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We measure the incoherent quasielastic scattering of thermal neutrons from hydrogen gas
at 85'K and various pressures up to 140 atm. The observed Van Hove%self-correlation function

(or the self-part of the dynamic structure factor) shows a narrowing effect as the ratio of
the observational wavelength to the collisional mean free path increases. The resulting line
shape and linewidths are analyzed using an appropriate kinetic equation. The theoretical
prediction agrees with experiment when the only parameter in the theory, namely, the self-
diffusion coeffic'~ent, is properly calculated in the Enskog approximation. We demonstrate
experimentally that the linearized Boltzmann equation gives an accurate description of the
dynamics of the single-particle motion at moderately high density and in the range of wave

vectors and frequencies comparable to inverse collision mean free paths and collision fre-
quencies of the molecules.

I. INTRODUCTION

Kinetic equations, formulated as a well-posed
initial-value problem, provide perhaps the most
systematic method of evaluating classical time
correlation functions. ' This approach has several
advantages. It allows a molecular treatment of the
collisions among particles, especially those in-
volving only two molecules at a time. It gives the

proper macroscopic behavior of time correlation
functions when general conditions related to con-
servation laws and hydrodynamics are satisfied.
It allows all the thermal fluctuations to be analyzed
in a unified calculation since the solution is in
terms of the phase-space correlation function.
Because of these properties one can regard the
kinetic-theory description as an effective inter-
polation between the microscopic world of inter-
molecular interactions, mean-field effects, and

free molecular flow, on the one hand, and the
macroscopic world of transport coefficients and

hydrodynamic processes on the other.
For dense gases and liquids the kinetic-theory

approach to time correlation functions presents
two basic difficulties. The first is that the ap-
propriate collision operators, valid at arbitrary
frequencies and wavelengths, have not been avail-
able. It is only recently that significant progress
in a microscopic derivation of these operators
has been made. ' The second difficulty is the
calculation of transport coefficients and thermal
fluctuation spectra once the kinetic equations are
known. ' Because of these difficulties recent
calculations of time correlation functions in
liquids have been carried out either at the level
of generalized hydrodynamic equations or involve
model collision operators. '

In the case of dilute gases the difficulties in-
herent in a kinetic-theory approach can be largely
overcome. It is generally recognized that the
kinetic equation which describes the nonequilib-
rium behavior of a low-density fluid is the lin-
earized Boltzmann equation. 4 This is an inter-
mediate level of description because the collisions
are assumed to take place instantaneously between
point particles. Since the Navier-Stokes equations
of hydrodynamics can be derived from the Boltz-
mann equation, there is no question that this
kinetic equation gives correctly the low-frequency
and long-wavelength behavior of time correlation
functions. The validity of the Boltzmann equation
in the kinetic regime, where wavelengths and

frequencies are comparab1. e to collision mean free
paths and collision frequencies, can be established
on theoretical grounds. ' Also, recent results
from Rayleigh scattering studies' and computer
molecular-dynamics experiments' support this
view. However, at still higher frequencies and

shorter wavelengths one can expect the Boltzmann
equation to break down. When the frequencies be-
come comparable to the reciprocal of the collision
duration and wavelengths become comparable to
the particle diameter, one can intuitively see that
any collision operator which treats the interaction
as an instantaneous collision between two point
particles cannot be valid under these conditions.
In order to probe the high-frequency and large-
wave-number behavior of correlation functions
one needs to consider neutron scattering or
computer molecular -dynamics calculations.

Recently a kinetic equation for low-density
fluids which is valid for all frequencies and wave-
lengths has been derived by Mazenko. " The
collision operator, which is explicitly nonlocal

3163



CHEN, LE FEVRE, AND YI P

in space and time, has all the desired general
properties and reduces in the low-frequency and
long-mavelength limit to the Boltzmann collision
operator. %'e will henceforth refer to this equa-
tion as the generalized Boltzmann equation. It
is interesting to note that the corresponding equa-
tion describing the single-particle phase-space
correlation function, in the special case of hard-
sphere interaction, reduces to the appropriate
Boltzmann-Lorentz equation. "" This indicates
that in studying the van-Hove self-correlation
function in a dilute gas of hard spheres the Boltz-
mann equation is valid for all frequencies and
wavelengths.

In order to experimentally test the validity of
the above statement we carried out a quasielastic
neutron scattering experiment on hydrogen gas at
85 K. Since hydrogen is predominantly an inco-
herent scatterer the measured, cross section is

~
proportional to the self-part of the dynamic struc-

, ture factor, which can be calculated from the sin-
' gle-particle phase-space correlation function, as
mill be done in Sec. II. Our preliminary experi-

: mental results mere reported in Ref. 12, where we
showed that the qualitative feature of the line nar-

~rowing with the increase in pressure can be ac-
counted for by the one-relaxation-time kinetic mod-

,
el of Nelkin and Ghatak. '3 We have since then car-

' ried out a more extensive measurement at various
,
'pressures and we shall carefully study the linewidth
by using the. rigorous solution of the Boltzmann
equation in the special case of a hard-sphere gas.
Thexe is good evidence" that the linemidth of the
van-Hove self -correlation function is insensitive
to the details of the intermolecular potential
function, except for its equivalent hard-sphere
diameter. Although according to Mazenko et al."
the Boltzmann equation is valid for all frequencies
and wavelengths only at low densities, i.e.,
q=—~wnr', &0.005, where n is the number density
and r0 the equivalent hard-sphere diameter, me
shall show that the result can be greatly extended
to high densities provided that the Enskog cor-
rection is made to the self-diffusion coefficient.
The experiment also shows that the scaling proper-
ty of the Boltzmann equation, namely, that the
reduced linemidths vs the dimensionless param-
eter y is p universal function, is mell obeyed
up to a density q =0.13, which is significantly
larger than 0.005 and is close to the critical densi-
ty of hydrogen.

The significance of our experiment lies in the
fact that it, for the first time, experimentally
establishes the validity of the linearized Boltz-
mann equation in describing the single-particle
motion in a dense gas in the distance and time
scale of the order of the mean free path and the

mean collisional time of the molecules.

II. KINETIC THEORY

The fundamental quantity in the kinetic-theory
description of thermal Quctuations in gases and
liquids is the time-dependent phase-space density
correlation function. ' The analogous function in
the test-particle problem (self-correlation) is

8,(r —r', pp', t —t') = (l/n)(5f, (rpt) t}f,(r'p't')),

f,(rpt) =~Nb(r -R (t))6(p —P(t))

is the single-particle phase-space density, and

5f, is the deviation off, from its equilibrium
value (fg =nf, (t()/vN. The position and momentum
of the test particle are denoted by 5 (t} and 5(t).
There are N particles in the Quid system of
volume 0, so the average density is n =N/Q. The
angular brackets denote an average over an equi-
librium ensemble, and

(3)

is the normalized Maxmellian momentum distribu-
tion at temparature T = (P}t~) ' for particles with
mass m. We see that (fg vanishes in the thermo-
dynamic limit so S, is the autocorrelation function
of f,.

We consider only classfi. cal Quids which are in-
variant to spatial and time translations, rotations,
and inversions. Then the spatial and time depen-
dence of the correlatign function appears only
through the magnitude of r —r' and the time dif-
ference t-t'. At t=t', S, assumes its static value

s.(r, pp', o) =f,(t )~(p - p') t}(r) .

In the following calculations me mill deal directly
with the Fourier-Laplace transform of (l):

z (zpp'z)=-i f zzz'"
0

d're "'S,r, pp', t,
mhere s is a complex frequency s =~+i~, with
e small and positive. One can show that 8,(happ'. s)
satisfies a kinetiq equation of the form"

(~ —k. p/m}S, (happ's ) = Z,[S,]+S(happ'), (6)

where the initial condition g, is the spatial Fourier
transform of (4), and J,[S,] expresses the colli-
sional effects. It is useful to write

z[z.(= I z'(" (.(zzz"z) z(zz"z'z(,
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thus introducing a space- and time-dependent
collision kernel often referred to as the memory
function.

The calculation of )}),(kpp'z) for dense gases and
liquids is a complicated problem of considerable
theoretical interest' but will not be discussed here.
In the case of dilute gases general expressions for
q, and the corresponding memory function for
density fluctuations have been derived recently
by Mazenko. ' These results show that fox an
arbitrary intermolecular potential, )t),(kpp'z)
depends only on the dynamics of binary collisions
and is, in general, frequency and wave-number
dependent; however, in the special case of hard-
sphere interaction, y, becomes independent of both
z and k. '0 " For this case the collisional integral
ls

z.[s.]=)»»*,f a'), au,
" P' o (» $-i, ))

&& [f.(t,)S,(kpp'z) -f.@l}S,(kp'p'z) ]

where ro is the hard-sPhere diameter, 8 (x) is
the step function (unity where @&0 and zero other-
wise), and the asterisk denotes the post-collision
momentum variable. When (6) is inserted into
(6) one finds that the kinetic equation is precisely
the linearized Boltzmann equation for the test-
partiele problem with hard-sphere interactions.
This is the only known case where the Boltzmann-
equation solutions are valid at arbitrary frequen-
cies and wavelengths.

Equation (6) with J, given by (6}has been studied
by Mazenko, Wei, and Yip." Their numerical
results, along with other calculations using the
Boltzmann equation, will be discussed later in
See. V. For the purpose of analyzing ineoherent-
neutron-scattering data one is interested in the
van-Hove self-correlation function"

is a typical collision frequency and v, = (kzT/m) v'
is the thermal speed. The dimensionless param-
eter y is then a measure of the ratio of the wave-
length of fluctuations to the collision mean free
path. In the limit of small y we expect S,(k&u) to
have a Gaussian form,

S (key)=()tmkvo) 'e ~'+'~o, y«1 (12)

which is the line-shape characteristic of Doppler
broadening. At the opposite extreme of large y,
S,(ko)) should have a Lorentzian form„

1 Dk'

9.(kpp'z) = -t~[6(p' —p) -f.Ã], (14)

where o. is an appropriate collision frequency.
Equation (14) leads to a simple kinetic equation
which allows S,(k&u) to be expressed in terms of
tabulated functions. We will see later that the
results of such a model are only qualitatively use-
ful in interpreting neutron scattering data. "

the line shape describing diffusive motions. In
(12}D is the self-diffusion coefficient.

Any solution of (6) will have the correct limiting
behavior (12) and also (12) provided the collision
operator does not violate the property of particle-
number conservation. The distinction between the
Boltzmann-equation solutions with different inter-
action potentials, or even between a Boltzmann-
equation solution and an approximate calculation,
is therefore a matter of the behavior of S,(k&g) in
the intermediate region where y-1. One can
avoid the complexity of solving the Boltzmann
equation by using suitable kinetic models. The
first model introduced in this context is the single-
relaxation-tine kinetic model. " The memory
function corresponding to this model is simply

G,(r, t}=f1 (5(r —R (t))5(R,)}

or, rather, its transform

where u is a real frequency. The latter can be
obtained directly from the kinetic equation solu-
tions as

1
S,(ko)) = —— Im d'p d'p' S,(kpp'z)

(11)

While the detailed behavior of S,(k&u) for any inter-
moleculax potential ean be obtained only by numer-
ical calculations, its asymptotic properties are
well known. " It is convenient to introduce a, col-
lision parameter y defined as c)/WRkv„where a

HI. NEUTRON SCATTERING FROM HYDROGEN

The low-energy neutron scattering cross sec-
tion of hydrogen molecules can be expressed in
terms of contributions corresponding to definite
rotational transitions. ""At a tempexature of
85 'K„ the sample temperature of our experiment,
we need only consider the 4=0 (para) and J= 1
(ortho) states since population of the 4 ~ 2 levels
is negligible. Even though parahydrogen scattex'ing
is purely coherent we can neglect it because the
orthohydrogen cx'oss section is predominantly in-
coherent and is some 30 times that of the para-
hydrogen. If we further restrict our measure-
ment and analysis to the qua, sielastic region of
the scattering, we can also neglect the 1-0 tran-
sition because of the presence of a form factor
j', (Qt)), where j, is the first-order spherical Bessel
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function, 25 =0.75 A is the internuclear distance,
and q ~ 0.6 A ' is the wave-number transfer in the
experiment. Consequently, the observed line
shape may be analyzed in terms of the double-
differential cross section"

= n2, N(n/u, )Q;(q5) +2/(qb) j

)(e -&(uhaste -& Q Ames 1'S (q ~} (15)

where g. , is the incoherent scattering length
(2.5 x10 "cm), h, and k are the incident- and
scattered-neutron wave number, and 5+, IQ are
the neutron energy and momentum transfers
to the sample. The exponential factors appear
because we are using a classical time correlation
function which does not preserve the property of
detailed balance or describe the recoil effects. "
According to (15}the energy distribution of guasi-
elastically scattered neutrons is determined,
aside from the known factors, by the spectral dis-
tribution of the van-Hove self-correlation function.
If we estimate the value of the collision parameter
y corresponding to Q ~0.6 A ' and gas pressures
of about 100 atm at 85 K, we find that the mea-
surements are in the region of y-1. Thus neutron
scattering should give a sensitive test of the kinet-
ic-theory predictions.

IV. EXPERIMENTAL DETAILS

A. Description of the Spectrometer

Measurement of the dynamic structure factor
S,(q, &u) requires both neutron monechromating
and analyzing devices. This can be done by using
either a time-of-flight apparatus or a crystal spec-
trometer, or any combination of the two methods.
In this experiment we used a three-axis crystal
spectrometer (TAS) located at the MIT reactor
(CP-5 type, 5 MW). The TAS used pyrolitic
graphite crystals as both the monochromator and

the analyzer. It has basically two advantages over
the time-of-flight method. First, it can be set
to investigate S,(q, ar) in a selected range of q and
+ which is of interest to the experiment. There-
fore the information obtained by the spectrometer
is never redundant. Secondly, it can be operated
in a "constant-Q" mode; that is to say, one can
scan through the spectrum of S,(q, &u) at selected

values. The pyrolitic graphite crystal is an
excellent reflector for low-energy neutrons, and
furthermore, by selecting the incident neutron
energy at F.,=12.6 meV (A. =2.55 A}, we are able
to take advantage of an excellent graphite filter
(pyrolitic graphite plates stack up to 2-in. length}
which removes essentially all the second-order
contamination in the incident beam. The mono-
chromatic beam at the sample position is 1 in.
high by —,

' in. wide, with the total intensity of about
10' neutrons/sec. The schematic layout of the
spectrometer is shown in Fig. 1. It should be
noted that the monochromator section consists
of a pair of parallel crystals. This so called
"double monochromator. " is similar to the original
design of Stedman, "which offers not only flexi-
bility and ease of the spectrometer design but also
possesses some nice features in the energy reso-
lution function. %'e shall go into the question of
resolution function in the following. The experi-
ment was carried out with a fixed incident energy,
and energy analysis of the guasielastic peak was
made at constant Q ranging in magnitude from 0.2
to 0.6 A '. The smallest scattering angle en-
countered during the runs is 1'.

B. Resolution Function of the TAS

Vfe shall discuss the energy resolution function
necessary for extracting the linewidth from the
experimental data of the incoherent, quasielastic
peak. The complete resolution function of the
TAS was studied in great detail in Lefevre's

Ftlhr

goni&o& 2.

Nonihr )

FIG. 1. Schematic ar-
rangement of the NIT
three-axis spectrometer.
Note the double-monochro-
mator arrangement vrhich
makes it slightly uncon-
ventional.
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thesis, "and we shall only quote relevant results
applicable to the present experiment. Following
Coopex and Nathans22 we treat the resolution
elements, eollimators and mosaic crystals, as
Gaussian functions with width parameters (standard
deviation) a and q. Under normal experimental
conditions it is an excellent approximation to treat
the vertical resolution as separable from the
horizontal resolution. " The horizontal resolution
determines the line shape and the vex'tical resolu-
tion enters only as an over-all intensity factor.

1, Resolution Function of the Double

Monochromator

The probability that a neutron with angular

y, (after the collimator C,} and energy (ak, }devia-
tions from the mean values wiQ get through the
double monochromator is

t tttt, d (
' ttttttt„),

where

Therefore the beam divergence after the double
monochromator is independent of the mosaic
spreads of the monochromating crystals, and

the in-pile collimator and monochromator-to-
sample collimator play a symmetric role. The
energy resolution can be obtained by integrating
equation (16) over the angular variable,

xexp ——, c„-~ ' tang„

(21)

%e again define the energy-width parameter as

(22)

It is then straightforward to show that, for a given
8'„, the intensity I,+~ is maximized when

g-" y„~ tang„=~„exp ——, a„y2+2b„y2 ~ tang„ 2 1 1 1 1
+ ~ +~

2 2 2 2
&0 2

(23)

1 1 1 1 1
g@=—2+—2+—2+ 2 +

2 1 1=—+ +
~2 ~2 q2

4 1 1=—+ +
N 2 . 2

tan g

(16)

In other words, the effective mosaic spread of
the double-crystal system should match the eolli-
matox' widths. Under this condition we have the
optimized beam divergence of

(24)

[from Eq. (20)] and the beam energy width of

~q =2(2 In2)~ g~2E) cot es.

and subscripts 0, 1, and 2 denote the collimator
C, mosaic crystals M, and M„etc. g„ is a flux-
dependent normalization factor:

R„=Pok, cote„y(k, )~ (k, ), (18}

where P, is the vertical divergence of eollimator
C„P(k,) the energy-dependent neutron flux from
the reactor, and P„(k,) is the energy-dependent
monochromator reflectivity. Po enters the expres-
sion because the assumption is made that the verti-
cal resolution is dominated by the in-pile collima-
tion.

Integration of (16) over the energy variable gives

g2 y 2

lq ~(y, ) =It„— exp -2 s„—~ y', . (19)
N W hf

Since o.t»q„, , „u„n„u„ewhave for the angular-
divergence wi;dth

Comparison of the above results with the stan-
dard single monochromator resolution function
shows that a double-monochromator system be-
haves like a single-monochromator system with a
relaxed in-pile eollimator, an equivalent mosaic
crystal of spread q„,q„,/(q'„+ g'„,)~', and an
equivalent monochromator-to-sample collimator
of width o.,u, /(a20+u', )~'. Under this condition
the single monochromator has an optimized beam
energy width of 2(2 In2)~'v 2q„2E, Cote„and beam
divergence of 8' =q„. Therefore, aside from the
loss of intensity due to double monochromation,
the double monochromator has a v 2 factor better
energy and directional resolution compared to the
single monochromator.

2. Resolution Function of the

Analyzer Spectrometer

S' = a -~ ——+— (20) This is the same as the conventional TAS and
«corresponding I,+ can be written down as"
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xexp —
p c~ — tang~

(26)

E„=P„k/ cot 8„P„(k/),

+p2

1 @'2 2

2 4E' cot'8„(W„'+pW„') ' (32)

which is a Gaussian peak with full width at half-
maximum,

FWHM = 2 (2 ln2) ~'[2E/ cot8„(W„'+p'W„'} /'j,

(33)

R„R„k 2' cot 8„I„((d}=(2s) —oaf( w(/2 fW(((WAk2IW2 2W2, (/2m (g~g ~) 8 (W~+ p W~)

1 1 1
8 =—+—+—

~2 2

1 2

1 4
c =—+—.

A

The width function W„ is given by

W„'= c„—b'„/a„

(27)

(28)

p = E, cot 8„/. E, cot 8„. (34}

This means that we can determine the experimen-
tal parameters W and W„by use of the vanadium
rocking curve with two different combinations of
E, and E&. For the present experiment, we use
an incident energy of E, =12.74 meV and two
vanadium rocking curves were obtained with (002}
and (004} planes of the graphite analyzer. The
curves were approximately Gaussian with widths
of 0.757 and 0.540 meV, from which we then use
(33) to obtain the values

Wz' = 82250 and W„' = 64600 .

Under the usual condition n4+& a.„q„, an optimized
arrangement is to choose n, = g„, resulting in

H& 124 atm 305 'K

W„= (a„+'g~} = W2g„. (29) 1000

3. Energy Resolution Function of TAS

By the energy resolution function of TAS we
mean the energy width measured with a sample
which has the following neutron cross section:

d2O gg 20

dQ d(k,k/) dQ d(d d(ak/)
C

O

=05 e-—k -k —k .2 2

2m
(30} 500

Solid vanadium is an almost-pure incoherent scat-
terer and at room temperature approximates
closely the above ideal cross section. Therefore,
if the thickness of the vanadium plate is t, the
quasielastic peak measured with the constant-Q
scan would have an intensity distribution

1„( }=f —k~g(5 ——(k, ,—k~)

i f
(31)

The integration can easily be done by substituting
1, and 8"( from (21) and (26) to obtain

I I

-I 0
E,. —

E& (meV)

FIG. 2. Qlustration of the resolution shift and broaden-
ing of the quasielastic peak. The dotted line gives the
theoretical curve for a per feet-gas Doppler-broadened
cross section corresponding to the temperature. The
circles are experimentally measured cross sections
and the solid line represents the theoretical cross sec-
tion convolved with the resolution function. The accu-
racy of resolution correction can be made to about 5%.
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In studying the quasielastic peak of liquids and

gases, only the energy resolution function is
important. The reason is that the cross section
is usually a slowly varying function of Q compared
to the momentum resolution function of the spec-
trometer. In almost all eases the cross section
can be considered as a constant over the nonzero
range of the momentum x esolution function so that
its measured value is given by [referring to (32}]

R (~) [(2s)()'2gy(~)]-(e-(u /2((' ((u)

with an energy-dependent width given by

W((()}= (2Zf/)f) cot 8„[R'„+p W~](~' . (41)

The measured differential cross section is then
the convolution of the theoretical cross section
and the resolution function, i.e.,

and the index 8 means that the value is taken at
the Bragg position for which u=0. On the other
hand, R, (&u} is a sharp Gaussian function

= (2((}'~'—P'„P„g(k(}k(cot 8„ky cot 8„ dQd '" J '" "
dAd

Pp~~
(((„s„)~' &(~)

e ' '/' " 'o g a)' d(u'

01

o„(Q, &o) ()(:k,'. cot 8„k& cot8„c(Q, (())

o (Q, v} k', cot8„kz cot8„S,(Q, (()) .

(37)

(38)

The hydrogen scattering law has been measured
at room temyerature and at a pressure of 124
atm with TAS at Q =0.3 A '. At this condition

S,(Q, &u) should be given by the well-known free-
particle expression (12). Figure 2 shows the
measured points and the theoretical curves with
or without the resolution correction of (38). The
good agreement substantiates the assumption that
the analyzer ref lectivity ean indeed be taken to be
constant over the narrow frequency range of the
incoherent peak.

Summarizing the above discussion, we can
concisely yut the resolution function of the TAS
for the present experiment as follows: The resolu-
tion function R((()) at an average energy transfer

consists of two factors,

R((d) =R,((d)R, ((d),

where R,(((() is a slowly varying factor equal to

R,((u) = k~2 cot 8„/[k~2 cot 8„]s (39)

W2(~) = [(2Z,/a) cot 8]'(W„'+p'W„') . (38)

The important limiting case of (35) is when o(Q, (d)

has a yeak much wider than the resolution function.
It ean then be taken out of the integral. If we as-
sume that the analyzer xeflectivity is roughly
constant over the region F& =12-15 meV, and the
neutron flux from the reactor is Maxwellian, we
have then

C. Sample and Sample Holder

Two series of measurement have been cax'ried
out at pressures of 35, 70, 140 atm and 110, 120,
130 atm, respectively. In both cases the tempera-
ture was maintained at 85+1'K. Values of wave-
vector transfer Q x'ange from 0.2 to 0.6 A '. Above
@=0.6 A ' the low peak intensity made the mea-
surement inaccurate, and also the y parameter
is so small that from the theoretical point of view
they are uninteresting. The sample holders were
made of 6061-T6 aluminum with cylindrical bore
of 1—,

' in. high by —,
' in. diameter. The wall thick-

ness is —,
' in. Hydrogen gas used was of research

grade with 99.999% purity. The background was
measured between experiments at different pres-
sures with the empty sample holder. At the
smallest Q the background was found to be fairly
sharply peaked at the elastic position.

In data corrections the effects of multiple scat-
tering and self-shielding must be considered. Al-
though our sample holder is a long and rather
thin cylinder, the sample transmission is down to
about 60% at the highest gas density ((s = 1.09
x10" cm '). An estimate of the twice-scattered
contribution in this case gives about 40% of the
once-scattex ed intensity. " However, the multiply
scattered neutrons should have a much broader
energy distribution. For example, neutrons scat-
tered into the axial direction have to experience
at least two 90 scatterings if they are to ax rive at
the detector, and with each large-angle scattering
considerable broadening will result. The self-
shielding correction takes into account those onee-
seattered neutrons which fail to arrive at the de-
tector because of subsequent multiple scattering
in the sample. The effect of this correction is
to multiply the measured intensity by an essentially
constant factor." Since we are interested in the
line shape of the quasielastic peak where kp k,
we assume corrections can be taken into account
approximately by first subtracting the background
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FIG. 3. Measured double differential cross section of hydrogen gas at 85'K and 130 atm. Measurement is done with
the constant-Q scan. The dotted curve in the bottom is roughly the resolution width of the spectrometer. The solid
lines are the fitted curves with the single-relaxation-time model with variable-e parameter. The arperimental line-
widths are extracted this way for convenience. As shown in the graph the asymmetry factor has been taken out so that
the peaks are centered around co =0.

due to the empty sample holder and then subtract-
ing the additional broad background due to multiple
scattering. In making these corrections we are
also guided by the property that S,(Q, &u} should
have unit area at any value of Q and that it is
given by (12) in the dilute-gas limit y «1.

V. DATA ANALYSIS

To analyze the data we calculate S,(Q, ~) by
solving the linearized Boltzmann equation (6)
and apply (11). The result is inserted into the
cross-section expression (15), which is then con-
volved with the experimental resolution function
according to (42). Actually what was done was to
use the single-relaxation-time-kinetic model
solution" to fit the data by using the collision fre-
quency 0. as a fitting parameter. From the best
fit to the experimental line shape we then extracted
the experimenta linesvidth of the S,(Q, &u). The
kind of fit we obtained is typically what is
shown in Fig. 3 for the 130-atm data. We judged
that this was an accurate and satisfactory way
of extracting the experimental linewidth, although
the parameter a we thus got may have no physical
significance. This procedure gives a value for
FWHM at a particular density and wave-number
transfer Q. Figure 4 shows the extracted FTHM
in meV as a function of Q' for pressures 110,-120,
and 130 atm. The solid lines are the FTHM of
the measured peaks and the dotted lines are the
extracted FWHM of S,(Q, &u}. In order to compare
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FIG. 4. This f~e Nhews the linewid4h as a Sme@en
of Qm. The said line gives the linewidhh ef the saeaeared
S, (Q,e) as, for example, given in Fig. 3. ~ dotted
liie gives the extracted lieewidths after deconvolutioa.

this with theory we like to take into accent the
scaling property of the linearized Boltzmann equa-
tion. Namely, the S,(Q, &u) calculated from the
equation is really a function of reduced variables,
x = &u/~gv„and the collision parameter y alone.
It is more general and convenient to define y as
v, /~DQ, which is also consistent with the previous
definition o./WQv, which is applicable to the
single -relaxation-time model. Then the problem
is to determine D as a function of density. In the
case of the hard sphere the self-diffusion co-
efficient is related to the hard-sphere diameter
and the gas density by"
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(43}

whRh is valid at low densities. For a dense gas,
such as we have, we shou1d apply the Enskog
correction, wMch gives the diffusion coefficient
at higher density n in terms of the one at lower
density n, according to

(44)

where

X = 1 +0.825 (-',euro) +0.2889 (—', sero)'

+0.115(-',snro)' (45)

is the dimensionless excess compressibility factor
for a hard-sphere Quid.

This factor ranges from 1.0V for the pressure
at 35 atm (s =3.08x10" cm. '} to 1.28 at 140 atm
(n =1.09 x10" cm '). We take as the reference
density z, = 8.8 x10" at 1 atm, for which the value
of D is 0.172 cm'/sec at 85 'K." It should be noted
that a recent computer molecular-dynamics experi-
ment" indicates that the Enskog prediction under-
estimates the self-diffusion coefficient because the
collective effects in the Quid which lead to persis-
tent correlation have been ignored. The enhance-
ment effect has been observed in the «elf-diÃ~skeIL

coefficient measurements on methane" and kryp-
ton."This means that our calculation of D based
on (44) could be somewhat lower than the true val-
ues. Judging from the computer molecular-dy-
namics result on a hard-sphere gas" we estimate
that this enhancement correction to D is not more
than 10% at 140 atm and is correspondingly small-
er at lower pressures.

Figure 5 shows the reduced FWHM plotted
against y. The experimental points are shown as
black dots; and the theoretical prediction is rep-
resented by the solid line. The theoretical curve
is made up of the hard-sphere calculation of Maz-
enko, Wei, and Yip" and hard-sphere, Lenard-
Jones, and exp-6 potential calculations of Desal"
(the latter calculations are represented, respec-
tively, as crosses, triangles, and squares in the
graph}. We note that various calculations using
widely different potentials give more or less the
same FTHM.

VI. DISCUSSIONS

There are two ways of solving Boltzmann-type
kinetic equations to obtain S,(k&u). One way is to
use the kinetic equation to compute the mean-
square displacement function (r'(t)) and higher-

ae I.9—
N
LI

.&x

S IMP LE
D IFF U S ION

0.%—
~~~~"

II ~~ ~

0
I

04
I

0.8
~o

2DQ

I.2
I

l.6

FIG. 5. Dimensionless FWHM of g(Q, co) plotted against the y parameter for all the measurements. The dimension-
less FWHM is de5eed as the FWHM of Fig. 4 divided by Qu& and y =vo/2'. In this plot vo is tak—en as (2ksT/v4t~t
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which is iMferent from the de8~&tion in the text by factor v 2. The black points are mrperimental values; the solid line
is the hard-sphere caaeelaNon of Mazesko, Wei, all Yip (Ref. 10); and the crosses, triangles, and squares are calcu-
la@oms ef Desai giLef. 28) for ha-sphere, Lena'-Jones, and exp-6 potentials, respectively. Also indicated are the
known limni&~~ eases of frey parNcles and si @pie diffusion.



order spacial moments of G,(r, t). Non-Gaussian
corrections to the Qaussian approximation can
be calculated in terms of (r'"(t}),s & 2. This is
the approach used by Desai." The other method
of calculating S,(k&o) is based on the use of gen-
eralized kinetic models. " This method has been
used by Mazenko et al." The hard-sphere result
of Mazenko et uE. agrees numerically with the
hard-sphere result of Desai. So one has confi-
dence in both methods of calculations. Desai's
method is more Qexible in that it can handle the
other potentials more easily. But the same method
would not work for the full density correlation
function since in this case the Gaussian approxi-
mation is not good. On the other hand, the kinetic-
model method is equally well suited for G,(r, f} as
well as G(r, f) problems. For example, the gen-
eralized Boltzmann equation for hard spheres
has been treated in this way by Mazenko et al, "

As we remarked earlier the reduced FVjfHM

computed using the different potentials differ
only slightly. This indicates that'the spectral dis-
tribution of S,(hu) is not sensitive to the details
of the short-range interaction between molecules.
By details we mean the steepness of the repulsive
part of the interaction as well as the presence of
a long-ranged attractive tail. In addition, a softer
repulsive interaction, the Maxwell potential, has
been studied recently by Deutsch. " The FWHM
values also fell into the same theoretical curve
of Fig. 5. It appears that in order to learn any-
thing about the details of the interaction potential
we will have to study the van-Hove self-correlation
function over a wide range of temperatures. It is
interesting to note that the present data on FWHM
enables us to distinguish between direct calcula-
tions using the Boltzmann equation itself and the
model solutions. Although not indicated in Fig.
5, a comparison between the present data and the
former calculation" using the one-relaxation-
time model" show's that the model could be off by
about 6% for values of y-1.0. The single-relaxa-
tion-time model assumes that the collisions are
very effective in thermalizing the velocity distri-

bution of the molecules, which results in an under-
estimate of the FTHM. At the opposite extreme
the Fokker-Planck approximation" assumes
grazing collisions and small changes in the particle
velocities and it gives an overestimate of FWHM
of about the same magnitude. 3' The accuracy of
kinetic -model approximation improves markedly
if a few more eigenvalues of the collision operator
(or, equivalently, the relaxation times) are con-
sidered explicitly. For example, a three-relaxa-
tion-time model gives result accurate to 0.66% in
the case of Maxwell molecules. " Thus in some
sense one is seeing from the data the effects of
a distribution of relaxation times.

In conclusion we have demonstrated the effects
of collisional narrowing in a gas by means of
a neutron scattering experiment. It may be sur-
prising that the lineshape observed with such a
high-frequency and large-wave-number probe can
be quantitatively explained by using kinetic theory
based on the Boltzmann equation. %e believe
that the good agreement obtained is rather special
to the case of single-particle motion. On theoreti-
cal grounds one can show that at least in the case
of a low-density hard-sphere Quid the Boltzmann
equation is correct at all frequencies and wave-
lengths. It would be most interesting to extend
this kind of measurements to S(k&o}, the full density
correlation spectra. There we expect that the
Boltzmann equation would break down and one
needs to use the generalized kinetic equation
derived by Mazenko. ' Even with the measurement
of S,(k&o), we think that at sufficiently high density,
such that q &0.2, we should begin to see the col-
lective enhancement effect of D, as was observed
by the computer molecular dynamics. "
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