nn„) + "]

+ d t' nlnn
B

—n - 222- ln(2mb, n) + ~ ~ ] .1

(A19)

In the continuum limit, U will have an expansion
of the form

u(nj=fd'vjf, (n) —,'z( )(vn)'+ ]. (Amo)

Collecting terms back through Eq. (A13), we re-
cover a coarse-grained free energy F(n, u] of
the form hypothesized in Sec. III.
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