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The self-consistent random-phase approximation is used to derive an integral equation for the
quasiparticle energy of a charged Bose gas near a critical point. An approximate analytical solution,
valid at long wavelengths, is used to compute the critical exponents which are those of an irj~t Bee
gas with the single-particle spectrum e(p) = A p ~, g 0.2. The accuracy of the analytical solution is
checked by an exact numerical solution which is also used in a calculation of the transition curve. A
necessary condition for the correctness of the theory is found to be (T —T, )/T, & 0.01.

I. INTRODUCTION

Since the original work of Bogoliubov' most
studies of the interacting Bose gas have concen-
trated on the low-temperature properties of sys-
tems with short-range interactions. ' Work on
the charged Bose gas was initiated by Foldy, ' who
calculated the ground-state energy, and has been
continued in the same vein by a number of au-
thors. ' ' For neutral systems a theory of the
A transition was proposed by Patashinskii and
Pokrovskii, ' who obtained a quasiparticle spec-
trum e(p)-p' ' for T=TA. This work has been
criticized by Migdal, "but a more satisfactory
version has recently been given by Gould and
Wong. " For charged systems two treatments
have been given. The more recent work is due
to Ma,"who uses Wilson's" approach to critical
phenomena; and the earlier is due to Fetter, "
who employs the Green's-function formalism in
a calculation of the transition temperature. Ma' s
theory involves an expansion in (1/A), where fV

is the number of real components of the charged
Bose field; it is therefore not applicable to the
two-component charged gas which is the subject
of this work. On the other hand, Fetter's starting
point and ours are the same; the difference is
that we solve the relevant integral equation exactly,
whereas Fetter stops at the first iteration. This
difference does not strongly influence the cal-
culation of the transition temperature, but it is
very important for the calculation of the critical
exponents. "

The plan of the paper is as follows: In Sec. II
we present the truncated Dyson equation on which
the theory is based, and in Sec. III we find the
long-wavelength form of the solution which de-
termines the critical exponents. The exact numer-
ical solution, which is required for the calculation

of the transition temperature, is discussed in
Sec. IV; and an estimate of the domain of validity
of the theory is given in Sec. V. In Sec. VI we
discuss the results.

II. DYSON EQUATION

In order to simplify the formalism we imagine
approaching the critical temperature from above;
therefore, our starting point is the exact Dyson
equation for the one-particle thermodynamic
Green's function describing a normal system":

where p. is the chemical potential and the discrete,
imaginary frequency 0„=2szzz/P. The self-energy
Z is expressed in terms of the dynamic screened
potential V and the vertex function F by

xg[G(p —q, @—Q„)V(q, fl )

XF(p, fl„; q, 0 )]

and V is given by

u(q
1 +u(q)A(q, 0 )

u(q) = 8v/q',
p d'k 1

A(q, a)= —z
Ji ( )z

xg G(~, Q~) G(k- q, Dz —0 )

rx(%, „flqn ) .
We are using units such that S=Sn= ~e'=1; thus
lengths are measured in Bohr radii and energies
in rydbergs.
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In order to use these equations we must first
truncate them by assuming an approximate form
for I'. We choose to set F-1, which leads to a
self-consistent version of the random-phase ap-
yroximation commonly employed in theories of
charged systems. We next make use of the idea,
originally suggested by Landau, "that critical
phenomena are determined yrimarily by low-fre-
quency excitations. We do. this by neglecting the
frequency dependence of the polarization function
A; i.e., A(q, 0„)-A(q) =A(j, 0). Since A(q, 0) is
real, the screened potential is reylaced by a real
static potential V(q) V(q, 0); furthermore, it
follows from the definition of the self-energy that
Z(p, 0„)-E(p), which is real and independent of
frequency. This means that G(p, 0„)describes
a stable quasiyarticle; therefore the Dyson equa-
tion can be regarded as an equatiori for the quasi-
particle energy which is conveniently written in
terms of the quantities

«(p) =p'+ ~(p}—E(0}

p =~(0) —v ~

We then find G '(p) = —[p + «(g)

' &&(= '(+ f I, f(P+~(4(&[('(i+I-('(q((,
(1)

&(q)
2()

p d'k 1
J( (2s)' «(%) - «(%+q)

[f(P, + «(%+q)) -f(p+ «(R))],

where f(x) (es'-1) ' is the Bose function which
appears when the frequency sums are performed
in the standard way. "

The independent thermodynamic parameters in
these equations are Pand P. The relevant experi-
mental parameters are density and temperature;
therefore we add the equation for the density n,

~ d'p
=

J (2„) f(P+ (R» (4)

which is used to eliminate p, . The form of the
transition curve in the density-temperature plane
is obtained by setting p =0 in Eqs. (1)-(4). That
is, one solves Eqs. (1}-(2)with y, =0 and then uses
the resulting «(P} in Eq. (4}; this yields s as a
function of T, thereby defining the transition curve.
In Sec. IV we present the transition curve re-
sulting from an exact numerical solution for the
quasiparticle energy.

III. LONG-WAVELENGTH SOLUTION

1 d'0 1A(o)™
( )$ ( )

&0 ~

Thus for small q we have q «A(q) and the long-
wavelength limit of the screened potential is

1
V(q)- . , as q-0 .

A(j)

Combining these results yields the following as-
ymptotic equations:

1 p d~q 1 1 1

P ~' (2w} «(q) A(1$+q) A(q)
(5)

1 d'k 1
(6 (2s)' «(k)«(E+q)

' (6)

We see that Eq. (5) is homogeneous in «; con-
sequently we expect a solution of the form «(p)
=AP' ", where g &0 is required for consistency
with the assumption «(p)»p'. With this assumed
form for «we have from Eq. (6}

A(q) = C(q) q'" 'l(2s)'q~',
where

C(q}= ' dxx" '[(1+x}"—il-xi"] .
4 0

The integral defining C(q) diverges for g ~ ~, so
we must have 0&@& 2. The value of g is deter-
mined by substituting the above form for A into
Eq. (5); this leads to a transcendental equation

C(9) = qD(q),

The values of the critical exponents are de-
termined by the long-wavelength behavior of the
various correlation functions which are in turn
determined, at least in our theory, by the quasi-
particle energy «(p). We accordingly set P =0
and look for a solution satisfying «(p)» p' as
p-0. The last condition is essential since its
violation would imply that the critical exponents
are those of the ideal Bose gas. With this in mind
we drop the kinetic-energy term in Eq. (1). Also
note that the singularity of the Bose function can
be isolated by the following expansion:

1 1 ~ 2P«(q)
P«(q) 2 ~ jP«(q)]'+(2sn)'

The contribution of the nonsingular terms to the
integral in Eq. (1}is analytic in p', and any such
terms can be discarded in the long-wavelength
limit. Thus we may replace the Bose function by
its singular part. Next consider the potential V(q);
with the approximations already introduced, we have
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with

(1 +x)$ nil
( 1 (I 2'g

dxx" '
3-27'

A numerical search revealed exactly one root for
Eq. (7) at q =—0.19; therefore the various approx-
imations introduced to obtain Eqs. (5} and (6}are
justified.

We now turn to the calculation of the critical
exponents. In general the procedure would be to
express the various thermodynamic quantities
(derivatives of the free energy) as integrsls over
the corresponding correlation functions. The
singularities of the thermodynamic quantities as
T- T, would then arise from the small-wave-
number parts of the integrals, so that the critical
exponents would be determined by the long-wave-
length form of the correlation functions. In our
case a short cut is available which depends on the
static approximation for V(q, 0). This approxi-
mation guarantees a stable quasiparticle; there-
fore the interacting Bose gas can be regarded as
a noninteracting Bose gas composed of particles
with spectrum e(p). In fact we may use the long-
wavelength form e(p) =AP' ", since the critical
exponents are only sensitive to the small-wave-
number behavior of e. The critical exponents for
this class of models have been worked out by
Gunton and Buckingham, and we only have to sub-
stitute our value of g into their expressions to
obtain the results" listed in Table I, where the
notation for the exponents is taken from Kadanoff. '
We also include for comparison the exponents
calculated from Landau mean-field theory and the
theory of Patashinskii and Pokrovskii. We do not
include Ma's theory since, according to Ma," it
does not give definitive results for a two-com-
ponent Bose field in three dimensions.

IV. EXACT SOLUTION

TABLE I. Critical exponents.

Present Patashinsldi-
Critical paper Landau Pokrovskii

Quantity exponent 2 —q =1 2 —q =2 2 —S= &
2

Correlation
function
Correlation
length
Specific
heat
Supe rfluid
density

O(lul&-& I)

20

12

large number of times in each iteration; this
necessitated developing an economical program.
for the evaluation of the integrals.

The numerical solution was used to compute the
transition curve as outlined in Sec. II. The re-
sulting curve is shown in Fig. 1 together with
Fetter's result and the ideal-gas curve. Our self-
consistent solution gives a small increase in the
transition temperature. For the density region
0.4 & r, & 0.8 this increase is given approximately
by

(T, —T, )/T, —=0.0422(naa) ' '=0.088t' '
whereas Fetter finds a decrease in the transition

The coefficient A in e(p) =AP' " is not determined
by Eqs. (5) and (6) since they are homogeneous.
This does not prevent the calculation of the critical
exponents which only depend on the power q; how-
ever, from Eq. (4) we see that A enters into the
density in a nontrivial way. For this reason the
asymptotic equations do not fix the transition
curve, and we are forced to solve the equation for
c exactly.

Our numerical procedure is to insert an assumed
function e(p} into the integrals occurring in Eqs.
(1}-(8};we then evaluate the integrals numeri-
cally, and thereby produce a new e(p) for the next
round in an iterative procedure. The principal
technical difficulty was the necessity for evaluating
the double integrals in Eqs. (1) and (8) a very

0
0

no 0

FIG. 1. Transition temperature vs density for the
present theory, Fetter's theory, and the ideal Bose gas.
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tion in the vicinity of a critical point. In Fig. 3
we exhibit the p. dependence of the self'-energy for
several values of p. We see that the dependence
is rather weak; this implies that for small p we
may approximate the propagator by

U

10
H

U

/ ~ (q)

'o

l

10 10

qa

FIG. 2. Z and A vs q at T~ from numerical solutions
of Eqs. (1}-(3}.The value of 2q-1 from A is -0.75 and
2-q from Z is 1.74.

temperature of the form (T, —T,')/T,'= —0.026r,'~'.
The difference between our result and Fetter's
seems to be that our e(p), which goes as p" as
p- 0, is greater than P' for larger values of p
than is the case with Fetter's calculation.

In Fig. 2 the power-law behavior of the sub-
tracted self-energy 8(y) =-E(y) —Z(0) can be seen
explicitly. The power obtained from this graph
is q =0.3, which is in reasonable agreement with
the analytical result q -=0.2; the discrepancy is
due presumably to the finite step size used in the
numerical calculation. The numerical solution
therefore serves as a check on the validity of the
long-wavelength solution obtained in Sec. HI.

%e have so far concentrated on solutions for
the case p. = 0; however, the numerical program
works even better for F40; and we can ex-
ploit this fact to study the behavior of the solu-

where e(y) is the iI =0 solution. Then for small
p we have

= II, [1+4(pg)' "],
where g-=p, ' ~' "~ is to be interpreted as the
correlation length. The divergence of the correla-
tion length as T- T, is then determined by the
temperature dependence of p,. The usual assump-
tion is P -(T —T,), and this can be verified by
means of our numerical solution. The value of
p corresponding to a given temperature and den-
sity is found by solving Eq. (4) for II. Having done
this we allow T- T, (n) and graph the corresponding
p, values. From Fig. 4 we see that p. is indeed a
linear function of T-T, . Consequently the corre-
lation length goes as (T —T,) '~I' "& as T T,.
The question of vertex corrections to the linear
temperature dependence of p. will be considered
in Sec. V.

A self-consistent formalism for T& T, has been
developed; details are given in Ref. 20. The set
of equations for T & T, analogous to those for
T & T, , Eqs. (1)-(3), are quite lengthy and no
attempt has been made to solve them numerically.
For T- T, from below, these equations reduce
to Eqs. (1)-(3) for T=T, from above.

V. RANGE OF VALIDny

Since the basic dynamical approximation of our
theory is the neglect of vertex corrections, we
can get some idea of the domain of validity by

0.2

H 0.01—

o~ --o-
p =1.4
p

= 0.04

0, 1—
I+

t)— 0

Q
0 0.01 0.02

p
p

= 0.02
I
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0

Q
0

l

0.2
I I

0. 1

lI: (T —T }/Ry

0.3

FIG. 3. Zas a function of P. FIG. 4. p vs (T-T,) atria() =0.8 andkT, /By=5. 1.
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estimating the lowest-order correction to the bare
vertex. The relevant diagram is shown in Fig. 5,
where the solid lines represent particle propaga-
tors and the wiggly line represents the interaction
V. In evaluating the diagram we again assume
that the frequency sums are dominated by the
zero-frequency terms. Then we have

P(p q) =1-— V(%)G(p-K} G(p-fs-q)+. . . .1 d'a
p (2s)'

The integral can be seen to diverge for p. =0, so
we have to keep p. 40; thus we should use G '
= —p —e(P) and the corresponding value for V.
Unfortunately the expression for A cannot be
evaluated in closed form if the correct propagator
is used. To avoid this difficulty we adopt the
usual expedient of imposing a cutoff for ~k~=( ',
and we use the p, =0 forms for the propagators
when ~k(&g '. Since the divergence arises from
small k values we can also impose an upper cut-
off; the deleted part of the integral does not con-
tribute to the singularity. By choosing the upper
cutoff sufficiently small we can use the long-wave-
length forms for G and V. Furthermore, the most
serious divergence occurs for p=q =0, so we
confine our attention to that case:

kp
I'(0, 0) —1 = dk k V(K}[G(K)P + ~ ~ ~

2g P
2n

( )
in)+. . .

2g
1

T —T,
(2 —q)C(q)

The right-hand side of this equation is an estimate
of the error in our dynamical approximation

I'(p, q) = 1; therefore we must require it to be
small. There is an additional consistency condi-
tion related to the assumption p, (T-—T,). More
generally, one could assume p, -c&, where c

(T —-T,)/T„so that t'-e "with (2 —q)v=y T.he
exponent y can be related to the vertex function

by means of a Ward's identity for the single-com-
ponent charged Bose gas,

r(k, o) =
Bp,

Putting %=0 we have

The coefficient of proportionality in the second
of these relations is the slope of the critical curve.
If y-1 is small we find

I'(0, 0) -1+(y-1)inc,

and by comparison with Eq. (8) we obtain

y —1 = 2q/(2 —q) C(q) = 0.21

for g =0.2. Thus y is indeed close to unity as we
assumed. Finally we impose

~

I' —1I«1, which

gives the following condition on c:

0.01«c .
The lower limit shows that our theory is not
valid for temperatures too close to the critical
temperature. Similar difficulties arise in other
theories'"' of critical phenomena; thus the
power-law dependence on e predicted by these
theories, as well as ours, may fail for sufficiently
small e.

VI. DISCUSSION

FIG. 5. Diagram for the lowest-order vertex function
correction.

We have presented a theory of the Bose transi-
tion for a charged system in which the main ap-
proximation is the neglect of vertex corrections.
This leads to a self-consistent version of the
random-phase approximation, and the first point
to be emphasized is that the self-consistent fea-
ture is essential. By constructing the bubble
function from dressed Green's functions we were
led to a propagator with the long-wavelength form
G(P}=AP t' "l, which is homogeneous as required
by the scaling hypothesis. We may contrast this
result with Fetter's'4 calculation which uses bare
propagators to compute A; he obtains

G '(p) =P'/2m* —Cp'1np as p-0 .
which clearly does not scale. In this connection
it is interesting to note that the "screening ap-
proximation" applied to Landau's theory of phase
transitions by Ferrell and Scalapino" leads to
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results similar to Fetter's. The reason is that
they also use bare propagators in constructing
the function corresponding to A.

In spite of the fact that Ma's 1/N expansion
cannot be applied to our problem, it is instructive
to compare our results with his. In Ma's theory
the function corresponding to our A(q} vanishes
as q-0; this is in marked contrast to our result

A(q}- ~ as q- 0. The source of the discrepancy
is presumably that Ma's A involves certain vertex-
correction diagrams which are missing in our
approach. This suggests that the next step in the
Green's-function approach is to invent a more
elaborate approximation scheme which will self-
consistently include some vertex corrections.
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