PHYSICAL REVIEW A

VOLUME 8,

NUMBER 6 DECEMBER 1973

Theory of the Thermodynamic Properties of Liquid Metals

Hilary D. Jones
Sandia Laboratories, Livermore, California 94550
(Received 24 October 1972)

Thermodynamic properties of the liquid metals Li, Na, K, and Al are calculated using a
pseudopotential model together with an application of thermodynamic perturbation thieory based on the
Gibbs-Bogoliubov inequality. The theory is used to predict many properties associated with the melting
phenomenon; for example, the melting temperature and density as a function of temperature, and the
latent heat of fusion. It is found that the theory reproduces the trend in latent heats between the alkali
metals, in contrast to previous work, although quantitative agreement with experiment is no better than
has been obtained before. The theory is also applied to the prediction of thermodynamic properties on
and away from the melting curve; in particular, the specific heat and velocity of sound of sodium are
calculated over a wide range of temperature. Agreement with experiment is found to be good.

1. INTRODUCTION

The theoretical basis for a thorough understand-
ing of the thermodynamics of simple insulating
liquids (e.g., argon) has been forged in recent
years to a point where it can be used to predict
reliably the thermodynamic properties of real
insulating materials.'”* This advance has been
made possible in two ways. First, computer
simulation makes it possible to conduct a con-
trolled “experiment” on a well-defined system
whose properties can be chosen to test the assump-
tions used in a proposed theory.!'* Computer
simulations eliminate the uncertainty in the char-
acterization of the experimental system so that one
can assign any discrepancy between theory and
“experiment” to some weakness in the theory and
then make the necessary changes in the theory to
extend its range of validity. Second, it has been
determined how to expand the properties of liquids
in a rapidly converging series, using the hard-
sphere fluid as a zero-order approximation.!:?:*

It has been possible to establish the reliability of
such expansions only because the capability of
doing computer simulation exists.

While numerous investigators have looked at
simple insulating fluids, relatively few up to now
have investigated the thermodynamics of liquid
metals.5"7 The situation is now changed with the
recent wedding of pseudopotential theory to ther-
modynamic perturbation theory.®:® It is the object
of this paper to elaborate on the work first pre-
sented by the author in Ref. 8, namely, the use of
the theory to predict thermodynamic properties
of a wide variety of liquid metals over a wide
range of temperature and pressure. We will also
have comments on the results of Stroud and Ash-
croft® and Hartmann,'® which are concerned with
properties at the melting curve. In particular,
we will demonstrate the usefulness of the theory
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in predicting the trend of the alkali-metal latent
heats.

Traditionally, sodium has been the liquid metal
most frequently considered because of its simple
electronic structure, combined with the availability
of experimental data (primarily at the melting
point). However, it is now becoming possible to
carry out equation-of-state measurements simul-
taneously at high pressure and temperature for
a variety of metals,!! and this should serve to
stimulate interest in other metals, as well as in
behavior away from the melting point and up to-
wards the critical point, where the equation of
state provides a probe of the band-structure
changes associated with the metal-insulator (Mott)
transition. '

Section II gives a brief review of pseudopotential
theory as applied to liquid metals.!®* This will
introduce the reader to the model used, and will
demonstrate the fact that the “band-structure
energy” of a metal is no more than a sum of pair
potentials acting between ions. The resulting pair
potential will be seen to be qualitatively correct
even when the density is so low that the model is
suspect. (Specifically, the pair potential provides
reasonable estimates of the critical density and
temperature.)

In Sec. III, a particular perturbation-theory tech-
nique is presented. It is based on the Gibbs-
Bogoliubov inequality,'* a theory which, while not
the best available, is by far the most convenient
to use. This approach has been tested primarily
for the Lennard-Jones (LJ) pair potential, which
differs from the metal potential in two important
respects. First, the metal potential contains
long-range Friedel oscillations while the LJ po-
tential ostensibly has a short range. As will be
shown, however, for practical purposes the metal
potential has the shorter range of the two poten-
tials.
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The second difference is that the LJ potential
has a steeper hard-core portion than does the
metal potential. Since thermodynamic perturba-
tion theory requires the metal potential approxi-
mate a hard-sphere potential, convergence of that
theory becomes suspect. Recent computations by
Hoover, et al. indicate that potential as soft as
1/7* can be described by thermodynamic perturba-
tion theory,’® whereas, the metal potentials used
here are at least as hard as 1/#% so hard spheres
should provide an adequate reference system.

In Sec. IV, we summarize the results of calcu-
lations for the alkali metals Li, Na, and K, as
well as for aluminum. Thus, the melting curve
is located; and the latent heat and volume change
upon melting are determined, along with other

properties associated with the melting phenomenon.

The thermodynamic properties of the liquid phase
are presented in the form of thermodynamic de-
rivatives (compressibility, specific heat, thermal
expansion, and so on). Particular emphasis is
placed on the ability of the theory to reproduce
trends between the alkali metals, in contrast to
the previous work of Hartmann. To show the
ability of the theory to predict thermodynamic
properties away from the melting point, the speci-
fic heat is calculated over a wide range of temper-
atures. To show the limitations of the theory, the
velocity of sound of sodium is calculated as a
function of temperature and pressure.

II. MODEL PAIR POTENTIAL

Rather than repeating the well-known derivation!?
of a pair potential from pseudopotential theory,
this section presents a very abbreviated sketch
of the principles involved. This much should
serve to introduce the notation used in the paper
and to indicate the model pseudopotential being
used.

Consider the energy of a conduction electron
of wave vector k interacting with the potential
set up by the ions. If there were no such inter-
action, the energy would be purely kinetic energy:
E; =7n*k?/2m; and the energy of all the electrons
would then by 3 E, where the sum is carried
up to the Fermi surface (k<k,). (For the time
being, exchange and correlation energies are
neglected.) If one turns on a screened pseudo-
potential W(r) to describe the spatial dependence
of the electron-ion interaction, the conduction-
electron energies will be changed. According to
perturbation theory, the energy will become

EE=T+<E[W( ) |K)
&W ) R+ DEGWD |
,E #22m) & — [k +a]%) e
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It is the last term of this equation that we are
concerned with. If the pseudopotential can be
separated into a sum of potentials localized at
the ion positions T,[i.e., W(») =Y, w(f -T,)], then
this contribution to the energy will have the form
of a sum of pair potentials between ions ¢ and j:

Elw@E 7)) K+ DE+F|w(F - F,) K |

k<quso

Since higher-order terms in Eq. (1) will involve
higher powers of W, the terms will not always be
reducible to a sum of pair potentials. Thus the
validity of the pair-potential assumption for a
metal is assured if the pseudopotential w (7) is
small. In what follows, this is assumed to be the
case, not so much because it is true but because
it is an assumption that is necessary to make a
tractable theory. The successes of pseudopoten-
tial theory in other problems suggest that the
approximation is valid.

Rather than pursue the derivation any further,
thus repeating previous work,'3:*¢ the energy is
written down in its final form. Thus,

E=Ep; +Eyy +Egg +Egg « (2)

The term E; is the energy of the homogeneous
electron gas,

Epc=NZ[3ep+ex +ec +w™ (g =0)]. (3)

Here, ¢, is the Fermi energy, €4 and ¢, are the
exchange and correlation energies, and wb®(q) is
the (bare) core part of the pseudopotential.

.The term Ejpy is the energy contribution from
the repulsive interaction between the core elec-
trons on different ions, and it is taken to have the
Born-Mayer form:

b5 ae, 0
ij

with o and y as parameters, 7,, as the distance
between ions ¢ and j, and the sum restricted so
that i #j.

The term Egg is the electrostatic interaction
energy of the ions, expressed as

_NZ?% [41 <~ * S(@)S(=g)e~/*+
Eps= 2 I:EI—Z q°
q

" erfe(uriy) (241, _11_)
NZ Ve, W’*;ﬁn] ®)

Here Q is the volume per ion, N is the number of
ions, u is a parameter chosen to make both sums
converge rapidly, and S(g) is the structure factor
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S(q)=1% 3 et (6)
i

The sum on g in Eq. (5) is restricted so that
q #0; thus the ions are in effect placed in a uniform
negative-background charge.

Finally, Eps is the band-structure energy, which
is that part of Eq. (1) that depends on the ion posi-
tions. Thus

Epgg = NE

where F(q) is the energy wave-number character-
istic. In the model used here, the screening of
the electron gas has been modified to allow for
exchange and correlation effects. The modifica-
tion is that proposed by Geldart and Vosko,”

and for F(q) it leads to the form

€lg) -1
81r e O @ - D<@’

S(-q)F(q), (M

F(q)=-
(8)

where €(g) is the Hartree dielectric constant,
w®(g) is the bare pseudopotential, g(g) is given by

glg)=q?/2(q® +tR2) , 9)
and ¢ is determined by
£=0.916/(0.458 +0.0127,), (10)

where 7 is given (in units of the Bohr radius) by
4173=Q/Z. Equation (10) assumes the Nozieres-
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Pines interpolation formula for the correlation
energy, whence

€, +€,=-0.916/7,~0.115 +0.031 Iny, .

Harrison’s modified point-ion-model pseudo-
potential’® has been used in the calculation,

wb(g) =41Ze*/Qq* +B/Q(1 +q*r2)?. (11)

This model has the advantage that it converges
rapidly to its asymptotic form at large q. More-
over, there are at our disposal two parameters,
B and 7., which represent the strength and range
of the pseudopotential; thus we do not need to
adjust separately the Hartree energy to give the
proper lattice constant, as must be done with other
potentials.’® Note that this does not represent an
increase in the number of parameters over the
“single-parameter” Ashcroft pseudopotential,
since for that potential the Hartree energy is
frequently treated as a separate adjustable param-
eter.

It is desirable to rewrite the energy expression
explicitly as a sum of pair potentials. To this
end, consider the limit - «. If the expression
for S(g) from Eq. (6) is put into Egs. (5) and (7),
then these equations involve a sum on i and j,
which includes terms where i=j. Also, in Eqs.
(5) and (7), ¢ =0 is excluded from the sum on g.
If these equations are rewritten so that the i=j
term is separated out, and the g =0 term is re-
stored, then the equations give

422 piy
q

- - 2,2 2 2 VA
-ﬁl—z lim [e‘q"u (4———212; e'°2/4"2+2F(q)>] +( 24"2 ~an? —Nﬁ—’lnlez ) :

The last term is identically zero, while the other
terms are well behaved in the limit p— . This
result combined with the previous equations gives
a final expression for the energy

1 ’
E=E0+§§; o0y, (12)
where
Ey=Exc+ Y F(@-Flimyla), 13)
q
o) =ae T+ I T Ty(q), (14)

q

and y(q) is defined as
¥(q) =4mz%e?/Qq* +2F(q) . (15)

q

2,2

It might appear that the g=0 term of Eq. (14)
can be left out, since it is a correction to ¢(») of
order 1/N. To be consistent then, one would also
have to remove the term lim,_, 3(q) from Eq. (13).
However, the g=0 contribution to ¢ () is indepen-
dent of »; so when ¢(», ~7,) is summed over the
N2 pairs of atoms, the contribution to the energy
is not negligible. In fact, the term in lim,_,y(q)
in Eq. (13) is necessary in order to get agreement
between the energy calculated by Eqs. (12) and
(2)‘19

The model presented above depends on four
parameters: 8, »,, a, and y. (Only the first
two of these have an appreciable effect on thermo-
dynamic properties.) For the alkali metals, the
parameters were determined by Wallace in such
a way to give a good fit to the lattice constant,
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TABLE I. Parameters for the modified point-ion
pseudopotential (B,7,) and for the Born-Mayer potential
(@,y). Wallace’s parameters for aluminum are shown
in parentheses. The Bohr radius @, is used as the unit
of length, and Rydbergs are the energy unit.

Metal a (Ry) v (agh) B (Rya}) 7e(ay)
Li 0 0 23 0.33

Na 10.5 1.56 37 0.50

K 124 1.56 66 0.69

Al 0 0 42.9 47.5)  0.29 (0.24)

internal energy, compressibility, and mean-
square phonon frequency at zero temperature.®
The values are given in Table I. For aluminum,
Wallace chose to fit the parameters entirely to
the phonon spectrum.?® While this leads to an
excellent fit of the phonon spectrum, it also leads
to an unrealistic pseudopotential for most other
calculations. In particular, it leads to a zero
temperature density some 2 times too large. Put
another way, the pressure required to sustain the
lattice at the correct density would be -710 kbar;
and the compressibility would then be negative.
Clearly such unphysical results cannot be tolerated
in an equation-of-state calculation. We have,
therefore, refitted the pseudopotential parameters
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FIG. 1. Pair potential for sodium at the melt density
(solid line). Broken line shows a Lennard-Jones poten-
tial for comparison. The scale is expanded by a factor

of 30 at large 7 to show details of the Friedel oscilla-
tions.
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in the same manner as Wallace did the alkali
metals. The results are shown in Table I, with
Wallace’s original values shown in parentheses
for comparison. A preliminary calculation of the
phonon spectrum using the new parameters still
gives acceptable (7%) agreement with experiment,
and the parameters now reduce the error in the
density and other fitted quantities to only 7%.

Figure 1 shows the pair potential of sodium at
melt density. (The other alkalis show qualitatively
similar behavior, differing primarily only in the
scales on the axes.) Plotted for comparison is a
Lennard-Jones (LJ) potential chosen to fit the pair
potential well. It will be seen that it has a much
harder repulsive core than the actual potential.
Moreover, despite the Friedel oscillations in the
actual potential, the LJ potential is initially of
longer range. It would be very difficult to assess
which potential is the “longer ranged” from the
practical standpoint of an equation-of-state calcu-
lation away from the critical point. Similar con-
clusions hold for the other alkali metals and
aluminum.

Figure 2 shows the pair potential of aluminum
at melt density. The potential differs qualitatively
from that of Wallace?®! in the degree of structure
in the potential well. However, the well depth,
repulsive core, and Friedel oscillations are quan-
titatively similar to those of Wallace’s potential.

Figure 3 shows the density dependence of ¢ (r)
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FIG. 2. Pair potential for aluminum at the melt density
(solid line). Broken line shows the LJ potential for com-
parison.
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for aluminum. (By contrast, the density depen-
dence of the alkali metals is relatively weak, al-
though at the critical density, the potential well

is still some six times deeper than at normal
density.) Figure 3 presents ¢(r) at densities down
to the estimated?®? critical density of aluminum,
although at such densities, the model used be-
comes suspect.

There is an interesting consequence of such
strong density dependence in ¢(r). At normal
liquid densities, the well depth corresponds to a
temperature of T =336 K. This would seem to
indicate that a temperature on the order of 300 K
would be sufficient to break the bonds between the
atoms and to cause vaporization. But in fact, the
critical temperature of aluminum is of order of
7000 K. This can be explained by the strong densi-
ty dependence of the potential, since the density
approaches the critical density, the well depth
increases by an order of magnitude.

One can get a rough estimate of the critical
density and temperature by means of the following
argument. For a system with an LJ potential, it
has been found® that the critical density p, and
temperature T, are related to the repulsive core
diameter o and the potential well depth € as
follows:

p.0°=0.36 and kT =1.36¢. (16)
If it is assumed that these relations hold true for
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FIG. 3. Density dependence of the pair potential of
aluminum. p. is the estimated critical density, and p y
is the normal solid density.

the metal potentials used here, then p, and T,
can be estimated®* (Table II). The experimental
values of p, and T, are actually extrapolations
of experimental data.??

The estimated critical temperatures agree
reasonably well with experimental values, but the
critical densities are too large by a factor of 2.
Considering the crudeness of the approximations
and the sensitivity of p, to small changes in o,
the agreement with experiment can be considered
good; and it demonstrates that, at least in a
qualitative way, the density dependence of ¢(r) is
reasonable, even as one approaches the vicinity
of the critical density where the theory must fail
because of the metal-insulator transition. Further
on, experimental evidence will be reviewed to
show how far the theory can be carried toward the
critical point.

1II. FREE-ENERGY CALCULATION

The pair-potential model of a metal allows us to
determine the free energy of the solid or liquid.
When this is done, the melting curve can be deter-
mined by means of the requirement that the (Gibbs)
free energies of the two phases be equal on the
melting curve. Various temperature and/or
volume derivatives of the free energy then allow
a determination of the equation of state of the
liquid or solid.

The calculation is not an easy one to do accurate-
ly, however. To get an idea of the problem, con-
sider that the internal energies of the liquid and
solid along the melting curve typically differ by
only one part in 200; thus the small structural
differences in the liquid and solid must be well
characterized.

To calculate the free energy, a variational
method based on the Gibbs-Bogoliubov inequality
is used. The details of this calculation are given
elsewhere®®° and will not be repeated here in
detail. The method can be summarized as follows:
One chooses a reference system which approxi-
mates the structure of the metal in the phase of

TABLE II. Critical constants of several metals based
on the pair-potential characteristics. “Experimental”
estimates are shown in parentheses and are really only
estimates obtained by extrapolating experimental data.
The term py is the normal solid density.

Metal Pe/Py T, (K)
Li 0.38 (0.20%0.06) 2320 (3223 + 600)
Na 0.42 (0.19+0.05) 2250 (2573 + 350)
K 0.44 (0.21£0.04) 1920 (2223 + 330)
Al 0.38 6900 (8000 1500)
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interest. Let the energy of the reference system
be denoted E,, with R some parameter charac-
terizing the reference system. The energy E of
the actual metal is given by Eq. (12). Then the
Helmholtz free energy A of the metal is bounded
above by

A<Ap+(E-Epp, an

where A, is the free energy of the reference sys-
tem, and the expectation value takes e 8%z as a
weighting function (8=1/kT). The inequality holds
for all values of the parameter R; hence we can
choose R so that the free energy is minimized.

For the solid, the Einstein model was used to
define the reference system (each atom oscillates
independently in a karmonic potential well). Thus
R is the Einstein temperature 4. For the liquid,
a hard-sphere reference system can be used, in
which case R is the hard-sphere diameter ¢. This
choice of reference systems is essentially equiva-
lent to Stroud and Ashcroft’s choice,’ once the
high-temperature limit of their Debye-model
reference system is recognized to be nothing but
a form of Einstein model. However, the approxi-
mations used by them may destroy the validity of
the inequality in Eq. (17).

In the pair-potential model, Eq. (17) can be
rewritten as

A<Ag+Ey= Eerio [ drglow),  (18)

where g,(») is the radial distribution function of
the reference system. In the case where ¢(r)

is the Fourier transform of y(q) [Eq. (14) with
the Born-Mayer term neglected], Eq. (18) may be
rewritten as

A<Ap+E,+3 }i_’r%.lzp(q) —(Epr

1 3
‘3 (;’—,,;% ¥(@)[Sx(q) - 1], (19)

where Sp(q) is the reference-system structure
factor.

For the Einstein model, the structure factor
is known exactly.? For the hard-sphere model,
the Percus-Yevick equation structure factor was
used for most of the calculations. Verlet and
Weis® have suggested for this structure factor
an empirical modification that agrees better with
machine experiments. This modification has been
considered also, but only to a limited extent, for
it increases computation time by a factor of 2.
Verlet and Weis give g, (r) rather than S,(g), but
their expression can be Fourier-transformed
analytically (the formula is too complicated to
give here). Thus the Fourier-transform approach,
Eq. (19), can still be used.

As mentioned elsewhere,® it is desirable to sub-
tract out the large-gq behavior of the integral in
Eq. (19). This procedure requires that we be able
to evaluate [d®q q7%[S,(q) — 1] analytically. The
result for the hard-sphere structure factor is giv-
en in Ref. 8. For the Einstein model, the inte-
gral can be evaluated in two ways: first, directly
as an integral over ¢, which leads to

d3q(s(q) -1 , o=@/ 4R
f 4’q[S(g) -1] q(zq) = =472\ + (21)% Z e___Qz ,
Q

(20)

where X = (Mk6®/3%%T)Y? and the sum is over the
reciprocal lattice; or, second, the sum may be
evaluated indirectly by observing the similarity of
the sum in Eq. (20) to a sum needed to find the
electrostatic energy of a metal. Thus if one uses
an equality derived by Fuchs,?® Eq. (20) can be
transformed to read

fdaq[s(q)—l] ___2ma’ _ 2m
7 T (3Q/4mVE T

—on? ZI erf;:)\d , (21)
5

where erfc is the complementary error function,
the sum is to be carried over the lattice, and
a’=(-1.79172, -1.79168) for the (fcc, bec) lat-
tice. The sum in Eq. (21) converges more rapidly
than that in Eq. (20) for the values of § normally
encountered.

The free energies of the Einstein model and
hard-sphere model are as follows:

Ag —(Eq)o =NET[In(A%/v,)] = 3NET (22)
and

Ay =(Eg)o=A,=A +NkT

x (—(a +1)In(1 - 1) +n2_“1
a+3 3a-1)
+W +T—>. (23)

where A =2n%/@TMET)V?, v, = (21%°T /MkO2)¥?
(the free volume), n=4mpo® (the packing fraction),
and A, is the ideal-gas free energy.

The constant g is determined as follows. Equa-
tion (23) is derived from the volume integral of
the hard-sphere gas pressure. The pressure can
be obtained in several ways: first, by the Virial
theorem, which expresses the pressure as an
integral of 8¢ /8r weighted by g, (r), and second,
by the Ornstein-Zernike theorem, which relates
the compressibility to the integral of g (») - 1.

If we assume the Percus-Yevick radial distribu-
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FIG. 4. Schematic dependence of the free-energy
bounding function 4’(6) on the Einstein temperature 6.

tion function, these two approximations give the

free energy if we set a= -3 and a =0, respectively.

A third, and by far the best, way to determine q
is to use the empirically determined Carnahan-
Starling equation of state,?” which leads to a value
a=-1. Except where these approximations are
explicitly tested, all calculations are carried
out using the Percus-Yevick radial distribution
function and the Carnahan-Starling approximation.
There is an anomaly of the Einstein model that
needs to be pointed out. If one proceeds incau-
tiously and uses Eq. (22) at small 6, it turns out
that Ay~ —~ as - 0. Since (E - E,), is bounded
as -0, Eq. (17) implies a negative infinite value
for the free energy of the solid. The paradox is
resolved because Eq. (22) holds only if 6 is so
large that the ions are localized to their lattice
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sites. If ¢ becomes so small that ions can ex-
change lattice sites, we must decide how to treat
the reference-system internal energy U, for this
configuration. It turns out that the simplest solu-
tion to this problem is to modify the reference-
system potential so that it becomes infinite when
two ions occupy the same cell. This has the ef-
fect of limiting the free volume of the cell sur-
rounding a lattice site, and thereby eliminates
the divergence.

This anomaly is illustrated further by Fig. 4,
which plots the right-hand side of Eq. (17) [de-
noted A’(6)] as a function of 6. At both large and
small 6, A’(6) behaves as kT Ing and thus pro-
duces a divergence at small 4. It is clear that the
“correct” bound to the free energy is A(6,). How-
ever, at very large temperatures, the 2T 1Ing be-
havior dominates A’(6), so that the region between
6, and 6, is only an inflection in A’(6) (no minimum
occurs). Stroud and Ashcroft interpret the temper-
ature where 6, = 6, as an onset of mechanical in-
stability, when in fact it appears to be merely a
sign that the Einstein model is not being handled
correctly (and, indeed, probably does not apply at
all). The same “instability” noted by Choquard? oc-
curs in self-consistent phonon theory. Fortunately,
the effect occurs only at extremely high tempera-
tures (~6000 °K) and has no relevance to ordinary
calculations. (An obvious exception to this state-
ment, of course, occurs with helium.)

IV. RESULTS

The calculations were refined to a high degree
of accuracy in order that not only the free energy
itself, but also the difference between the solid
and liquid free energies will be free of numerical
error. To achieve this goal, all integrals were
evaluated by means of a Gauss-Legendre quadra-
ture scheme. 30 points were used in each of
several intervals, with the intervals refined near
q=2k;, where the dielectric constant is singular.
In the evaluation of the solid free energy, recipro-
cal-lattice sums were carried out over 100 shells
and were approximated by integrals beyond that

TABLE III. Melting properties of several metals. Experimental results are in parentheses.
The theoretical results assume the hard-sphere liquid has g, () given by the Percus-Yevick
equation, and A, derived from the Carnahan-Starling approximation. The letter L is the

latent heat of melting.

aT,, /%

Metal Ty (K) Vs(em®/g) AV/V L (cal/g) (K/kbar)
Li 438 (452) 1.90 (1.93) 0.050 (0.015) 162 (103) 6.26 (3.03)
Na 346 (371) 1.06 (1.08) 0.048 (0.025) 40 (27) 10.8 (8.82)
K 318 (337) 1.20 (1.21) 0.048 (0.024) 21 (14.3) 20.3 (16.4)
Al 1175 (933) 0.40 (0.42) 0.046 (0.066) 109 (96) 4.78 (6.44)
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FREE ENERGY

VOLUME

FIG. 5. Schematic dependence of the free energy on
the volume for some fixed temperature. The dotted line
is used to define the solid (V;) and liquid (V;) volumes
at which melting occurs. The slope of the line determines
the melting pressure at the given temperature. The
dashed line shows the results of the theory, while the
solid line is the proper behavior.

point. The calculation accuracy is such that a
10% change in the mesh size of the integration
changes the free energies by only 1 part in 107,
and the latent heat by 3 parts in 10°. Similar
changes occur when the sum on reciprocal-lattice
vectors is extended. When the free energy is
minimized with respect to o or 4, the minimum is
located to a degree of accuracy at least as good
as 1 part in 10® in the free energy.

While such accuracy may seem inappropriate,
it is in fact required if one is to locate the melting
point or evaluated high-order derivatives of the
free energy using finite differences. (For ex-
ample, the temperature derivative of the velocity
of sound is a third derivative of the free energy.)
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Moreover, the Gauss-Legendre quadrature is so
efficient that high accuracy is not at all difficult
to achieve.

Table III shows a number of properties of sever-
al metals associated with their melting (e.g., the
melt temperature and density, latent heat of melt-
ing, volume change upon melting, and so on).
These values are computed by calculating the free
energies of the liquid and solid as functions of
volume and temperature, then locating for each
temperature the common tangent to the liquid and
solid free-energy curves, as illustrated in Fig.

5.

The tangent points V¢ and V, give the solid and
liquid volumes, while the slope of the line is the
negative of the pressure required to have the solid
melt at the given temperature. If one adjusts the
temperature until the pressure is zero, the melt-
ing temperature and density can be found.

Table III shows the predicted melting properties
of several metals along with the experimentally
observed values. As found by Stroud and Ashcroft,
agreement with experiment is on the whole satis-
factory considering the problems inherent in this
type of calculation. Moreover, we do reproduce
the trend in the alkali-metal latent heats, in con-
trast to Hartmann’s results.!°

The source of the quantitative disagreement be-
tween theory and experiments, as is well known,
is the fact that the free energies of liquid and
solid are very nearly equal, so that small errors
in the free energy cause large errors in the latent
heat. We believe this to be the primary reason
Hartmann failed to get the proper trend between
the alkali-metal latent heats. To demonstrate
this, consider the following expression for the
internal energy of the liquid:

U=U,+3p fgo(r)tb(r)ds‘r, (24)

where U, is independent of ¢.
For a hard-sphere system, g, (r) may be very

TABLE IV. Model dependence of properties of liquid sodium near the melting point (P =0).
The models are: PY (Percus-Yevick), VW (Verlet-Weis), V (Virial theorem), CS (Carnahan-
Starling), and OZ (Ornstein-Zernike). A, S, andL are the free energy, entropy, and latent

heat. dp /dT is the slope of the melting curve.

Model T, Priq A s L dp /AT
gor) A, (K) /cmd) AV (cal/g) (cal/g -K) (cal/g) (kbar/K)
PY V 270 0.933 0.027 —-6529 0.5390 22 0.121
PY CS 346 0.901 0.048 —-6566 0.6366 40 0.093
PY OZ 372 0.890 0.056 —6581 0.6650 45 0.085
VW CS 395 0.879 0.064 —-6593 0.6869 49 0.076

Experiment 371 0.905 0.025 —6420 0.7125 27 0.113
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TABLE V. Thermodynamic derivatives of several liquid metals at the theoretical melting
point (cf. Table III). The term 1/K is the bulk modulus; c,,c, are the specific heats; c is the
velocity of sound; and a is the thermal-expansion coefficient.

Metal 1/K p(kbar) ¢, (cal/moleK) c 10% (K1) cp/c,
Li 96.7 (?) 8013 (7.264) 4688 2.6 (1.6) 1.135
Na 50.6 (52.3) 7.936 (7.605) 2527 (2526) 3.0 (2.44) 1.137 (1.099)
K 23.8 (26.2) 8.057 (7.682) 1857 (1880) 3.5 (2.8) 1.151 (1.12)
Al 534 (430) 7.89 (7.58) 5062 (4720) 0.76 (1.16) 1.142 (1.25)

crudely approximated by a step function at »=¢
(or perhaps by a 6 function, but the idea remains
the same),

g,r=cColr-o), (25)

with C a constant of order unity. Small variations
in ¢ will cause U to change as follows:

505(‘2—’ f%;(f—) q)(r)dsr) 50

3
= -C 4——"2‘"’ ¢(o)§£— . (26)

If ¢ happens to fall near the zero of ¢(r), then
variations of ¢ will not cause large variations in
the internal energy and latent heat. This can hap-
pen if ¢ is chosen fortuitously. But in general,
¢(0) will not be small, and indeed the calculations
reported here typically give values of 2 mRy.
Using nominal values of p and o, we find 6U=0.2
mRy, or 20% of the latent heat when o is varied
by only 1%. Thus, systematic errors in ¢ could
have easily wiped out any trend in alkali-metal
latent heat.

The variational approach to the latent-heat cal-
culation avoids this problem because ¢ is chosen
self-consistently with the metal potential ¢ (r).
Thus, any error made for one alkali metal will
be made for all, but the trend in latent heats will
not be lost.

Table IV shows the model dependence of the
melting properties of sodium. The calculations
are done by varying the constant a in Eq. (23),
or by using a different radial distribution function.
The results illustrate again the difficulty of making
latent-heat calculations. Perhaps more important,
the results show that it is not just the difficulty
of representing a system by a hard-sphere system
that leads to errors, but also the fact that the
hard-sphere system itself is not sufficiently well
characterized to allow precise latent-heat calcula-
tions. Thus, the use of a better form of thermo-
dynamic perturbation theory will not remove the
discrepancies between theory and experiment un-
til the hard-sphere system itself is better under-
stood. It should be emphasized that this conclu-
sion applies only to melting properties; for ordi-
nary predictions, the hard-sphere system’s prop
erties are sufficiently well characterized, as we
will see later.

Aside from the model dependence of the calcu-
lation, a characteristic not previously discussed,
the present results agree generally with previous
work by Stroud and Ashcroft. Typically, n=0.45
at melt and is independent of pressure. This value
is larger than that of Stroud and Ashcroft, but it
is very sensitive to the model, varying from 0.42
to 0.50 as the model is changed. The melting curve
does not show the maximum found by Stroud and

TABLE VI. Model dependence of calulated properties for liquid solium. The CS, OZ, and
V refer, respectively, to the Carnahan-Starling, Ornstein-Zernike, and Virial equations for
the hard-sphere free energy A,. The PY and VW refer, respectively, to the Percus-Yerick
and Verlet-Weis approximations to the hard-sphere radial distribution function. In every case,
properties are calculated at the theoretically determined melting point shown.

Model
CS/VW CS/PY 0Z/PY V/PY Experiment

T, (K) 395 346 372 270 371

pr (g/cm?) 0.878 0.901 0.889 0.933 0.927
1/K . (kbar) 47.9 50.6 49.0 55.4 52.3

¢, (cal/mole-K) 7.68 7.93 7.80 8.42 7.61

C (m/sec) 2506 2527 2511 2569 2526

10% (K™Y) 2.93 3.00 2.96 3.11 2.44
c,/c, 1.152 1.137 1.145 1.111 1.099
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Ashcroft; however, the calculation here is done
with sufficient care at high density to ensure that
no spurious maximum is generated. Furthermore,
the present calculation always satisfies the Claus-
ius-Clapeyron relation.

Table V presents thermodynamic derivatives
(compressibility, thermal expansion, and so on)
for each of the metals concerned. In each case,
the calculation is done at the predicted melt tem-
perature and density given in Table III, rather
than at the experimental values. (To do otherwise
would introduce systematic errors due to the fact
that the pressure would not be zero.) In general,
agreement between theory and experiment is rea-
sonably good, being worst for the thermal-expan-
sion coefficient o and related quantities (e.g.,
C,/C,). For sodium, we calculate a value of a
23% too large, while Stroud and Asheroft find a
value 26% too small. In all cases where data
exists, the differences between the alkali metals
are well reproduced. The agreement between
theory and experiment is not so good for aluminum
as for the alkali metals, which suggests that a
nonlocal pseudopotential may be required to
describe aluminum.

Table VI shows the effect of model dependence
on the thermodynamic derivatives of Na. In each
approximation shown, the melt temperature and
density are those predicted by the approximation
given in the table. It will be seen that in no case
is the model dependence of the thermodynamic
derivatives very great.

We have carried out calculations of thermody-

T T T
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£ 8t 1
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(=)
P BN S~ EXPERIMENT
= 1k ~ - i
e THEORY
=
= o6 .
2
o-
wv
1 L
1 1 1
500 1000 1500

TEMPERATURE (K)

FIG. 6. Temperature dependence of the specific heat
of liquid sodium.

namic properties away from the melt line in
anticipation of measurements done simultaneously
at pressure and temperature.!! Since data does
not yet exist for such conditions, we present only
a few of the more interesting results. Figure 6
shows the specific heat of sodium as a function of
temperature alone. The agreement between theory
and experiment is seen to be extremely good.?®

In particular, we reproduce the fall in specific
heat to a minimum value. This fall had been at-
tributed to a failure of the liquid to achieve com-
plete randomness on melting. However, the
theoretical model used here does not consider such
structural effects in the liquid, so the agreement
with experiment is surprising.

As an indication of how the theory fares at low
density, Fig. 7 displays the velocity of sound of
sodium over a wide range of temperature for
several pressures. The agreement with experi-
ment*® at low temperatures (near T,) is very
good, but there is a notable discrepancy in the
trends of the two (nominally)zero-pressure curves.
The downward curvature of the experimental data
reflects the fact that, near the critical point, the
velocity of sound tends to become small. Since
the theory presented here cannot be expected to
apply at the critical density because of the metal-
insulator transition, one is left with a small up-
ward curvature. At the highest temperature shown
in Fig. 6, the density has fallen to 0.7 of the nor-
mal liquid density. At this density, the error in
the velocity of sound is still only 20%. However,
it is clear that this error rapidly worsens as the
critical density is approached. Some of the dis-
crepancy is due to a bad initial slope of the veloc-

3000 T T
p=10 kbar
2500 - p=2kbar
3 T p=0
E .
= .
S 2000f . 4
E EXPERIMENT °
g b0
=
o
wv
1500 - -
l 1 1
500 1000 1500
TEMPERATURE (K)

FIG. 7. Temperature dependence of the velocity of
sound of liquid sodium at vapor pressure, and at elevated
pressures.
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ity-vs-temperature plot. This condition probably
reflects small errors in the pseudopotential or
problems in the use of a hard-sphere reference
system. Problems associated with the metal-
insulator transition itself would cause the two
curves to diverge significantly only at tempera-
tures in excess of 1600 °’K. For densities below
perhaps one-half of the normal liquid density
(i.e., about twice the critical density) one would
no longer be able to ignore the Mott transition.
As a point of reference, the Einstein tempera-
tures calculated, respectively, for Li, Na, K
at melt were 298, 121, 77 °K, versus the experi-
mental values of 335, 156, 91 °K. This might be
considered indirect evidence in support of the
Einstein model as a reference system. The va-
lidity of the hard-sphere reference system for
liquid alkali metals has been established by com-
paring the radial distribution functions.3!

V. SUMMARY

Calculations have been presented for thermo-
dynamic properties of several liquid metals, not
only at the melting point but also over a range
of temperatures and pressures. By considering
several alkali metals as well as aluminum, it has
been demonstrated that it is possible to predict
trends in the properties of a series of metals. For
latent-heat calculations, great care was required
to accomplish this and to avoid getting the spurious
trend seen in previous work.

The results for aluminum were not as satis-
factory as those for the alkali, although still in
reasonable agreement with experiment. Better

agreement should be had when a nonlocal pseudo-
potential model is employed; such a model will
also allow the study of other metals, in particular
mercury, which allows easy experimental inves-
tigation.

From the predicted critical-point estimates, it
was hypothesized that the theory might be carried
out toward the critical point with some success.
To test this, calculations were carried out to low
densities and higher temperatures in an effort
to locate the critical point. With reference to
Fig. 5, this operation would be done by carrying
out another tangent construction between the two
dips in the liquid free-energy curve. Unfortunate-
ly, the theory does not predict the second dip in
the curve, but rather follows the dashed line. The
dip occurs because the conduction electrons can
lower their energy by dropping into atomic orbitals
once the density becomes low. The theory pre-
sented here cannot account for this metal-insulator
transition effect.

By comparing the theory with experimental data
for the velocity for sound, it was found that the
metal-insulator transition could be safely ignored
out to perhaps one-half the normal density. But,
to get a theory which predicts a critical point, and
which thereby gives reasonable thermodynamic
properties in the vicinity of the critical point, will
require consideration of the Mott transition.
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