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%e present the Grst completely quantum-mechanical calculation of the Kapitza resistance for the

solid-liquid He interface. By using a realistic model of He, processes involving phonons and rotons in the

liquid helium are treated in a unified manner. The coupling of the phonons in the solid to the excitations in

the helium is derived in the form of a transfer Hamiltonian. In the long-wavelength limit the classical

acoustic-mismatch theory is reproduced by transmission processes involving single phonons, but the coupling

Hamiltonian also includes roton emission and higher-order processes involving two or more excitations in

the helium. As in the theory of electron tunneling, the transfer-Hamiltonian formalism can serve as a basis

for further studies taking account of many-body interactions in the solid or liquid, scattering by defects or
surface structure, and the influence of attractive van der Waals forces at the interface.

I. MOTIVATION

The origin of the thermal contact resistance
A~between a solid and liquid helium is thought to
lie in the partial transmission of phonons across
the interface between them. In the original Kha-
latnikov theory' the acoustic impedance which the
liquid presents to the thermal vibrations of the
solid surface, is calculated by treating the heli-
um as a classical elastic fluid. An alternative
and equivalent treatment by Little' uses the acous-
tic transmission coefficient which is again ob-
tained from classical elasticity theory. However
there are large discrepancies between experi-
ment and theory and the observed resistances may
often be one or two orders of magnitude smaller
than these theoretical predictions. Discussion of
experimental results with extensive bibliographies
have been given in recent reviews by Pollack, '
Snyder, ' and Cheeke. '

Various modifications of the acoustic-mismatch
theory have been proposed in attempts to account
for the observed energy transfer. Challis, Drans-
feld, and %'ilks' have considered the enhancement
of the acoustic impedance due to a dense layer of
helium near the interface. Adamenko and Fuks'
estimated the effect of surface roughness using
a perturbation approach to the elastic wave equa-
tion. The effect of attenuation of the sound waves
in the solid has also been shown to increase the
transmission of acoustic energy but the descrip-
tion of the attenuation mechanism was purely
classical. Khalatnikov and Adamenko' described
the damping by means of a viscosity tensor and
the Rayleigh dissipation function, while Peterson
and Anderson' and Haug and %eiss" employed
complex wave vectors for the waves in the solid.
The latter approach has recently been questioned

by Vuorio. " But all of these calculations have
been based on classical acoustic theory and there
is thus need for a microscopic description since
'He is a quantum liquid rather than a classical
elastic fluid.

Microscopic quantum-mechanical calculations
of the Kapitza resistance have so far been re-
stricted to simplified models in which the liquid
helium is viewed as a gas of independent atoms.
The energy transfer then arises from inelastic
collisions of the helium atoms with the vibrating
solid surface. In this way the effect of the attrac-
tive van der %aals potential between helium atoms
and the solid may be taken into account by comput-
ing the scattering matrix element from the atomic
eigenfunctions of the van der %aals potential. For
'He Toombs and Challis" obtained an enhanced
conductance and, in the low-temperature limit,
their result was similar to that of Khalatnikov, '
except that it contained the mean thermal atomic
velocity rather than the sound velocity in liquid
helium, which is nearly temperature independent.
However they were forced to use Boltzmann statis-
tics for the 'He atoms since Bose-Einstein statis-
tics lead to unreasonably large occupancies at low

temperatures. For 'He a Fermi-gas model has
been used" "and the contribution of bound states
of the van der %aals potential has also been con-
slde1'ed.

But in neglecting the interactions between helium
atoms the independent-particle model ignores the
existence of collective phonon-like excitations in
the liquid helium, and as such can only have
qualitative significance. Although in 'He there are
quasiparticle excitations as well as collective
zero-sound phonons, with corresponding contribu-
tions to the heat transfer, "this is not the case in
'He where there are no stable single-particle
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excitations but only collective excitations (phonons
and rotons). For a Bose liquid it is thus always
necessary to include interparticle interactions in
order to calculate a meaningful boundary resis-
tance. A microscopic description, besides being
of intrinsic interest, is thus necessary if earlier
calculations of the effect of the attractive van der
Waals potential are to be extended to a realistic
model of liquid helium. Here we present a mi-
croscopic treatment of phonon transmission in
which the coupling of the phonons in the solid to
the complete excitation spectrum of liquid 'He is
calculated in a unified manner.

In the formalism we shall develop, the coupling
between the solid and the liquid 'He is derived in
the form of a transfer Hamiltonian as in the theory
of electron tunneling through a metal-insulator-
metal junction. Just as the tunneling-Hamiltonian
formalism has been successful in describing
many-body effects" due to electron interactions
in the metal electrodes or interactions with im-
purities in the insulating barrier, the virtues of
our formalism lie also in the possible generaliza-
tions. Thus, scattering processes which give
rise to phonon damping in the solid may be in-
corporated into the theory of phonon transmission
by including the appropriate scattering terms in
the Hamiltonian for the solid-liquid system. A
transfer-Hamiltonian analog of the acoustic-mis-
match theory has been already proposed by Sheard
and Toombs" and applied to a simple model for
scattering by surface defects in the solid. " How-
ever the solid-liquid interaction Hamiltonian was
obtained by a heuristic argument. In the present
paper the acoustic-mismatch results may also be
reproduced, but the interaction Hamiltonian is
derived rigorously from the interatomic potential
between a helium atom and the solid. This paves
the way for calculations of the influence of an
attractive van der Waals force on the transfer
matrix elements. A preliminary account of part
of this work has already been published as a con-
ference report. "

H. COLLECTIVE-VARIABLE THEORY OF
LIQUID He

Qur aim is to separate the total Hamiltonian of
the composite solid-liquid system into unper-
turbed parts which describe the solid and the liq-
uid 'He and a perturbation which represents the
coupling between them. The central problem is to
calculate the coupling Hamiltonian in terms of the
phonon operators for the solid and operators de-
scribing the excitations in the liquid helium. For
this purpose we must employ a realistic model of
liquid 'He.

The original Bogoliubov theory" depends on the
assumption that a large fraction of the helium
atoms are condensed into the zero-momentum
state which does not appear to be justified" for
liquid 'He and cannot adequately explain the ob-
served excitation spectrum. These difficulties
have been avoided in more recent theories" "in
which the Bose liquid is described by collective
hydrodynamic variables. As we shall see, these
are particularly suited to our approach to the
Kapitza-resistance problem and provide useful
physical insight into the mechanism of the solid-
liquid coupling. %e shall use the formalism given
by Sunakawa, Yamasaki, and Kebukawa, which
is lucidly presented" and has been developed
through a series of papers. Here we briefly
summarize the relevant points of the formalism
which we shall need for future use.

The appropriate collective variables are the
number density operator

p(r) = g'(r)tj(r)

and the momentum density operator

g = —', N [g (r)V-g(r) -(Vg~(r)] P(r) j,
where g(r) and P (r) are the usual boson field op-
erators. Their Fourier components pk, ~ are
defined by

+1/Q

p( )= „& '"'=—„'„Zp-

(&)

N x/2

( ) Q~ ff'E

k

where A is the volume of the helium system. %e
consider only states containing N particles so that
in Eq. (l) p„which commutes with the Hamilto-
nian, has been taken to be WN. An essential feature
of the formalism is the introduction of a velocity
operator v(r) by means of the implicit relation

g(r) =m p(r)v(r),

where m is the mass of a helium atom. If we
Fourier expand v(r) according to

v(r) = ~„, v-„8'"
mN

k

then vg may be alternatively defined as the solu-
tion of the integral equation

v =g —g&h Qp „v
P&k

which may be obtained by iteration. This amounts
to defining the inverse density operator by the
series
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0

X/2

p'(r} = ~ Qpte '"'
k&o

(2)

where

1/AR = 1+4hbgV(k)/gRk'Q

and the Fourier transform of the interatomic po-
tential is given by

V(k)= f RRV(r)s '"' .

The Hamiltonian then becomes

represents only the fluctuations from the mean
density N/0 .

In terms of field operators the Hamiltonian for
the liquid helium is

3C~ = — d r (R'yt(r) V(()(r)

+& drdr' r r' V r-r' r' r,
(3)

where V(r —r') is the potential energy between
helium atoms. By showing that for any Bose sys-
tem the operator

P= 4(r)p '(r)g'(r) (4)

must take the value unity, Sunakawa ek al. express
this Hamiltonian in the hydrodynamic form

2

dr —mprvr vx + —Vpr p 'rVpr

+ — d r d r ' p(r) p(r ') V(r —r')
2

~ k~k 1——NV(r =0).

Using the expressions (1) and (2) for p and p ',
X~ reduces to a bilinear form in the fluctuation
operators with higher-order terms which give
rise to interactions between the excitations. These
terms renormalize the excitation energies and are
important for an accurate description of the ener-
gy spectrum, particularly in the higher roton re-
gion. Since we shall mainly be interested in the
phonon excitations we shall not include them here.

Provided the Hilbert space is restricted to states
satisfying

curlv(r)~ ) =0

then p, v have simple commutation relations which,
in Fouriex space, are

[P f, P) ] =0, [vki, vF g] =0, [vt;, Pg ] =ffk&(g. ,

where ~, j denote Cartesian components. Boson
excitation operators Bk, B&k may thus be defined
by 27

pg = —i~'~(B - —B-') v-„= —i-.'k%~ "(B-„+B'-„),

Zq —ER+ Q g(ORB~B(, +Xq,
k

where Eo is the ground-state enexgy and XI cor-
responds to the anharmonic interactions between
the excitations, whose energy spectrum is given
by

h(e„= k 'k'/2m A, .

For small wave vectors the excitations are pho-
nons and

(e, = v k, v'=XV(0)/mQ, A.,=)fk/2mv, (9)

where ~~ is the velocity of sound in the helium.

III. SOLID-LIQUID INTERACTION HAMILTONIAN

In classical elasticity theory the transmission
and reflection of sound waves at the interface
between two media is determined by means of
boundary conditions which require the equality of
displacements and stresses on either side of the
interface. But this procedure has no direct ana-
log in a quantum-mechanical treatment since
the dynamical variables for the solid and liquid
helium are operators and equating them is a
meaningless exercise. In quantum mechanics the
only means of coupling two systems is through
the mutual forces between them. %'e must there-
fore begin from the interatomic potential V,(R„-r),
between an atom of the solid at lattice site R„
=(X„,1'„,Z„) and a helium atom at r=(x, y, z).

If the atomic displacement at site R„ is u.„then
the total interaction energy between the vibrating
solid and the liquid helium is

fd r Pt(r) Q V,(R„+u„-r)P(r).

At low temperatures it is sufficient to expand this
to first order in the lattice displacements giving

drp(r)(V, (r)+gu, RR V(R, —r)),

where

V,(r) =g V.(R„-r}

is the total potential experienced by a helium atom
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drp r V r -ux, y, O.V; V, R„-r

dr p(r)[V,(r)-u(x, y, 0) V;VJr)]

0 ~ Q ~

The first term is the static interaction and should
naturally be included in the unperturbed Hamilto-
nian XL, for the liquid helium since it is the me-
chanism by which the helium atoms are prevented
from penetrating the volume occupied by the solid.
The latter term involving the dynamical coordi-
nates of the solid is the means by which energy
may be exchanged and is just the required solid-
liquid interaction Hamiltonian X$L.

Thus the total Hamiltonian of the composite
so1.id-liquid system is naturally separable into the
form

X X$ +XI WX

where
X =~ mu-a&a-

q q q, (10)

XI=XI+ harp r V~z,

X„=- ~ra. ..y, 0 p r
z (12)

and K' is given in Eq. (3}or (5}. The unperturbed
Hamiltonian X$ for the solid contains the phonon
annihilation and creation operators a~, a$ for the
modes with wave vectox q and frequency u, , in
terms of which u, may be readily expressed.

The solid-liquid coupling (12) is essentially the
form used by Toombs and Challis, "who took a
Morse potential for V,(z) and computed the inelas-
tic scattering of helium atoms using the single-
particle eigenfunctions which a,re known for this
particular model potential. Since our principal
aim is to establish a quantum-mechanical formal. -

owing to interaction with the static solid. If a
continuum model is assumed for the solid then Vo

only depends on the coordinate z which is perpen-
dicular to the solid surface. Since the interatomic
potential V, is short ranged compared with the
wavelength of the thermal phonons in the solid, we

may take u„ to be the displacement at the surface
of the solid z= Z„=O. By the same argument we
may replace the displacement at the point
(X„, '„,0) bythat at the point (z, y, 0) since these
points lie within the potential range; further,

VR V, (R„—r) = —V, V,(R„r), -
so that the interaction energy becomes

U. ~ex'
ex~

where II&& is the fluid stress tensor and i,j denote
Cartesian components. For liquid helium we may
derive a quantum-mechanical analog of this equa-
tion in the form

(13)(ig) '[g„Ãz] = —P(P) gz eg~

where the left-hand side is just g, if the Heisen-
berg representation is chosen for the operators.
Here, the static interaction potential V(z) con-
tained in X~ has given rise to the external force
term, and the kinetic energy and interparticle
interactions of Eq. (3) contribute to the stress
tensor term. Now integrate this equation from
z = —e to z =+ e, where & is of the order of the
distance over which the average helium density
decays from its bulk value to zero inside the po-

ism for dealing with a Bose liquid rather than a
gas of independent atoms, we shall consider a
simplified model in which Vo(z) is a repulsive po-
tential step at the solid-liquid interface z =0:

Vo(z) = V0 (z(0)
=0 (z&0),

where Vo&0. The height of the step is not critical
provided it is sufficiently great that the helium-
atom wave functions do not penetrate significantly
into the region z &0 occupied by the solid. The
presence of the potential step, which confines the
helium to the half-space z &0, implies the exis-
tence of phase coherence between incident and
elastically reflected excitations. In the theory of
tunneling such coherences are usually neglected~
and in the same spirit we shall treat the helium
excitations using a plane- (running-) wave repre-
sentation even in the presence of the confining
potential. We have already implied in Eg. (10) a
similar treatment for the phonons in the solid but
we shall return to this point later.

The interaction Hamiltonian (12}is in a rather
inconvenient form since it involves the variation
of p(r) in the region where the potential V,(z) is
rapidly varying. Moreover for our simplified
model of the potential we expect the interaction to
be independent of the precise magnitude of the
potential step We n. ow convert (12) to a more
convenient form which demonstrates this property
explicitly.

We first recognize that —p(r)(dV, /dz) is just the
external force density exerted on the liquid heli-
um by the solid. In classical hydrodynamics" the
external force density F'"' enters the equation of
motion for the momentum density g in the form
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tential step. We shall in fact consider the limit
of an abrupt change of density when E -0. Since
g, remains finite the integral over the left-hand
side of Eq. (13) gives zero by virtue of the infini-
tesimal range of integration. Thus

dz Bz Bx By

The components r&& of the stress tensor are also
finite but decay rapidly from bulk values for z & e

to zero for z «- &. The derivates with respect to
x or y behave similarly so vive have"

+4
p(r} dx=[ 11„(r)],=,—[ II„(r)],=

= 11.„{x,y, 0),

where we have taken the limit & -0. Since in Eq.
(12) we may similarly restrict the range of inte-
gration as d& /&s =0 for ~x ~

& e, we have

%e readily obtain the kinetic-energy part

g 8$ 8$ 8$ 8$ 8 g t 8~$
II +48 Bx( Bxg Bxg Bx( Bxgsx( BxgBx(

the form of which is well known in the phenomeno-
logical theory of superfluidity" when g is the
superfluid wave function rather than a field oper-
ator. The diagonal component required in Eq. (14)
may be written

g KE ——4 8$ 8$ 8'p
4tl Bz Bz Bz

To express this in terms of eolleetive variables
p and v, we use the procedure of Sunakawa et al.
in writing

az

upon introduction of the unit operator P of Eq. (4).
Using

+sL = +g xy yy 0 Q gg xy yy 0 dÃdyy (14) 84' . , 1. Bp

2 ~zg=(i)I} ' mph, + —ifI—
and the integration is now over the solid-liquid
interface. Since II„is the fluid pressure, Xsq has
the simple interpretation of the work done when

the solid surface is displaced a distance I, normal
to the surface. This is exactly the form of inter-
action postulated by Sheard and Toombs, "who

treated the helium simply as an elastic fluid and

obtained a transfer Hamiltonian which gave results
equivalent to the classical acoustic-mismatch
theory. Our rigorous derivation here is preferable
since it indicates the limitations of this expression
for the interaction Hamiltoaian. A more realistic
model for the van der Waals potential V,(s) would

contain, in addition to the strong repulsion which

corresponds to our potential step, an attractive
part which results in an increased helium density
close to the solid surface. To deal with this situa-
tion we require a generalization of the theory of liq-
uid helium to nonuniform states such as that re-
cently given by Bowiey. " This problem is cur-
rently under study.

IV. DERIVATION OF STRESS TENSOR
OPERATOR

The stress tensor operator is defined by Eq.
(13). We obtain the equation of motion for g, using
the form of Hamiltonian given in Eqs. (11) and (3)
and the usual Bose commutation relations obeyed
by the field operators. There is hence a natural
separation of the stress tensor into a part H~~&,

which derives from the kinetic energy term in X~,
and a part G~&, which derives from the potential
energy of the mutual interactions of the helium
atoms.

with a similar expression for g {Bg/Bx), and the
commutation relations for p and v, gives finally

Bp -i Bp Bp

(16)
The first term is familiar from classical hydro-
dynamics'9 and is just the pressure arising from
the momentum lux g,v„whilst the bracketed ex-
pression consists of quantum pressure terms
peculiar to a quantum fluid and are analogous to
a similar term in X~ of Eq. (5). The constant
term, although infinite, gives a finite result when

combined with the zero-point energy of the excita-
tions. Again it is analogous to the corresponding
term in Eq. (5). For later use we require Eq. (16)
in terms of Fourier components, which is

1rr~ =~~ p p» ~-4(k+ k ')'r
~g -kg -k'c 4~g k k'

+2@1/2»» +2$2
P2 p»e~1fk ~ I 4 ~

k

Here we have approximated p by the mean density
N/0 {and p

' by 0/iV) in order to retain only linear
and bilinear terms in the fluctuation operators.
In Eq. (1'I) we must of course exclude those terms
with k=0 or k'=0.

For the potential energy part of the stress ten-
sor we start from the relation
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which follows directly from the equation of mo-
tion. Since we only have the derivative with re-
spect to xf on the right-hand side it follows that
this part of the stress tensor is diagonal, II&&

II f ~ jj For physical and mathematical conve-
nience we rearrange this equation in the form

sHP (r} = —p(r)&.(r), (18)

where

E,(r) = —— d r' p(r') V(r —r'),
Bz

(19)

which can be interpreted as the average force on
a particle at r due to interaction with other parti-
cles at points r'. To solve this equation for II,E
we must Fourier transform each side. Defining

by expanding u, and II66 in terms of the excitation
operators for the solid and liquid, respectively.
For the lattice displacement in the solid we have

i/2
u(R„)=~ (a e q' " +a& e " ")'&qi

tl ~ 2 g q q

where Zq = q/q is the unit polarization vector
appropriate to longitudinal waves, and ~ and Gs
are the mass density and volume of the solid, re-
spectively. The inclusion of transverse waves as
in the Khalatnikov theory' does not materially
affect the formalism but for simplicity we retain
only the longitudinal waves.

That part of the stress tensor associated with
emission or absorption of single excitations in the
helium is, from Eqs. (17}and (20),

PE
@6 II g ~Pp-k +ik.p

(p q(: 0).

and a similar expression for F,(r) we get
The term with k=0 is of course excluded from
this sum as is the q=0 term from the phonon ex-
pansion for the solid. Substituting these expan-
sions into (14) gives the transfer Hamiltonian

The right-hand side is in the form of a convolution
since the right-hand side of Eq. (18) is a product.
Similarly from Eq. (19) we obtain

~X/2
E,g = Q, pt;V(k).

3i'sz = Tqt;(ag —a q)(B(,-B (, ),

where the transfer matrix element is
1/2

qf ~
ql( k q6 2 gIf 2PyGsco

(22)

Combining these gives finally

ll.". (r) =ll "(r}=—„.g
kp

(p «)
p( 1'p( V(k) &' e '~'

(20)

V. TRANSFER HAMILTONIAN

We now exhibit the solid-liquid coupling (14)
explicitly in the form of a transfer Hamiltonian

By expanding pg and v g in terms of the heliumt
excitation operators B~ and Bg we see we have
terms in the stress tensor corresponding to single
excitations (when p = k) and terms corresponding
to two excitations. Upon insertion into the interac-
tion Hamiltonian Xsq and using the standard pho-
non expansion for u„we have energy-transfer
processes in which absorption of a phonon from
the solid is accompanied by emission of one or
two excitations into the helium and vice versa.
There are also processes corresponding to inelas-
tic scattering of helium excitations from the solid
surface. Phonon and roton scattering were also
considered by Khalatnikov' but the matrix ele-
ments were obtained in a more phenomenological
fashion.

(Nx,)" I'0; Nv(B)
0 4m 0 (23}

(24)

The integral over the interface of area A has
given rise to the Kronecker delta which conserves
the components of wave vector parallel to the sur-
face, qt~ =k ~t. Clearly the transfer Hamiltonian
gives rise to transmission of phonons from the
solid into boson excitations in the liquid helium
via terms of the form

Tqga)B&+Tz„aq Bg.
For long wavelengths the helium excitations are

phonons. In this region the matrix element for
phonon transmission simplifies considerably.
Using the relations given in (9}we obtain the form

P v'0
Tqk = gAS5q g eq,q't' " q' 4~spsvsq

Here vs is the velocity of sound in the solid and p~
= 1An/& is the mass density of the helium. We
see at once the dependence on the ratio of the
acoustic impedance of the two media, p~v~/pses .
This matrix element was also obtained by Sheard
and Toombs" who treated the helium as a classi-
cal elastic Quid. It is clear why this is so since
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in the long-wavelength limit the stress tensor (21)
becomes

ll, =- p,c,'&(r),

where

model of 'He Biee" has also considered the scat-
tering of free atoms from a surface and obtained
the diagonal matrix element by an argument
involving the pressure in a Fermi gas mhich is
similar to oux use of the stress tensor.

is the fractional decrease in density owing to the
fluctuations which is just the local dilatation. This
form is identical to the stress tensor for a classi-
cal elastic Quid taken to first order in the fluid
displacements, "since me may then neglect the
momentum convection term p~v, ~„which also
appears in Eq. (16) but is second order

It is interesting to compaxe the scattering of the
helium atoms from the vibrating solid surface for
the present case of a Bose liquid, with the scat-
tering which mould occur if the atoms mere non-
interaeting as in a, Bose gas. To do this we sim-
ply expand the field operators in terms of single-
particle plane wave states; thus

g(r) =0 '~' Qc-e's',
P

where c
&

annihilates a helium atom of momentum
Sp. The solid-liquid interaction Hamiltonian then
takes the general form

+k

qp L

xcg+gc p(sq-8 q) (25)

for processes involving only tmo helium atoms. Equa-
tion (25) defines a matrix element for the inelastic
scattex'ing of a helium atom from state p to p+k.
We use the form of stress tensor given in Eq. (21)
which for small momentum transfer hk describes
phonon transmission into the helium. In this limit
the scattering matrix element is dominated by
interpartiele intexactions and me find

MR' "= NV(0)/Q' =pici/1V
P

Thus for an interacting Bose liquid the scattering
of the helium atoms from the solid surface during
phonon transmission is completely isotropic being
independent of both initial and final momenta. To
compare w'ith the behavior of a gas of independent
atoms, me must use the stress tensor given in Eq.
(15), which gives

M&'" =(t'/~a)(P. + ,'aJ' . - (25)
P

Thus, by contrast, for noninteracting atoms the
scattering is angular dependent and for small
momentum transfers is strongly weighted tomards
normal incidence. For an independent-particle

VI. ENERGY TRANSFER BY ONE-PHONON

PROCESSES

The energy-transfer processes may be catego-
rized by specifying the number of excitations
involved in the helium. Thus the transfex Hamil-
tonian (22) describes one-excitation processes and
the excitation may be a phonon or a roton (or even
in between), but the approximate form of matrix
element (24) is restricted to one-phonon processes.
It is now readily verified that a perturbation cal-

hculation of the heat current d~„due to one-phonon
transmission processes, leads to essentially the
same results as the classical acoustic-mismatch
treatment. Taking the temperature of the solid
tobe T+&T and that of the liquid tobe T, the net
heat flow is

ph 2m 2 8n-'
Jsx, =&T —, Tq& '8'e5 m -v~

where nq is the Bose-Einstein distribution function
for temperature T. Note that we reserve the
label q for phonons in the solid. Conservation of
energy, ~, = w~, together with the wave-vector-
conservation condition, qt~ =k t), contained in Tqfy
are equivalent to the 1am of refraction of sound
waves at the solid-liquid boundary. Thus the
transfer Hamiltonian formalism preserves this
basic feature of phonon transmission. In particu-
lar owing to the disparity in the sound velocities
in the solid and in the liquid, the emission of
phonons into the helium is confined to a narrom
critical cone of semiangle 8, = c~/cs

The Kapitza resistance evaluated from Eqs. (2V)
and (24) is given by

tJSL m plVI
ph T 3

A @T 45 p~s~

%'e may compare this directly with the acoustic-
mismatch theory since Little' has given results
for a model involving only longitudinal phonons.
Classical elastic theory gives a transmission co-
efficient

4P¹.P s/&¹V¹
(P,/&. +Ps/e. )'

From energy conservation @@=yak and since 5~
«~ we have k»q. Mox'cover p~«pg, so that,
neglecting the term p~/k, in the denominator, an
adequate approximation for the solid-liquid He
interface is
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&sq 4p—qadi /ps &&

where we have also put k, = k by virtue of the re-
striction imposed by the critical cone. This gives
an acoustic-mismatch value for the Kapitza con-
ductance which is greater than that of Eq. (29) by
a factor of 4 but otherwise identical. The origin
of this discrepancy lies in our use of a plane-
running-wave representation for the phonons in the
solid and the excitations in the helium, which
neglects the phase coherences between incident
and reQected waves. In the theory of tunneling
such coherences in the electronic states are
usually ignored since one is not concerned with
the absolute magnitude of the tunneling current.
However in the Kapitza-resistance problem one of
the major sources of discrepancy between theory
and experiment lies in the magnitude of the heat
Qow, so it is important to be able to account for
the missing factor of 4.

In the unperturbed Hamiltonian X& for the solid
the interaction with the helium is completely ab-
sent and the solid thus has a free surface at z =0.
%'e should therefore use standing waves for the s
dependence of the lattice displacements with the
phase chosen such that the surface is a vibrational
antinode. Since a standing wave is a coherent
superposition of two progressive waves, the sur-
face vibrational amplitude is twice that for a sin-
gle plane progressive wave. On the other hand if
the two plane waves are phase incoherent the sur-
face amplitude is ~2 times that for a single plane
wave. It follows that a decomposition of the lattice
vibrations into standing-wave modes will give rise
to an additional factor K2 in the transfer matrix
element. A similar decomposition is necessary
for the wavelike fluctuations in the helium. But
the unperturbed Hamiltonian K~ of Eq. (ll) con-
tains the static potential step V,(s) which is equiv-
alent to an impenetrable wall. The unperturbed
modes are again standing waves but the vibrational
amplitude must vanish at the wall z =0. This
means that the plane z =0 is a node for velocity
Quctuations but an antinode for density fluctuations
as at the closed end of an organ pipe. Again an
additional factor 12 will appear in the matrix ele-
ment (24) so that the transition probability and
energy Qow are increased by the required factor of
4. %'e may of course put this on a more formal
basis by writing down the appropriate expansions
in standing-wave modes. For the present paper
we have preferred to retain the more familiar
running-wave expansions since we may then use
in unchanged form the theory of Sunakawa et al. ,
and the physics of the problem is basically unal-
tered. However to deal with the case of a general
van der %aals potential requires a more detailed

investigation of the excitations close to the solid
surface. It is then necessary to use modified
standing waves which are determined self-con-
sistently from the van der %aals potential in a
theory of nonuniform states of liquid helium such
as proposed by Fetter" and Bowley. " For the
case of an impenetrable wall the appropriate
standing-wave expansions of the density- and ve-
locity-Quctuation operators have also been given
by Bowley. "

VII. ENERGY TRANSFER SY ONE-ROTON

PROCESSES

Our transfer Hamiltonian (22) and (28) couples
the solid to the complete excitation spectrum of
helium. In the region of the minimum in the dis-
persion curve for the excitations a phonon in the
solid is transmitted into a roton in the helium.
These processes have not been previously calcu-
lated although Khalatnikov' did consider inelastic
roton scattering at the solid surface. Such two-
roton processes are also included in our treat-
ment via the bilinear terms in the stress tensor.
At low temperatures only the high-frequency tail
of the Bose-Einstein distribution gives rise to
thermally excited rotons but owing to the large
density of states they may nevertheless influence
the transport properties.

In the vicinity of the roton minimum the disper-
sion relation (8) approximates to"

g~~ = b + g'{k —k,)'/2m, (29)

where 4 and ko are the energy and wave number
at the minimum and m„ is the roton effective mass.
Since k, = 1.9X10' cm ' is very much greater than
the thermal phonon wave vectors in the solid at
the temperatures of interest (T& 2K); k

~~

= q ~~
can

be neglected in comparison with k. Rotons are
therefore emitted strictly normal to the surface
and we may take k, = k in the matrix element (23).
Recalling the definition (7) of A.„and the relation
(8}, it follows that the transfer matrix element
for one-roton emission-absorption processes is

gk Et', k
~I gc 2 g

X
&u {2m g(o )'~'

0 2k

After computing the roton density of states from
(29}, evaluation of the corresponding heat current
J'sq' gives

ksp~(2&/m„}'+ 2m„r
sL 12' ~3 g 2I 2

x (p~)3h +-861
3

h
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where where the terms with k=k'=k+k'=0 are excluded.
We shall discuss phonon scattering and therefore
substitute

snd p= I/k&T. Here we have taken the thermal-
roton distribution to be adequately described by a
Maxwell-Boltzmann function since in experimental
situations P&» 1. Under these conditions the in-
tegral I= &

m'f'. We see that this contribution to
the Kapitza conductance then has the temperature
dependence T '+ e

The ratio of the one-roton contribution to the
one-phonon contribution (23) can now be expressed
conveniently in terms of dimensionless ratios:

rot 1f2eTS$15, W 27lly 4
( )g/2JP 4g' 2m v'

SL L 0

Taking numerical values of the parameters of liq-
uid 'He at s.v.p. fx'om Milks" we find this ratio is
0.042 at 2 K. Roton emission cannot therefore
affect the numerical discrepancies between experi-
mental and theoretical values of the Kapitza re-
sistance principally because of the freezing out of
the roton population at low temperatures.

VIII. SECOND-ORDER PROCESSES

Upon manipulation involving reversing the signs
of k and k' and interchange of k and k' at various
stages, we find the more convenient form

where

ph scat Q @ ~ gf ~-i(k-k') ~ r

kk'

(30)

In the long-wavelength limit the second term in the
above stress tensor can be neglected since it con-
tains higher powers of 0 than the remaining
terms. Retaining only the two-phonon scattering
terms gives

p„„„~h v~(kk') ' @

kk

x(H Hl +Hip ~, }e-4(lt+k')'r
-k

As we have mentioned the bilinear terms in the
stress tensor link the phonons in the solid to two
exeitations in the helium. Thus we have a mul-
titude of higher-order processes such as emission
of two phonons, two rotons or a roton and a phonon
and inelastic scattering of phonons, rotons or pho-
non-to-roton scattering. In general we expect
pxocesses involving rotons to be small for A&T

«& on account of the low thermal occupancy. We

also expect emission of two phonons to be unim-
portant since enexgy conservation restricts the
available density of states. Khalatnikov' has also
considered phonon scattering and roton scattering
and concluded that although they are comparable
with, but smaller than, the acoustic-mismatch
value at 2 K they rapidly become completely neg-
ligible at lower temperatures. However the ap-
px opriate transition probabilities were obtained

by Khalatnikov fx'om semiclassical arguments and

his treatment is sufficiently different from ours
that we feel it worthwhile to discuss one of these
processes in more detail.

The relevant parts of the stress tensox' ax'e ob-
tained from Eqs. (17) and (20). With a slight
change of notation in Eq. (20) these are

(~) f @~kg A,'
Q g

= g ~-ks~-k'c 4 g PlPk'
kk'

The diagonal matrix element M & &
- kkv~/0 cor-

responds roughly to the flux of momentum carried
by a phonon with momentum SA' moving w'ith ve-
locity v~. This is similar to the form (26} for
free particles since a particle of momentum tP
has velocity KP/m. The matrix element is
weighted towards wave vectors normal to the sou.d
surface. To estimate this contribution to the
Kapitza conductance we approximate the matrix
element by the value at normal incidence"

The solid-liquid interaction describing two-pho-
non scattering events is then

Z = T-B-B- (a- —at-)ph scat
I

SL qk k k' q -q t (33)

where

z/2

~qk +~q +7 k'~q» ~k%'
tl ft ' ll 2p8Qg Qp

is the tx ansfer matrix element for the pxoeess
q+k k'. There is some formal similarity here
with the theory of acoustic attenuation in which an
ultx'asonie wave q is attenuated by anharmonic
interactions with thermal phonons k and k'. How-
ever in phonon-phonon interactions in bulk media
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an) o o
X 5((d + Q - (d~i) (np -Fly').q

Conservation of wave vector removes the sum
over k„' and k„', and the sum over k,' is performed
using the energy conservation condition. Again
making the approximation [k,'~-k', which avoids
complicated angular integrations, me find the in-
tegral over 4 reduces to

t 0 0
Ql~ ad~i( p n—nfl)d&8g, q

where now +~. = ~~+(d, . By expanding the integral
in powers of ~, and taking only the first term we
obtain the leading term in the temperature depen-
dence. The above integral is then approximately

Se k~T ' 4g

The sum over q reduces essentially to the heat
capacity C$ of the solid giving finally the simple
expression

2
~ph scat g~y + pe C$

10 pQ
(34)

where kr = ksT/km~ is the wave number of thermal
phonons of energy A&T in the helium. This form
is in fact very similar to the expression for the
Kapitza conductance for the Fermi-gas model"'"
of 'He if k& is replaced by the Fermi mave num-
ber 0&. The inelastic scattering of phonons in 'He
is therefore analogous to the inelastic scattering
of the quasiparticles in 'He, but because of the
different statistics the average momentum Sk& of
the phonons in 4He is temperature dependent
whereas hk& is not. This accounts for the rapid
T' temperature dependence of this contribution to
the conductance.

In a Fermi liquid, interactions between quasi-
particles give rise to collective zero-sound modes
mhich couple to the vibrations of the solid via the
same mechanism which scatters the quasiparti-
cles." In a similar way, momentum conserving
phonon collisions (N processes) give rise to sec-

all three components of mave vector are conserved
which leads to the requirement that the thermal
phonons have a greater phase velocity than the
ultrasonic wave. " This is not the case here since
v~ & v$ and the above processes are only allowed
because of the nonconservation of the ~ component
of mave vector.

Computing the transition probability from the
golden rule gives the net heat flow for a tempera-
ture difference 4T

ph scat 2m&s. = n.T —
I
T-I' k~g2 qk q

ond-sound modes in a phonon gas and correspond
to fluctuations in phonon density rather than par-
ticle density. " Our interaction Hamiltonian (33)
for two-phonon scattering includes coupling to
fluctuations in the local number density of phonons,
which is represented by the operator

P(r) fl -x ~~t ~ ef(V k')-~ r
k

H'

whose form closely resembles the stress tensor
(30). By including phonon-phonon interactions our
theory may therefore be generalized to describe
emission and absorption of second-sound modes
but it is doubtful if this could greatly enhance the
energy transfer via two-phonon scattering.

The acoustic-mismatch heat flow can be put into
a similar form to (34) by rewriting Eq. (28),

ph
Zsg =A,aTp~v~Cg/6pgQg, (35)

remembering that for our model C$ only includes
longitudinal modes. The acoustic impedance pzeL,
for direct phonon emission corresponds to the
value - ak'r for phonon scattering (or -Ik4~ for
scattering of free fermions"). Comparing Eqs.
(34) and (35) we find the ratio

ph scat

Jsg 3m hk'~
phJ ps~ 5 p~v~

which is only 0.033 at 2 K. Owing to the rapid
temperature dependence the tmo-phonon contribu-
tion soon becomes negligible at lower tempera-
tures. The general form of our result agrees with
Khalatnikov's calculation and the ratio also agrees
to mithin an order of magnitude despite the ap-
proximations we have made. Our approach to the
Kapitza resistance confirms Khalatnikov's general
conclusion' that higher-order processes do not
contribute significantly to the energy transfer at
temperatures below 2 K.

IX. OUTLOOK

Our calculation is the first completely quantum-
mechanical theory of the Kapitza resistance for
the solid-liquid 'He interface. By using a realis-
tic model of a Hose liquid me have treated pro-
cesses involving phonons and rotons in the helium
in a unified and conceptually more satisfying
manner than in previous treatments. The acoustie-
mismatch theory is recovered in the appropriate
limit and me have calculated the contribution of
direct roton emission-absorption processes which
apparently have been previously overlooked.

Although we have not shed any dramatic light on
discrepancies between theory and experiment our
approach has the advantage that it is capable of
generalization in a relatively straightforward may.
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Phonon interactions in the solid or in the helium
may be incorporated into the theory by including
appropriate terms in the total Hamiltonian. The
effects of these on the transition rate appear in
second and higher orders of time-dependent per-
turbation theory. ' In this way the influence of
damping of the waves in the solid or of scattering
by defects or surface structure may be calculated
in a systematic way and some of the difficulties of
the classical theory" avoided. We have also indi-
cated the way to modify the transfer matrix ele-
ments to include attractive van der Waals forces
at the interface.

The transfer-'Hamiltonian formalism allows the

general formula for the Kapitza resistance derived
by Leggett and Vuorio" for the magnetic CMN-'He
interaction, to be applied to the case of acoustic
coupling. The effects of phonon scattering pro-
cesses in the solid or helium then appear via their
influence on the phonon-phonon correlation func-
tions. This is similar to the extension of tunneling
theory to include many-body effects" in the metal
electrodes. Just as the tunneling Hamiltonian has
proved a successful basis for investigation of a
wide variety of tunneling phenomena, the transfer-
Hamiltonian approach to the Kapitza resistance
provides a similar basis for studying models of
the energy-transfer mechanism.
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