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A new formula for induced transition amplitudes in intense photon beams is derived which
relates the photon-number description to the coherent-field description. According to this
formula transition amplitudes describing processes in which m photons axe added to the in-
tense one-mode beam or subtracted from that beam are equal to the Fourier coefficients of
the corresponding amplitude in the external field, expanded with respect to the phase of the
classical field. The same formula is used to study the expectation values of dynamical vari-
ables in n-photon states leading to the conclusion that for large n such states are very
much like classical statistical states with a given amplitude and evenly distributed phase.

I. INTRODUCTION

The present payer is devoted to the theoretical
study of intense photon beams in interaction with
atomic systems. We derive below a new repre-
sentation for induced absorption and emission
amplitudes and for expectation values of dynami-
cal variables, which is valid when the number of
photons in the beam is large. In this representa-
tion an average over the phase of the cia,ssical
field appears, giving rise to a rather simple
connection between the photon-number description
and the coherent-field description of the electro-
magnetic field.

Our representation can be used in quantum theory
of any many-boson system (photons, phonons,
helium atoms, etc.}, but we expect that it will be
most helpful in quantum optics.

In Sec. H we derive the phase-average repre-
sentation in a simple exactly soluble model in
order to exhibit its main features. In Sec. III we
use the phase-avex age representation to show that
for large n the photon number states become very
much like classical statistical states with given
amylitude and evenly distributed phase. In Sec.
IV we extend our method to a general case, and
finally in Sec. V we compare our results with
those of other authors and discuss an illustrative
example.

H. SIMPLE MODEL

In order to introduce the main features of our
approach, we shall consider the simplest possible
model of a radiating system: the forced harmonic
oscillator. This model describes a single mode
of the electromagnetic field coupled to a given

external current. In the quantized version it is
most easily described in terms of anrdhilation and
creation operators a and at. The time evolution
of this system is determined by the following
Hamiltonian:

itt U(t}=[n*(t)e-' 'a+n(t)e'"a']U(t). (2)et

This equation is to be compared with the evolution
equation in the Dirac picture in full quantum elec-
trodynamics:

I—U(t) = j A'A„(ft))" (Ft) U, (t),
where A„(r, t) is the field operator of the electro-
magnetic potential and j"(r, t) is the current
operator. After expanding the potential operator
into a series of annihilation and creation opera-
tor 8,

(r t) g [j()))(r t)a +yta)s(r t)at]

and substituting a given external current Z" (r, t)
for the current operator j"(r, t), we can identify
the coefficients n*(t)e ' ' and n(t)e' ' in E(l. (2)
as the projections of the current on the given mode
function f„(r, t) and its complex conjugate:

u (t)e ' '=Jd rf&"(r, t)J"(i t) (sa)

If(t) =«grata+ n*(t)a+n(t)at.

The evolution operator U(t) in the Dirac picture
obeys the equation
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e(t)e' '= Jdr fr(r, t)J"(r t) (5b}
e&f (lt)(r t) ~ S-l tdtt+lk'P

2coV
(6)

Vanishing of all projections of the current on the
remaining mode functions may be thought to be a
special property of a radiating system. If the mode
functions f„"' are, for example, monochromatic
plane waves (normalized to one photon per quanti-
zation volume},

the coefficients 0. and n* become simply Fourier
components of the current.

It can be checked by a direct calculation that
the solution of Eq. (2}obeying the initial condi-
tion U(0}=1 is

t
U(t)=exp(-, dt 'd't e"(t")e ' ''e("t )e' ""exp —— dt e(t ')e' 'e't)"

52
p

t
xexp —— dt" o.

* t" e ' '"gI
The double integral appearing in the first exponent can be split into its real and imaginary parts according
to the formula

l
)I

dt' dt "g*(t')g(t"}= — dt' dt" [1+z(t' —t")]g (t')g(t")

1 0 I I 4 Idt'g(t') + — dt' dt" z(tt -t")Reg(t')In)g(t").
0 0 0

The imaginary part contributes only the phase
factor e'~"' to the evolution operator. The evolu-
tion operator can thus be written in the form

U ej|~ I}P/2. et )a +g }*a.
~ y

where

(8)

lql /z(iq)mg t)1 ()tq)" (i7!~)"
k k

As has been already observed by Feynman, ' the
sum on the right-hand side is the associated
Laguerre polynomial, so that finally

(n+m(U~n) =[n!/(n+m)!]' e " z(i)t!) L„"((q[ )

(10)
A similar result is obtained for the absorption
amplitude

t dt'n(t'}e' '. (9)

The phase factor e'~ is clearly unobservable and
will be disregarded in further calculations.

We shall now evaluate matrix elements
(n+m~U)n) and (n(U(n+m) of the evolution opera-
tor U between eigenstates ~n) of the photon-number
operator. Using Eq. (8), we obtain

[(n+m)!n! ]"'(n+m~U~n)

=e '"~ '(O~a"' e'"' e'" '(at)"~0)

=e ""t'(0~(a+i@)"' ( atiq+*)"~0)

I

(n(U~n+m) =[n!/(n+m)!] e " (iq") L„(q( ).

We will now study the behavior of the induced
emission and absorption amplitudes for large
values of n. To this end we shall expand the La-
guerre polynomial into a series of Bessel func-
tions (see the Appendix}

[n!/(n+ m)! ]e 't' L„(z}= 2 P P, (z ) [2(Nz )"']
k~0

x Z.„(2(Nz)"*), (12)

(13)

Dropping terms of the order of ms/3N', we can
also write

[(n+m)! /n! ]"'=N

In that manner we arrive at the following approxi-
mate formulas for the transition amplitudes':

(n+m(U)n)= (iN"'q) (N]q(')

x J (2(gq~')"'),

(n[U[n+m&= (iN"'q ) (N[q[')
x Z.(2(N [ q[')"').

(14a)

(14b}

where N=n+ —,'(m+1}. For large N the first term
of this series is a good approximation to the left-
hand side provided z is not too large:

[n!/(n+ m)! ]e ' ' L„(z)= (Nz ) 'J (2(Nz ) 'z) .
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Finally we use an integral representation for
the Bessel function to express our result in the
form which has an obvious physical interpretation:

~ m+Q +k

(i&0) I&el J (21&el)-=i Q (-1)'

2ff
d y e-ia&$

27r

xexp(i«)e&B+ i«)*e &B) (.15)

Transition amplitudes can therefore be repre-
sented as the following phase averages

1
(n+mlUln)= d&1&e ' B

27r

x exp(iN"'qe&B+ iN"'&l*e 'B), (16a)

2m

(nlIUln+ m) = dP e'
27r

x exp(iN"' &el' B+ i N'"r&*e 'B). (16b)
In order to see more clearly the meaning of

these phase-average representations, we will
rewrite them with the help of formulas (5}and (9}
in terms of the current:

dt' td' a&'&(, t)Z)'( t) (17)

where

8&B&(r, t) =N'"f (r, t) e &B+N'"f*(r, t) e&B. (18)

For intense photon beams the stimulated emis-
sion and absorption can therefore be described in
terms of the corresponding classical field. The
intensity of the photon beam reflects itself in the
amplitude of this classical potential. Owing to the
well-known complementarity between the number
of photons and the phase of the field, the transi-
tion amplitudes between the photon-number eigen-
states must not depend on the phase, and that is
why the phase average appears. What is sur-
prising however, is that the averaging over the
phase must be applied to the transition amplitude
rather than to the transition probabilities.

III. PHOTON-NUMBER STATES AS

CLASSICAL STATISTICAL STATES

In this section we will show that the n-photon
state for large n behaves like the classical statis-
tical state with the field amplitude equal to (n+-,') "
and evenly distributed phase. In order to describe
more precisely in what sense a quantum state may
be like a classical state, we will formulate the
quantum theory of electromagnetic field in terms
of Wigner functions' and Weyl representations. 4

For simplicity we will again restrict ourselves
to one mode of the field only.

The Wigner-Weyl (WW) transforms p„(&x, &n )
of the density operator p (or an operator rep-
resenting a dynamical variable) will be defined
as follows5.

p (+ o& ) — —
Tr(e& &Ba+ 8 a

&p)
d2P +

This formula can be inverted with the following
result

d2 d2 - ](8a+ 8 +a t }
n 7r

i nB&+ n+ +
Bp &(+ +4) (20)

The expectation value of an operator F in a given
state p can be expressed in terms of their WW
transforms E (&x, &&&*} and p„(n, &&& ) as follows:

Q»&aa) = I a &a a )a &a a ). (21)

We shall study now the WW transforms of the
photon-number states In) for large values of n
The Fourier transform of the WW function
p&")(&n, &x~) for such a state can be expressed by
the Laguerre polynomial [cf. Eq. (10)]:

(22}

Following our procedure described in Sec. II, we
will approximate p'"} for large n by the Bessel
function

P'"'(il, ti*)= ~.(2( +-')"'lP I) (28)

dyn5"'[a —(n+ -')"'e "]. -
27r

This approximation is valid when IPI is not too
large, which means that the WW transform
p&"&(&n, &n*) will be well approximated for large
values of I&nl. Using the integral representation
(15) for the Bessel function, we obtain

2
p'"'(~ ~*)= ~.(2(n+-')"'IPI)e """"' '

- g (a8+ a+8 +}&e (19) (24)
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This leads to the following formula for expectation
values:

2'p(" = dpi W~e")&Wee"
l2F

The WW transform of p'~' is

(2S)

p")(a n*) = — dyexp(-2ln —Wxe'~l')
0

(27)

For large N this distribution, in contrast to p("',
is characterized always by a finite spread in the
absolute value of the amplitude.

Therefore as far as the modulus of the amplitude
is concerned the photon-number states are for
large intensities more classical than the coherent
states. One may use the following argument (due
essentially to E. T. Jaynes, private eommuniea-
tion) to explain in simple terms what is meant
by this statement. Due to the uncertainty princi-
ple there is a limit to localization in phase space
for all quantum states. The minimal area which
any state can occupy on the (a, o. ) plane is equal
to v. Quantum states occupying this minimal area
are the closest to classical states. Coherent
states belong to this category, but they are
smeared evenly in every direction. Formula (24)
shows that the region of phase space occupied by
the n-photon state has for large n the form of the
ring of radius (n+-,')"' and (negligible) width equal
to —,'(n+-,') '~' and is therefore the closest state to
a classical state which has a well-defined ampli-
tude.

IV. GENERAL THEORY

We shall now extend oux technique to the full
quantum theory of electromagnetic processes. We
will not assume any specific form of the Hamil-
tonian for the charged particles and for their
interaction with the electromagnetic field. Our

As is well known the WW transforms can be
also interpreted as quasiprobability distributions
in the classical statistical theory. In such a theory
pure classical states are represented by the dis-
tributions z6(2&(o( —n, ), and therefore the WW
transforms of the photon-number state for large
n behave like a classical statistical state with a
fixed amplitude equal to (n+-,')"' and evenly dis-
tributed phase. This result can be compared with
the properties of ideal laser states p'~' which are
constructed from coherent states ly) with given
absolute value of y:

xesults will therefore be valid in nonrelativistic
quantum theory of radiation, in 1elRtivistic quan-
tum electrodynamics, or in any other quantum
theory provided only that the coupling of the elec-
txomagnetie field to the rest of the system is de-
scribed in terms of electromagnetic potentials.

Our starting point will be the Dyson formula in
which the evolution operator U()&, t,) is represented
as a time-ordered exponential of the interaction
Hamiltonian H, (t) in the Dirac picture,

(29)

The interaction Hamiltonian will depend in general
on the field operators of the electromagnetic po-
tential A„(z) and also on some operators de-
scribing charged particles (or more generally,
the rest of the system). The time-ordering opera-
tion T applies to all operators in HI, and we can
always think of it as being the product of T~ and

T~, where T~ time-orders the potential field oper-
ators and T~ time-oxders the particle operators.
The time-ordered product of any number of po-
tential field operators can be converted into the
normally-ordered product of those operators with
the use of the %'iek theorem. %'e will use a com-
pact form of this theorem due to Horie:

T{A„(z,) ~ ~ A„(z,))

=:exp A:exp . D

(29)

-=:d'z A„(z) 58„ z

68 58 58q (z)

xaD„.(z -z ) (,),
and D» is the Feynman propagator,

Dr„,(z -z') = -g„„D (z -z').

In the nonrelativistie quantum theory of radia-
tion, it is usually more convenient to use the
radiation gauge in order to separate out the instan-
taneous Coulomb interaction. The remaining part
of the electromagnetic interaction, due to the
exchange of transverse photons is described by
the following propagator:

Dr„,(z -z') =0, when either p, =O or v=O

= (5() —6 8( 8~)Dr (z —z '),

when p. =i and v= j.
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We will not treat this case separately since it
only amounts to a different choice of the propagator
Dr in the formula (29).

The evolution operator (28}can now be written
in the form

Feynman diagrams) and virtual particle-antipar-
ticle pairs (represented on diagrams by closed
particle loops). We will refer to them jointly as
radiative corrections. Radiative corrections are
generated by the exponential operation

U(tt)=;e, xp( jA ):exp(—.j D )
x U[8]i, „ (3o)

where

f Ul rtretxp (- X
-=f' dt'U, ft Itt))'

n g,
(31)

is the evolution operator for the charged particles
interacting with an external, classical electro-
magnetic field described by a c-number potential
8„(z) and H, [t[8] is the interaction energy of the
particles as a functional of the external field and
a function of time.

Matrix elements (Pz~ U[8] ~(j), ) of the evolution
operator U[8] between the initial (j), and final (j)z

states of the particle system give transition am-
plitudes for charged particles interacting with a
classical electromagnetic field 8. Formula (30)
shows two well-known effects which the quantiza-
tion of the electromagnetic field has on transition
amplitudes. First, there are corrections to all
electromagnetic processes due to virtual photons
(which are represented by internal photon lines on

when it acts on the external field transition am-
plitude (i)&~U[8] ~(jt, ). Second, there are effects
of the electromagnetic field quantization on the
initial and final states of the electromagnetic
field. These effects are generated by the expo-
nential operation:exp(JA5/6 8}:.Owing to the
normal ordering, this exponential operation is
responsible only for the appearance of real photons
in the initial and final states of the whole system.
Real photons are represented by external photon
lines on Feynman diagrams.

Since all photon creation and annihilation opera-
tors appear now, like in formula (8), in a normally
ordered exponential, we can apply without any
essential change the same technique as described
in Sec. II.

Let the initial and final states of the full system
be product states describing n (and n+m) photons
in one single mode specified by the photon wave
function f~(z} and charged particles in the states
((), and gz.

The transition amplitude A&, (n+m, n) between
such states with the help of (30) can be written

At (n, )=(n m exp( jd' ' )exp( jd"r ) n)exp( . j D D)( p)tUI riel tr I) = .

(32)

Repeating the calculations which led us to formulas (16) and (17), we now obtain

n+mexp a * exp a n =
~

L„

2w
d'jI'e ' exp 8' ' exp

2

where

8(~)(z) =vNf„(z) e '~+WNf „(z)e'~

The transition amplitude Af, (n+m, n) can there fore be approximately written in the form

Ar, (n+m, n)= j Age ' texP( jrtrer ) exP( . j D )(gt)U[rt]t )~

(33)

(34)

(36)

where the modified propagator D" differs from D~ by having the part describing the free propagation in



QUANTUM ELECTRODYNAMICS OF INTENSE PHOTON BEAMS Si51

introduces radiative corrections. This time hom-
ever, the virtual-photon propagators are modified
in accordance with the definition (N) of the propa-
gator D~ „. The second exponential operation shifts
the argument 8 in the original amplitude by the
amount 8'@'.

The final formulas for the induced emission
and absorption amplitudes read therefore,

f{( I dy %{md(y ~U [8{/)]~y

(37}

where the tilde over U means that all radiative
corrections are to be evaluated with the use of
the modified photon propagator D~.

For low-energy photons, when g&o/mez«I,
radiative corrections have a rather small effect
(beyond producing, of course, mass and charge
renormalization). When these corrections are
neglected, formula (3V) gives a very simple rela-
tionship between tmo descriptions of electromag-
netic field: the one in terms of a classical field
8 and the other in terms of {luantum states

~ n) .
According to (3'l), if the amplitude (Pz~U [8'e'] ~P, )
describing a transition under the influence of an
external electromagnetic field 8'~) is expanded
into the Fourier series mith respect to the phase
p of this field:

(36)

the expansion coefficients a approximate transi-
tion amplitudes between photon-number states
evaluated for large values of n.

A~, (n+m, n), m ~0
A~, (n, n+ m}, m & 0. (39)

It has been observed before by Frantz' that the
transition probabilities for photon-number states
can be related to transition probabilities in an
external classical field. Vfhat me believe, how-
ever, is new in our study is that such a simple

the mode f removed:

D~„(z -z') =D~„(z -z')
—(i/~If) [f„(z)f*„(z')+f„*(z)f„(z')1.

(36)

Both exponential operations in the formula (35)
produce changes in the amplitude (P&~U [8]~ g, }
which can easily be described. As me have already
explained before, the operation

and universal relation as (3V) holds for the transi-
tion amplitudes.

V. PROPERTIES OF THE
PHASE-AVERAGE REPRESENTATION

Formula (3V) for induced emission and absorp-
tion amplitudes can be used as a convenient start-
ing point to derive the rules for the diagrammatic
representation of' these amplitudes.

First, we may apply standard procedure to rep-
resent all contributions to the transition ampli-
tude in an external field 8'~' by Feynman diagrams.
%'e must only remember that internal photon lines
represent now not ordinary photon propagators
D~ „but photon propagators D„„modified according
to the formula (36).

Next we should find out in what way the integra-
tion over P modifies those amplitudes. Radiative
corrections do not depend on the phase p so that
they mill not be affected by this integration and we
may restrict ourselves to the study of the classi-
cal field 8'~' only. The nth-order term in pertur-
bation expansion with respect to 8'~' breaks into
a sum of 2" terms, each term containing a partic-
ular combination of photon wave functions
f (z) e 'e and complex-conjugate photon wave func-jI

tions f~ (z) e'~. Each term has therefore an over-
all phase factor exp[i(nz -n„)P], where nz is the
number of functions f* and n„ is the number of
functions f. After multiplication by e" e and
integration over P, only those terms will survive
for which n~ -n„=~. This result can be easily
described in terms of Feynman diagrams if me
represent each wave function WN f„(z) on a diagram
by the incoming photon line attached to a charged-
particle line at the point z and each complex-
conjugate wave function WNf„(z)by the outgoing
photon line. In this may me obtain similar dia-
grammatic rules to those discovered before by
Fried and Eberly' and by Ehlotzky. ' There are,
however, several important differences.

First, we discover that virtual photon correc-
tions which have been neglected in previous pub-
lications must also be modified according to the
formula (36) in the presence of an intense photon
beam. Second, me find a slightly different coef-
ficient multiplying the photon wave function (or
the vertex); we have [n+-', (m+1)]"' instead of Wn.

Owing to this modification, not only the leading
term, when n-~, is obtained but also the next
to the leading term is correctly reproduced.
Third, our approach is quite general and can be
applied to arbitrary photon states (arbitrary mode
function not necessarily a plane wave), to arbi-
tr ary form of the coupling of the electromagnetic
field to the charged particles, and finally to an
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arbitrary process. Fourth, we have full control
of all the corrections of the order of N "' and
higher, so that we can estimate their importance
should this become necessary.

All these differences will produce, however,
only small effects in practical applications of
quantum electrodynamics to those processes in-
volving intense photon beams which are presently
studied experimentally. For that reason, we have
nothing new to add to recent very successful ap-
plications by Chang and Stehle" of the original
simple version of the diagramatic technique to
calculate the intensity-dependent level shifts,
lifetimes and transition rates.

To end our paper we will apply the phase-aver-
age representation to the calculation of transition
amplitudes in a model in which an electron bound

by the harmonic force interacts with a single mode
of radiation (for example, in a cavity). This model
is exactly soluble in the dipole approximation even
for the quantized electromagnetic field but expres-
sions for transition amplitudes involving a large
number N of photons are very complicated. Qur
method leads to compact and simple expressions
for these amplitudes. %e will study here only the
leading term in N and therefore disregard also
radiative corrections. The interaction Hamil-

tonian in the Dirac picture for this model can be
written in the form

2

a, (t) =- p(t)A(t)+, A2(t), (40)

This problem is very similar to the forced-har-
monic-oscillator model discussed in Sec. II and
can be solved by methods described before. The
formula for the evolution operator U(t, (t)) as a
function of time and phase reads

where

p(t) =i(hmQ/2}'"(be '"'-b e'"') (41)

A(t}=(tt e/22 (V())" (2f ea
' '+ f*ate' '), (42)

0 and ~ are the characteristic frequencies of the
harmonically bound electron and the electromag-
netic field, and b and b~ are annihilation and crea-
tion operators for harmonic excitations of elec-
tronic states.

In order to apply the phase-average represen-
tation, we need the evolution operator U(t, (t)) for
the electron in the presence of the classical field
g(4)

g aNg(4) ~-f (~&+ 4) + + &(&&+ 4') 43

U(t, p}=exp(-g N[n, (t}f'e 2(2+n (t)f* e 22(2+(nt2)l fI2]texp[igvN[p (t)fe '~+p, (t)f e+]bt}

xexp(igvN[p+(-t)fe '~+p (-t)f e'~]bj, (44)

where

e'0
4mV~ '

For example, for the induced decay of the first
excited electron state with the emission of one
additional photon, we obtain

s, (t)=

T2( QJ) e% 2( &t 1 1 e ( (()k I)td
2Q(d 2(d(Q +(d) (Q- (u)(Q+(o)

it 1 e-
Q Q+(() Q —(d (Q+(())

-g(A-(d)t1 e
(Q —(u)2

Since the evolution operator as given by this
expression is normally ordered with respect to
electron creation and annihilation operators, its
matrix elements between harmonic -oscillator
states can be easily found. Finally, by expanding
these matrix elements into Fourier series with
respect to (t), we obtain (Iuantum-mechanical tran-
sition amplitudes between photon-number states.

(N +1,0IU(t)IN, 1)

=igvNf exp[-g'Nn2(t)l fl*]

x(p (-t)t, (2g'N lfl[n (t) n, (t)]"']
-S,(-t) [n (t)/n, (t)1"'

», f2g'Nlfl[n (t) n. (t)]"')}.
(45)

It would have been much more difficult to obtain
this formula by the straightforward application of
combinatorial methods to transition amplitudes for
two coupled harmonic oscillators.

ACKNOWLEDGMENTS

We would like to thank Professor Philip Stehle
and Dr. C. S. Chang for numerous and very valu-
able discussions.



QUANTUM ELECTRODYNAMICS OF INTENSE PHOTON BEAMS

APPENDIX

We have taken the expansion (12) of the Laguerre
polynomial into a series of Bessel functions from
the monograph by Buchholz. " Since his proof is
rather involved, we give below a simple deriva-
tion of our own.

First, we will write the associate Laguerre
polynomial L„(z) in the form of a Cauchy integral

e2zt — 4/mg e p (~ )1/9
at(zz}"' '

and we recognize in the second factor the generat-
ing function for the Bessel functions

x 1 v g,exp —Y-— = Z, y'&, (z}.2 Q~ ~00

This leads to the formula

S 5
(n+m)f "

~~0 (n-k)l(m+k)/k)

( z) du
( )„

W Q

(Al)

I m( ) am sia p pm( ) Z,~(2(Nz)'I'}
(n+m) I ",„" [2(~z Pl~] ~+~

(Aa)

The validity of this formula can be verified by
expanding (1 +u}" and e into powers of u and by
integrating the result term by term.

Making the following change of variables,

u = 2(cotht —1),

„( ) (-s)'y dt (sknht)
-'

x exp [--,'z (cotht t')] .- (A4)

we obtain a new contour integral

L„(z)= e'~' . dt (sinht)
(n+m) I

" z avi

& exp(--,'z cotht} e'"',

where

X=n+-,'(m+I).

Next we use the identity

(A2)

For negative integer values of k the integrand
in (A4) is analytic at t =0 so that the contour in-
tegral vanishes. Therefore the summation in
formula (A3) effectively extends only from 0 to ~.

For non-negative integer values of 0 the coeffi-
cient functions P",(z) are polynomials in the vari-
able z' of the order k. The lowest power of z' in
the kth polynomial is -', (k+1).

We give below the first four terms of the ex-
pansion (Aa):

(s+~) ~
" [2(&z)"'] 6 [2(&z)"*]"' 6 16 [2(~z)"'1

7 t „(2(uzi"}
26 M 5 [2(7Vz)'"]"'

Since the Bessel functions are bounded, the effective expansion parameter here is (z/N)"'.

(A5}
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