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A study of the crystalline phase of a one-component plasma in a uniform background is reported
here. Extensive Monte Carlo computations of the equilibrium properties in the classical region are
presented and a value of the melting parameter I',, = 155 4- 10 is obtained. These results are extended
into the quantum region in the framework of conventional lattice dynamics to estimate the solid-fluid
coexistence curve in conjunction with the Lindemann melting criterion. A preliminary investigation is
made of the effect of allowing the charge neutralizing background to respond to the ionic motion and
it is concluded that the melting curve will be unaffected for ions with Z > 2.

I. INTRODUCTION

In the first paper of this series’ (hereafter
referred to as I); the equilibrium properties of the
classical one-component plasma (ocp) in a uni-
form background of opposite charge were calcu-
lated by the Monte Carlo method of Metropolis et
al.? An equation of state for the fluid phase of the
ocp was derived from which all other thermody-
namic properties can be obtained. The first aim
of the present paper is to extend these computa-
tions to higher densities, where we expect a solid
phase to appear, and to determine the fluid-solid
coexistence curve with reasonable accuracy. The
importance of this transition in the study of dense
stellar matter (e.g., white-dwarf interiors) has
been stressed many times, but only semiquantita-
tive estimates of the transition line appeared until
now in the literature.®*

The second purpose of this paper is the extension
of the ocp model in two directions. A first exten-
sion is the inclusion of quantum effects in the crys-
talline phase. Because a finite-temperature Monte
Carlo scheme for the study of quantum many-body
systems is still lacking, we use lattice dynamics
in that part of the work. This allows us to present
a refined version of the recent calculation by
Hansen, Jancovici, and Schiff® of the phase dia-
gram of the ocp in a uniform background, assum-
ing the validity of Lindemann’s melting criterion.
The second extension is the replacement of the
uniform background by a responsive one. This is
achieved by allowing dielectric screening by the
background, i.e., by replacing a constant dielec-
tric function by a wave-number-dependent one.
The main result of that part of our work is that
the phase diagram obtained previously for a sys-
tem of completely ionized atoms is rather insensi-
tive to the inclusion of dielectric screening for all
values of Z, the atomic number of the nuclei,

oo

except Z=1 (H and D nuclei).

We briefly recall here that the excess thermo-
dynamic properties of a classical system of N
particles interacting by the repulsive Coulomb
potential,

u(r)=(Ze)*/r,

and immersed in a uniform background of opposite
charge, depend only on the dimensionless param-
eter

I'=(Ze)*/kT7,

where 7 is the ion-sphere (or Wigner-Seitz) radi-

us
7_<—3_>l/3’
“\4mp

p is the number density N/V, and V is the total
volume of the system. We shall also use the di-
mensionless ion-sphere radius 7,=7/a, where a
is the ionic Bohr radius.

The outline of the paper is the following. In Sec.
II, the Monte Carlo results obtained for systems
of N=16, 54, 128, and 250 ions are presented in
the range 140 < I'< 300. The deviations of the
computed root-mean-square (rms) displacement
of the ions and of the internal energy, from the
predictions of harmonic lattice dynamics, are in- .
vestigated. From these considerations a simple
equation of state of the crystalline ocp is derived,
and the Helmholtz free energy is calculated as a
function of I'.

In Sec. IIT a comparison of these free-energy
data, with the free energy of the fluid, taken
from I, allows us to locate the fluid-solid phase
transition.

The extension to the quantum regime is pre-
sented in Sec. IV, in the framework of lattice dy-
namics. The coexistence curve is determined
over the whole p-T plane, in the spirit of the re-
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cent work by Hansen et al.’

Section V is devoted to the introduction of di-
electric screening of the background. Modifica-
tions of the lattice-dynamics results due to dielec-
tric screening are analyzed and the effect of the
screening on the coexistence curve is shown to be
small for most values of the atomic number Z of
the ions.

Some concluding remarks and indications of
future work are contained in Sec. VI.

Parts of this work were briefly reported else-
where.®

II. MONTE CARLO COMPUTATIONS OF EQUILI-
BRIUM PROPERTIES

Consider a system of N ions in a cubic box of
edge length L. If the interionic distance 7 is ex-
pressed in units of 7 the pair potential divided
by kT reads

u(r)/kT=T/r. (2.1)

Assuming periodic boundary conditions, we re-
place, following Brush, Sahlin, and Teller,? the
“bare” Coulomb potential (1) by an effective
“Ewald potential” which takes into account all the
periodic images of the ions contained in the ini-
tial box, as well as the interaction of the ions
with the uniform background. This Ewald poten-
tial, divided by kT, can be set in the form!'?

_ I erfe[ 7 *2|(F/L)+X]
To(®)= 7 <Z [F/L) +]

'e—")‘z 287X+ (T/L)
—1+§ me ¢ : (2.2)

The sums go over all vectors X with integer co-
ordinates; the primed sum means that the term
X=(0,0, 0) is omitted; erfc(x) denotes the usual
error-function complement. We refer the reader
to I for a derivation of (2.2) as well as for some
technical details concerning the approximation of
the Ewald potential by an “optimized” expansion
in Kubic harmonics’ in the Monte Carlo programs.

Properties of the solid phase were investigated
by Monte Carlo simulations in the range 140<T
<300. The initial configuration in each run was
taken to be a perfect bee lattice configuration. Our
first aim was to find out below which value of T’
the solid becomes unstable, i.e., melts sponta-
neously. This was done by inspecting the varia-
tion of the mean square displacement of the ions
from their original lattice positions, with the
number of generated configurations. The computed
quantity is the ratio

2 = _R )2
- 2—2’=§,—<Z (—"J—d,—R*l->, (2.3)
1

where d denotes the nearest-neighbor distance in
the bec lattice [d=(37%)"%r,], the ¥,(i=1,..., N)
are the instantaneous positions, and the -ﬁ, are the
equilibrium positions of the N ions.

For I'> 160, y? rapidly stabilizes and fluctuates
around an average value which depends on the size
of the system; the N dependence of y2 will be dis-
cussed below. The same behavior is still ob-
served for I'=150 with the 128- and 250-particle
systems. At the same value of I', however, 7?2
increases indefinitely with the number of generated
configurations for the two smaller systems, i.e.,
N=16 and 54. In these cases inspection of the
instantaneous positions of all the ions at regular
intervals clearly indicates that an increasing num-
ber of neighboring particles have exchanged their
equilibrium positions as the number of generated
configurations increases. This behavior can be
interpreted as a first indication of imminent melt-
ing. A similar behavior is observed at I'=140 for
N=128; below I'=135, the initially crystalline
system is always observed to slowly melt, what-
ever its size. I'=135 can thus be regarded as a
lower bound to the value of I" at melting. It ap-
pears from these preliminary results that the
solid phase of the larger systems is stable (or
metastable) down to slightly lower values of I than
the smaller systems. This is probably a conse-
quence of the larger rms displacements of the ions
in the smaller systems, as will be discussed be-
low.

In the range 150 < I' < 300, we have computed
the excess internal energy per ion, divided by
kT, U/NET, and the rms displacement of the ions
around their equilibrium positions, divided
by the nearest-neighor distance y [see formula
(2.3)]. InI it was pointed out that the purely

TABLE 1. Excess energy per particle, divided by
kT,U/NkT, thermal fraction of that energy AU /NkT, ex-
“cess specific heat per particle c,/Nk, and rms displace-
ment, divided by the nearest-neighbor distance v, as a
function of T for the 128-particle system, The last two
columns list the corresponding harmonic values of y
(‘yh‘"“) and their infinite-system harmonic values (yham™),

U AU C, h harm
— = X arm
' %7 wmr ™ LA Ve

150 -132.734¢ 1.658 1.98 0.176 0.1766 0,1673
160 -141.717 1.635 1.92 0.168 0.1711 0.1620
170 -150.696 1.616 1.87 0,165 0.1658 0.1571
180 -159.662 1.608 1.83 0.156 0.1612 0.1526
200 -177.604 1.586 1.77 0,146 0.1529 0.1449
220 -195.538 1.572 1.72 0.141 0,1459 0.1378
240 -213.47 1.56 1.69 0.134 0.1396 0.1323
270 -—240.354 1.552 1.65 0.124 0.1304 0.1247
300 -267.242 1.544 1.62 0.12 0.1249 0.1183
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TABLE II., Thermal fraction of the excess energy per
particle, divided by kT, AU/NET, vy [formula (2.3)], and
the harmonic value of y [formula (4.11)], at I'=200, for
systems of 16, 54, 128, and 250 ions. For N =128, we
list the Monte Carlo values obtained with four and five
Kubic harmonics (KH) approximations of the Enwald
potential.

N=16 N =54 N =128 (4KH) N =128 (5KH) N =250
AU
NeT 1.93 1.79 1,571 1.586 1.58
Y 0.169 0.157 0.140 0.146 0.137
'yh“m 0.190 0.161 0.153 0.153 0.150

static energy U,/NkT, i.e., the energy calculated
for a perfect lattice configuration, represents a
very large fraction of the total energy in the fluid
phase for large values of I'. This is, not surpris-
ingly, even more true in the solid phase, and the
thermal fraction of the excess energy AU/NET,
i.e., the deviation of the potential energy from its
static value due to the thermal motion of the par-
ticles, accounts for only about 1% of the total en-
ergy. The prediction of harmonic lattice dynamics
for the excess internal energy is

h
yham U

3 3
VT = et E_-0.895 929T + = . (2.4)

2

Thus harmonic theory predicts a constant value of
AU/NET, ; per degree of freedom. In Table I we
list the Monte Carlo values for U/NkT, AU/NkT,
and y together with the value of ¥ from harmonic
theory for the 128-particle system; in the Monte
Carlo runs the Ewald potential has been approxi-
mated by an optimized expansion including five
Kubic harmonics. As in I, the AU/NET data have
been corrected for center-of-mass motion by
multiplying the Monte Carlo values by N/(N-1).
The relative error in AU/NET is estimated to be
of the order of 1%. Inspection of the tabulated
data shows that the deviation of AU/NET from its
harmonic value $ is everywhere of the order of, or
less than 10%, and decreases with increasing T,
as expected. It should be noted, however, that,
contrary to the results obtained for other inverse-
power potentials, e.g., 1/7',%° the deviation is
positive. This point will be discussed below.

Table I, moreover, shows that the Monte Carlo
values of y are everywhere close to their har-
monic counterparts.

In Table II we list the Monte Carlo values of
AU/NET and y for I'=200 and N=16, 54, 128, and
250, using the four Kubic harmonics approxima-
tion of the Ewald potential; the table also contains
the harmonic values of v (see Sec. IV) as well as
the data obtained with the 128-particle system, if
the more accurate approximation of the Ewald

potential, including five Kubic harmonics, is used.
The table clearly illustrates that the N dependence
of v is in good agreement with the harmonic pre-
dictions; i.e., v decreases as N increases. Our
data at other values of I' show the same decrease
of y with increasing N. This behavior is the
opposite of what has been observed in a hard-
sphere solid,!° where y decreases with the size of
the system.

Table II further shows that the values of AU/NkT
are in good agreement for N=128 and 250, and
differ appreciably only for the smaller systems;
this behavior is confirmed by computations at )
different values of I'. The difference between
AU/NET calculated with four and five Kubic har-
monics to approximate the Ewald potential is with-
in statistical errors.

If one considers the anharmonic contributions
to the potential energy as a perturbation,
straightforward thermodynamic perturbation the-
ory,!! with the harmonic solid as a reference
system, shows that the two leading correction
terms to AU/NET must be proportional to 1/T" and
1/I'? or,lequivalently, to T and T?. Our ocp re-
sults, however, strongly suggest that the term
proportional to 1/I" is very small, possibly iden-
tically zero. A least-squares fit to AU/NET of the
form

AU/NkT=%+a/T+p/T?

leads to a ~0, =~3500.

Moreover, in the framework of the anharmonic
cell model, a turns out to be identically O in the
Coulomb case; this is not true for other power-
law potentials, as discussed in the Appendix. The
anharmonic corrections calculated for the simple
cell model are too small, but have the right sign,
i.e., a megative correction proportional to T in the
case of the 1/7'%, in agreement with the Monte
Carlo data of Hoover et al.,’ and a positive correc-
tion, proportional to 72 (or 1/T'?) in the case of
the Coulomb potential, in agreement with our
Monte Carlo data. Thus we have strong reasons
to believe that the 1/T correction vanishes and the
Monte Carlo data for the excess internal energy
are well represented by the formula

U/NkT =-0.895929T"+ 1.5 +3500/T"2. (2.5)
The equation of state then reads

PV 1/U0\_ 1167
m—l+ 3CV—kT)——0.298643P+1.5+ rz (2,6)

and the excess specific heat per particle at con-
stant volume is

c,/Nk=1,5+10500/T2 . (2.7

The Helmholtz free energy is obtained by assum-
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ing that in the limit I' - « the harmonic approxi-
mation becomes exact. In the classical limit, and
for large N, the harmonic approximation yields
(see Sec. IV)

thm F 3N -3 ﬁ

1 W w
- - L 2%
Z 2Tt N ,E In w,+3ln 5T (2.8)
=1

where F, denotes the purely static contribution,
w, is the plasma frequency

41r(Ze)2p 1/2
W, = T ’

(2.9)

M being the mass of the ions, and the sum in (2.8)
goes over the 3N -3 normal modes of the crystal.
We have computed the sum as a function of the
number of degrees of freedom and find that it
tends, in the limit N— =, towards the value
—2.4938; in the infinite-system limit (see Table III)
(2.8) can be rewritten as

Fham/NET = ~ 0,895 929 — 2.4938 + $1n3
+&1nT + $1n(kT) g, . (2.10)

In the last term, the energy T is expressed in
units of ionic rydbergs.

The anharmonic contribution to the free energy
is obtained by integrating the anharmonic part of
the internal energy (2.5) from I' = to any finite
value of I'. The resulting total Helmholtz free en-
ergy is

F/NET = (F"m /NET) - 1150,/ T 2
=-0.895929T + LInT - 1.8856
+$In(kT)g, - 1750/T°2. (2.11)

1. FLUID-SOLID TRANSITION OF CLASSICAL
ONE-COMPONENT PLASMA

Having calculated the free energy as a function of
I', we are now in a position to locate the fluid-
solid phase transition by comparing the free ener-
gy of the solid calculated from (2.11) with the free
energy of the fluid calculated from formula (22) of
1. The two free-energy curves are found to inter-
sect at I'=158 and the solid has the lower free en-
ergy for I' >158, whereas the fluid has the lower
free energy for I' <158. This value of I' is some-
what larger than the estimate I' =143 given in the
preliminary version of this work® in which the
1/T'? behavior of the anharmonic contribution to
the free energy had not yet been established. The
free-energy curves of the fluid and solid phases
lie very close over a large range of I’s, and a
0.1% error in the free energy of one phase shifts
the intersection by as much as 15 in I'! This
illustrates the necessity of very precise Monte
Carlo calculations if the fluid-solid transition is

to be determined with a reasonable degree of
accuracy.

In the previous section we showed that anhar-
monicities lower the Helmholtz free energy of the
ocp solid. For that reason the intersection of the
fluid free-energy curve with the rarmonic free-
energy curve of the solid (2.10) yields an upper
bound to the value of I" at melting; this intersec-
tion occurs at I'=170. Close inspection of our
estimated errors on the fluid and solid free ener-
gies leads to the estimation I'=155+10 at melting.

Our upper bound I'=170 lies close to the melting
value of I' predicted by Van Horn,* which is based
on the Lindemann criterion in conjunction with har-
monic theory and empirical alkali-metal data. The
estimate of Brush, Sahlin, and Teller,® I'~125,
lies well below our value, in a region where the
solid is clearly unstable.

The melting line in the p - T plane is now given
by

T:xpl/s, (31)
where
x=(Ze)*% 1r)‘/3/158k.

As is well known,'**? the one-component plasma
is unstable (negative pressures and compressi-
bilities) if one does not take into account the free
energy of the uniform background. If one chooses
the ocp to be a model for dense ionized matter,
the background is a degenerate electron gas. If
the free energy of the background is added to the
free energy of the ions, the intersection point of
the free-energy curves of the two phases does not
change, but the “width” of the transition, i.e., the
relative volume change on melting, 6v/v, deter-
mined by a standard Maxwell double-tangent con-

TABLE III. Number dependence of some properties of
the bee solid phase ocp with uniform background in the
harmonic approximation. N is the number of particles
in the periodically repeated crystal. The moments %,
are defined in Eq. (4.5) of the text, and the last column
contains the values of Infw; (ﬁ)/w,] averaged over the
Brillouin zone, This quantity appears in the classical
limit of the lattice free energy [Eq. (4.6)].

N U_.z U_1 U1 (11'10))
8 19,6841 3.5533 0.484 46 —2.9460
64 15.4932 3.0138 0.50958 —2.5691
216 14.0733 2.8753 0.51131 —-2.5111
512 13.5210 2.8311 0.51148 —2.4982
1000 13.2819 2.81417 0.51147 —2.4949
2744 13.1068 2.8042 0.51143 —2.4937
4096 13.0720 2.8024 0.511 42 —2.4936
13824 13.0189 2.7999 0.51140 —2.4937
46 656 12,9984 2.7990 0.51139 —2.4938
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struction, depends on the exact nature of the back-
ground. If the background is a nonrelativistic
degenerate electron gas, its free energy is
_F 3 \x? 2/3
NET ‘(5kT> am ST,
where 7 is the electron number density, #=2Zp.
kT will henceforth be expressed in ionic rydbergs;
Eq. (3.2) can then be rewritten as
Fe 2/3pe
NET = 1008A Z2/3I'*(kT)gy, (3.2)
where A is the atomic mass of the ions. Formula
(3.2) is valid if T is much smaller than kTp,
where Ty is the Fermi temperature of the elec-
trons. In dimensionless units this condition can
be rewritten as
2 Z25A10°

(RT)gy <<-§ 72

or

X -4
(KT)x, > Samazes }Xr,z : (3.3)
On the other hand, the p - T conditions (or, alter-
natively, the I' = T conditions) must be such that
the ions can be considered as classical. InI it
was shown that the first quantum correction to the
free energy is

F!'  T3kT)y
—— — IRy,
NET 16 (3.4)

This correction is the same for both phases, at
a given value of I', which means that the intersec-
tion of the free-energy curves is not shifted by the
quantum corrections to first order in the Wigner
expansion,'® in contrast to the case of simple lig-
uids.!* However, the volume change on melting
is modified by quantum effects.

For the ions to be considered as essentially
classical, the ratio of F'/NET over the classical
free energy given by (2.10) must be very small;
keeping only the dominant contribution in (2.10)
(i.e., the purely static part of the free energy)
this condition can be reexpressed as

(kT)gy < 14/T'2, (3.5)

Combining (3.3) and (3.5) one sees that, in order
for our model to be a reasonable approximation
to dense ionized matter, one must verify the
double condition

-3
10 > (kT)ry I'% » 11122_7’5 .
For He® nuclei near the transition, I', =158, the

model is reasonable if the temperature is in the
range

|oo

1073 >> (kBT)ry >107°
or
2X107°K > T >> 200 °K.

Choosing (kT) gy =107!/I'2,, the relative volume
change 6v/v~-306I'/T, determined by the double-
tangent construction, turns out to be exceedingly
small, of the order of 0.03%. This value does not
change very much with temperature. It is inter-
esting to note that the relative volume change
determined by Monte Carlo studies for various
inverse-power potentials®'®** 1/ " decreases
with the exponent . It is largest for hard
spheres (n =)' (about 10%) and smallest in the
Coulomb case (n=1).

The entropy change of the ions on melting,

oS oU OF

Nk~ NET ~ NeT

is about 0.82, remarkably close to the values
found for the various other inverse-power poten-
tials.!®* The “Lindemann ratio, ” i.e., the value
of y [formula (2.3)] at melting, is 0.17 for the
128-particle system, very close to the harmonic
value of a system of that size.

The harmonic infinite system value is 0.165;
this value will be adopted in the following sections.
It should be noted that the Lindemann ratio for the
ocp is somewhat larger than the one calculated for
hard-sphere systems.'°

As mentioned earlier, quantum corrections
calculated to first order in the Wigner expansion
do not shift the transition line in the p — T plane.
However, according to formula (3.4), quantum
corrections increase with temperature along the
classical melting line (characterized by a constant
value of I'), and at sufficiently high temperature
we expect quantum effects to become so important
that the Wigner 7?2 expansion ceases to be useful.
In order to extend the phase diagram into the
quantum region, we resort to lattice dynamics.

IV. LATTICE DYNAMICS OF ocp IN RIGID
BACKGROUND

In this section we discuss some properties of the
ocp solid with a uniform background within the
framework of lattice dynamics. The principal new
results given here are the equi-y or Lindemann
curves in the temperature-density planes. The
Lindemann melting criterion identifies the solid-
fluid coexistence curve with the equi-y curve for
the appropriate value of ¥. Our choice of y is
determined from the Monte Carlo results in the
classical region, as discussed in Sec. III. Pre-
vious harmonic calculations are commented on and
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extended, and the application of the self-consistent
phonon theory is discussed.

A Taylor-series expansion of the system potential
energy in powers of the displacements of the lattice
particles from their equilibrium sites leads, when
truncated after the quadratic term, to the usual
equations of the harmony theory!’

w¥(§) &,(d) =D(§) &,d), (4.1)

where the dynamical matrix D may be written in
the form?!®

- b b 3nfmf\ e
D@ 52+ £ 30 (- 2lL) o8]
i

4.2
where the n;=(n},n},n}) are integers, either éll )
odd or all even for the becc lattice or all even or
two odd and one even for the fcc lattice. The fac-
tor f is 1 for the bce case and 3 for the fec. This
form shows explicitly that all density dependence
is contained in the expression for the plasma fre-
quency in this uniform background case. The
dipolar sum in Eq. (4.2) may be evaluated by the
Ewald method.®

The sum rule of Kohn follows from the form of
the dynamical matrix as

S wH@) = Daold) = w3, (4.3)
j o

since the trace of the dipolar term is zero.

The initial attempts to accurately determine the
first moment, giving the zero-point energy, were
those of Coldwell-Horsfall and Maradudin®® and of
Carr.'® Carr calculated the frequencies exactly fora
periodically repeated bcc lattice of 512 particles
using a published tabulation of the necessary di-
polar lattice sums'® to arrive at an answer of U,
=0.511. We have defined

U, s@: %%))/ 3N-3, (4.4)
q,d

where 3N- 3 represents the vibrational degrees of
freedom, the §=0 mode corresponding to center-
of-mass motion being excluded. Coldwell-Hors-
fall and Maradudin tried to obtain the first mo-
ment from a knowledge of the first five even mo-
ments.?® The last two of these are rather difficult
to calculate and the moments they give can be
shown to be mathematically inconsistent with a
frequency distribution which is zero above the
plasma frequency,?! this upper bound being easily
seen from the Kohn sum rule. Explicit calculation
shows their values of Ug and U to be about 10%
too low. From our calculations, some results of
which are given in Table II, we find the first mo-
ment for the infinite bee lattice to be 0.511385.

In calculations of this kind the Kohn sum rule pro-
vides a convenient check for accuracy.

Among the lattice structures, hep, bee, fee, and
sc, the bee is known to have the lowest static
potential energy. We have calculated the free
energy, in the harmonic approximation for the uni-
form background model, of the bce and fce phases
and find the bce phase to be increasingly the most
stable phase at nonzero temperature. The vibra-
tional free energy in the harmonic approximation,
which is in addition to the static potential energy,
is given by’

F=kT§_“’ ln[2 sim(’%@)] . (4.5)

Q.4
This may be rewritten in terms of the dimen-

sionless variable

£=[r32(kT)ry ]~ (4.6)
as
F(£)=kT Y 'In{2sinh[V3 fw,(@/w,]}. (4.7
3.4

For large values of £ this becomes

F(£)=(3N=3)kTV3 U, £. (4.8)
Ff.cc—/:;c
NET

0.6

0.k |

0.4 -
—— 5
¥ 8 42 16 4o

FIG. 1. Difference between the vibrational free en-
ergies of the fcc and bec phases for the ocp with uni-
form background. The calculation is for a harmonic
lattice of (36)° particles or 139 965 internal degrees of
freedom. The becce is predicted as the stable phase for
all values of the parameter ¢ [defined by formula (4.6)].
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Figure 1 shows the calculated difference in vibra-
tional free energy between the bce and fcc phase.
Table IV gives our values for the vibrational free
energy and specific heat of the bce phase.

The mean-squared displacement is calculated
from the expression'’

__r__
(2N-2M

xS coth{z[prw,(@)]} . 4.9)
3,4

(U*0))=

w, (@)

We divide this by the square of the nearest-neigh-
bor distance to obtain an expression for y? as
defined previously in Eq. (2.3). The reader is
warned that this ratio has been defined by other
writers as the mean-squared displacement divided
by the Wigner-Seitz radius 7.*** For the bcc
lattice, to which we restrict ourselves hence, this
ratio is

. 1 <§>2/3 1
Y = 3@ryia\n) 3N-3

xS coth[V3 §w,(@)/w,] . (4.10)
£ “)j(q)/wp
q,d
This has two convenient limiting forms:
) 1 3 2/3 4
Y -.—2-(—3-’;;—)'175<;> U—l’ £>>1 ( .11)
r 3 2/3
i ?(?) (RT)ry Uy, £<«<1. (4.12)

The large-£ limit defines the quantum region
and the small-¢ limit the classical region. From
(4.11) we have calculated the equi-y or Linde-
mann curves for several values of ¥ close to the
one given at melting by the Monte Carlo studies.
These are shown in Fig. 2. A previous estimate
based on a Debye model fitted to the moments of
Ref. 20 was given in Ref. 5 for the case y=0.17.
The general form for the curves of Fig. 2 may be
seen from Eqgs. (4.11) and (4.12). We shall use 7,
to denote the value of 7 for melting at 7=0°. The
curves of Fig. 2 clearly show the strong depen-
dence of the zero-temperature melting density on
y (ro~7v ™) and also the sensitivity of the maxi-
mum melting temperature. The essential improve-
ment here over previous estimates of 7, based on
the Lindemann criterion is the determination of
a “reasonable choice” of y from “exact” Monte
Carlo computer studies on the same system in
the classical region. As mentioned above,.the
value of y at melting is predicted to be 0.16-0.17.

Our value of y at melting is somewhat larger
than the value 0.15 estimated by Van Horn* for
the alkali metals and used to predict a value of

|

I'=170 for melting in the classical region. No-
ziéres and Pines?? use a value of y only slightly
smaller than that of Van Horn; however, their
estimate of the inverse first moment [see Eq.
(4.11)] is inadequate. They neglect the transverse
branches completely and consider only a disper-
sionless longitudinal branch. It is, however, the
lower-frequency predominantly transverse
branches which are most important for an inverse
moment. They effectively estimate U_, as 3,
whereas the correct value is close to 2.8. Since
U., is squared in calculating 7, their estimate
differs considerably from ours. Their choice of
v with the correct value of U_, would give a value
of 7, close to 1500, rather than the 20 which they
estimated and which has been often quoted. The
large value of 7, somewhat weakens the appeal

of using low-density electron-solid results for
purposes of interpolation into the range of metallic
densities.

In concluding this section we discuss efforts to
apply self-consistent harmonic theory to the uni-
form-background model.

The self-consistent phonon (SCP) theory has
been applied to this system by Kugler®® and the

TABLE IV, Vibrational free energy and specific heat
per particle for the ocp lattice in the uniform-background
model. The independent variable ¢ used here is defined
in Eq. (4.7) of the text.

E G
3 W (&) 3%

0.1 -5.6692 0,996 68
0.2 -3.5748 0.986 86
0.3 -2.3336 0.97095
0.4 -1.4361 0.949 62
0.5 -7.228 0.923 66
0.6 -0.1227 0.89401
0.7 0.401 66 0.861 60
0.8 0.8726 0.82735
0.9 1.3045 0.792 09
1.0 1.7067 0.756 53
1.5 3.4558 0.59063
2.0 4,9890 0.46033
2.5 6.4306 0.362 96
3.0 7.8268 0.28929
3.5 9,1982 0.232 45
4.0 10,555 0.18801
4.5 11.903 0.15298
5.0 13.245 0.12518
5.5 14.583 0.10301
6.0 15.918 0.08523
6.5 17.252 0.07091
7.0 18.585 0.05930
7.5 19.916 0.049 86
8.0 21.247 0.042 14
8.5 22.578 0.035 80
9.0 23.908 0.03056
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FIG. 2. Equidisplacement
or Lindemann curves as a
function of density and tem-
perature for several values
of y close to the value given
by the Monte Carlo studies
as appropriate for melting
in the classical regime.
The parameter is defined
as the rms displacement
divided by the nearest-
neighbor distance. The
calculations are for a har-
monic lattice of (36)° par-
ticles and a uniform back-
ground.

2 4 (4 8 lo 12 14
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reader is referred to this paper for a very thor-
ough discussion. The density dependence of the
system is now no longer given solely by that of the
plasma frequency. Kugler has tabulated some of
the frequency moments of this system as a func-
tion of 7, for the zero-temperature case. For 7,
less than about 50 these differ noticeably from the
harmonic values and, in fact, for 7, less than
about 22, no self-consistent solution was found.
For the largest 7, tabulated, however (r,=90.5),
they converge quite well to the harmonic results.
The first moment here, for example, differs by
about 0.2% from the harmonic value.

We have checked Kugler’s results for the zero-
temperature case and find them completely
accurate. In extending them to nonzero tempera-
tures we find that the “lattice instability” noticed
by Kugler persists. For example, at ;=50 there
is no solution to the SCP equations for tempera-
tures above about 0.9%X10~® Ry/k and at r,=2x10*
above 0.32x107° Ry/k. These values are, how-
ever, far outside the region of stability of the
solid phase and are of no significance quantita-
tively. In the region where we have predicted the
solid phase as stable, the solutions of the SCP
equations are essentially identical tothe harmonic-
theory results. The computer experiments show
that the anharmonic contribution to the internal
energy (as mentioned before) is quite small but
clearly larger than the statistical uncertainty in
the results. The lowest-order SCP theory shows
a deviation from harmonicity several orders of
magnitude smaller than this.

Kugler has extended the theory to include the
“second-order” cubic term and has presented a
very approximate calculation showing that at zero

temperature the dispersion curves even for 7, as
large as 800 do in fact differ from the harmonic
results. We plan to check to determine if this
difference is present in the classical region by
molecular-dynamics studies now underway.

V. LATTICE DYNAMICS OF ocp IN RESPONSIVE
BACKGROUND

In this section we shall examine in a semiquanti-
tative way the effects on the Lindemann curves of
allowing the charge-neutralizing background to
respond to the motion of the lattice particles.
Recall that the model which we have in mind is
that of nuclei in an electron-gas background. The
possible astrophysical significance of this model
has been discussed by Ruderman.?* The conclusion
we arrive at is that, for a particles and heavier
nuclei (the heaviest we consider here is iron), the
screening by the background does not radically
change the Lindemann curves from the uniform-
background case. Only a lattice of protons and, to
some extent, of deuterons requires a consideration
of screening.

We assume, as is physically reasonable, that
the electrons react instantaneously, on a time
scale of the vibrational period of the nuclei, so
that we may describe this response using the
static dielectric function for the background sys-
tem. From electrostatics the induced charged is
related to the “external charge,” here the nuclei,
by

Pina (a) = %ﬁ) - 1) Pnuc (ﬁ)) (5-1)

where
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¥ X (5.2)

i

Pre (@) =

and V is the system volume. From Poisson’s
equation the electrostatic potential is

£ @
Q(ﬁ)— qz €(q) (5.3)

and, looking at the potential energy of a lattice
particle, one sees that

4,”22 2
o0) = %j—qze(q,

etE-?

(5.4)

may be regarded as the effective pair potential
between the nuclei. If this is used in the standard
equation for the dynamical matrix

PIRA AN
"o 7 =Rn (5.5)
x(1-e™*3Rn)

Das@= 7

we obtain

o ~((G+8u(G+0)y  GaGp
Dos@ = , (5.6)
= w’;<(§+Q)z€(G+Q) Gf(G’>

where the G are reciprocal-lattice vectors result-
ing from the sum over equilibrium lattice sites

in Eq. (5.5). The dynamical matrix can be re-
written in another form as

Dep(@) = Dcs(ﬁ)+wz[(G+Q)a(G+q)8/ 1 _1>

7L G+ \€G+D)
-8 ()

(5.7

where DF is the dynamical matrix for the uniform-
background case, Eq. (4.2).

The density and temperature ranges we are
interested in are of the same order as for the uni-
form-background case. Since our distance unit is
the Bohr radius of the lattice particles, for pro-
tons or heavier particles it is necessary to con-
sider a very-high-density electron-gas back-
ground. Comparing the Fermi momentum to m
we have

Rkp _(ez )( (97‘. 13 477/
m,C \kC 4) 7s
AZ7/3 (5.8)

~25.5

where m, is the unit atom mass. The 7 range
we shall examine extends to values less than 1000
where this ratio, even for « particles, is of order

|

1, so in this region the electron gas must be
treated relativistically.

Except for protons and deuterons the Fermi
temperature is greater than 10° times the temper-
ature for almost all 7, and T we consider, so in
this case it is possible to use a dielectric function
calculated for a degenerate electron gas.

For the sake of convenience and also because it
demonstrates the basic ideas we have used the
Fermi-Thomas dielectric function. This has the
form

e(q)=1+k5r/q°, (5.9)
with?®
nonrel ﬁk
kpp =k '[(mc’> +1] , (5.10)

We shall mention below where it may be antici-
pated that this overly simple dielectric function
will be wrong. Using (5.9) in (5.4) the effective
pair potential is

o(r)=Z%*(e~*r1"/7). (5.11)

For a bcece lattice the ratio of nearest-neighbor
distance d to the screening length kr} is

tssona () 15T

A Vs 271/4
~0.325 Z [“(W)] . (5.12)

If we are to approach the uniform-background re-
sults this ratio should be less than 1. As Z in-
creasesthe minimum value of this ratio, obtained at
r,=0, increases rather slowly; however, what is
more important is the rapid increase of AZ"”® so
that kprd for values of A and Z corresponding to
a particles or heavier nuclei stays near its mini-
mum value until 7, is well into the low-density
classical regime. This will be seen more clearly
from the numerical results presented below.

The dynamical matrix derived from (5.11) is
easily found to be

k

Das@ = w,( FT){JZ %
6..(L 1
+Z oB x"'f'"x"?‘

Jd=o

3 3\]e™

— %8 L L2
Xj%j <l+x,+xf)] >

x e~ t% -m,,} , (5.13)

with X;=R;kzr. It is interesting to compare the
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dispersion curves obtained from this dynamical ma-
trix for various values of , with those of the uni-
form-background model. We have taken A =Z=1 and
§ along [100] to make this comparionin Fig. 3 for
twovalues of r;. Referringto Fig. 3 we see that for the
smaller rs,and thus krrd,we approach the uniform-
background result with the transverse branch only
slightly changed and the longitudinal branch close
to the uniform-background result except near the
origin. In these units a density corresponding to,
say, metallic sodium at zero pressure would cor-
respond to 7 of order 8000. In this case the
curves would be almost an order of magnitude be-
low the uniform-background results. On the other
hand, it is known from neutron-scattering experi-
ments that in the alkali metals the transverse
branch along [100], for example, is only slightly
changed from the uniform-background case.?® In
general, the model would estimate the screening
effects as far more important than they actually
are in this case. As this model has in the past
been used to discuss phonons in metals (see Ref.
27 for a discussion of some of these calculations),
we will comment further on this.

If the problem of phonons in metals is studied
using a local pseudopotential a dynamical matrix

Lo
0.9t 1
2

0.8t

[eA 43 3

0.6
W
st

oyt ;

03}

0.2} 1 uniform backgrouwd

2 k=200
o.} 3 5=650
Tz 3 % 3 ¢ 7 @
84a __,
Lioo]

FIG. 3. Comparison of the dispersion curves along
(100) of the uniform-background case with those for the
case of a responding background with Fermi-Thomas
screening. The results are forA=Z=1.

of the form of Eq. (5.7) may be derived, with the
difference that in the sum over reciprocal-lattice
vectors the bracketed terms containing the dielec-
tric function are multiplied by essentially the
square of the quantity, Fourier transform of the
pseudopotential times the square of the wave vec-
tor [see Ref. 28, Egs. (2.3.4) and (2.3.5)]. In
noting the difference between this and the model
shown in Fig. 3 it is convenient to use a form of
the pseudopotential due to Asheroft which is Cou-
lomb-like outside some core radius 7, and zero
for 7 <7;.?° The zero results from a cancellation
between the Coulomb potential within the core and
the kinetic energy resulting from the orthogonaliza-
tion of the conduction-electron wave function to
the core wave functions. The parameter 7. is
adjustable to allow for the fact that this cancella-
tion is not complete. For this pseudopotential the
dynamical matrix is given by Eq. (5.7) with the
terms containing the dielectric function multiplied
by the square of the cosine of the quantity 7. times
the wave vector [see Ref. 30, Egs. (3), (5), and
(7)]. With an 7, appropriate to sodium, for exam-
ple, the neutron data are well fitted by the calcu-
lated dispersion curves, with some small depen-
dence on the dielectric used; in particular, except
for the term in the dynamical matrix [Eq. (3.7)]
corresponding to G=0, the results are not con-
siderably changed from the uniform-background
case. However, these results are quite sensitive
to the value of 7, and by reducing this value the
terms due to screening become more important.
This is well illustrated in Fig. 5 of Ref. 30 for a
4% decrease in 7., and we have checked this rapid
increase in the importance of screening for larger
decreases in 7, . It is the neglect of the importance
of the ion core in reducing screening effects which
causes the model shown in Fig. 3 to be even quali-
tatively incorrect as a model for phonons in metals
with an ion core. Our results are therefore con-
fined to a lattice of fully ionized atoms.

We have recalculated the Lindemann curves
using the potential (5.11) for the particular case
v=0.17, which was roughly the value given at
melting by the Monte Carlo studies of the uniform-
background model. The results are shown in Fig.
4. As the curves for the nuclei heavier than, say,
the deuteron are close to the uniform-background
results, it is likely that this value of Y may ap-
proximately describe melting in this more general
case. For the proton and deuteron lattice this
value is probably incorrect, but from our studies
to date we cannot say more about this.

Since we are studying the rms displacement
which depends primarily on the low-frequency
long-wavelength modes, we might hope that the
Fermi-Thomas dielectric which is correct in the
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FIG. 4. Comparison of the Lindemann curves for y=0.17 between the uniform-background case and the case of a
responding background with Fermi-Thomas screening for a few values of A and Z as indicated. A harmonic lattice of
(8)° particles was used here. With the exception of A =Z =1, the curves are quite close. For A =Z =1 the screening
effects are quite large and a more thorough study with a more realistic choice of dielectric function would be needed for
quantitative conclusions. The dashed lines a and b indicate some values of density and temperature, where the ratio of
the Fermi temperature to system temperature is 10*3 for A=Z =1 and for A =4, Z=2, respectively. The curve for
A =56, Z =26 has not been continued into the low-density region for visual clarity.

long-wavelength limit would be a good approxima-
tion. This is probably true, for the most part,
except that from Eq. (5.6) it is necessary to note
that the dielectric function will also enter as
€(G+q) for G#0. When the screening and there-
fore the terms with G#0 become most important,
it is expected that a form for the dielectric func-
tion accurate at large g values would give better
results. Stated somewhat differently, it is well
known that the exponential decay in the potential
predicted by the Fermi-Thomas dielectric is not
the correct asymptotic form, which corresponds
instead to Friedel oscillations.?! Therefore, if
the screening length is so short that even nearest
neighbors may be in the asymptotic region of the
potential, it is likely that results based on the
Thomas-Fermi form are wrong. This applies
strongly to the proton and deuteron lattices, but
for the heavier nuclei studied would be important
only at quite low densities.

VI. CONCLUSION

In this paper we have presented the results of a
study of the crystalline phase of the one-component
plasma. We believe this system to be important
not only in itself, as the low-density limit of the
electron gas, for example, and as a possible
astrophysical model, but also as a limiting case
in the systematic study of purely repulsive in-

verse-power potentials where the hard-sphere
system is the other limiting case. We list here
what we believe to be the most important results.

(a) A value of the melting parameter I',,=155+ 10
was obtained for the system in the classical region.
The value of the Lindemann parameter leads, in
conjunction with conventional lattice dynamics, to
an estimate of 7, 2 800 for melting at 7=0° in the
quantum regime.

(b) For melting in the classical region the en-
tropy change of the ions, 6S/Nk=0.82, is quite
close to values obtained for all other inverse-
power potentials, including hard spheres. The
relative volume change on melting, 6V/V ~0.03%,
is however, considerably smaller than for other
repulsive inverse-power poientials.

(c) A preliminary investigation of the effect of
allowing the background to respond to the ionic
motion indicates that the melting curves given by
the Lindemann criterion are probably unchanged
for Z= 2. The case of ions with Z=1 is inconclu-
sive.

Future work will concentrate on the time-depen-
dent properties and a more accurate treatment of
dielectric screening.
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APPENDIX

As we have discussed above, the Monte Carlo
results show the anharmonicity of the solid ocp to
be quite small but undeniably present. The an-
harmonicity increases the internal energy and
appears to be proportional to the square of temper-
ature. This contrasts with computer studies on
the » ~'2 potential where the internal energy is
lowered from its harmonic value by a term pro-
portional to the temperature. The basic cause of
this difference can be understood from a simple
cell model, although it is not sufficient for numer-
ical comparison, as it gives too small a value for
the rms displacement.

In the cell model a particle is assumed to move
in the field of its neighbor particles, which are
taken to be at their equilibrium positions. For
the solid ocp the derivation of the potential pro-
ceeds as usual (we take the system volume as
large but finite for the moment). The potential
seen by a particle is then

1 1
V(r) = Vitatic + €2 E(]T_-T—’ - )
I #0 r m
2 of 1 1
- pe fd%'(?,_? —1">, (Al)

where 7 is the distance of the particle from its
equilibrium position. The second term is ex-
panded in spherical harmonics.

2 1 1
e,§(lr-f ‘m)
% i

=41e*y" 3 Z—Zi—l Y (2 !fl-"}“f—’) (A2)

i=1m==j 1=0

By the usual arguments of crystal-field theory we
note (i) if the crystal has inversion symmetry
then only terms for even j are nonzero. (ii) For
a cubic crystal the polar axis may be taken along
an axis of fourfold symmetry so that only terms
withm =0, +4,+8... are nonzero. (iii) For a
cubic crystal the term in Y, is explicitly zero.
(iv) Since the potential is real the coefficients of
Y;, and Y;_, are equal.

We may finally write
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r , . x?
BV = BVatatic g X +41r1"2 2771
J=4
% (D10 @0+ T Dynltin(®) + V1u(,)]),
m=4,8 o0

(A3)

where x =7/7 and

Dy, =7"*! Z 'L"!?Yl (+Qx ),

1 #0
with

T'=e?g/7, PB=1/kT

and we may take infinite-system limit.

The essential difference between this expression
and what is obtained for any other power-law po-
tential is that here the quadratic term is the only
isotropic part of the potential.

We now treat the terms beyond the quadratic as
a perturbation and do classical thermodynamic
perturbation theory:

BF = BF o+ BVpert ) o~ 5 ({B*V Bext) o = ( BVpert ) ) +O(B°) .
(A4)

The term (BVpert) o iS zero since the perturbation
contains no isotropic part and

(B*VBert) o= (4ﬂ)zrzi T2]1—+i)—2

i=a
*(#730) Do 2o DA [Ty 711%)-
m=4,8...
(AS5)
The necessary averages are
1/2\' /(21 +1)1!
(#*'Y,) 0= ;(f) ((—'2—1:'2)—">’
(A6)
2/2\/21+1)1!
(Vi + Yin]®) = ;(-f) (_21+2_)> '
So we have
_ (2j+1)!1! l)"z
B«F—ﬁFo-z‘”Z (2]+1)2 (I"
i=a
j
x(Dhor2 3 Din). (A7)
m=4,8...
The internal energy is obtained from
3
U=3F (FI), (A8)

which verifies that the internal energy is in-
creased from a harmonic result by a leading term
proportional to the temperature squared.
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If we repeat the argument for some other power-
law potential, then the isotropic term is no longer
purely quadratic but contains terms in x*, x%, etc.

If the quadratic term is again taken as the
reference potential, the first-order perturbation
term is now nonzero, since the perturbing poten-
tial contains isotropic parts. The leading x* term
now gives the correct sign and temperature de-
pendence noted in the » ' studies. It appears that
the solid ocp is a rather special case in this re-

gard.
The D coefficients appearing in (A7) may be

jo

evaluated from the standard lattice sum tabula-
tions.**> As mentioned above, the numerical value
given by (A7) for the I'? term is too small, since
(A3) gives too small an rms displacement. It is
possible to play numerical games and multiply

the quadratic in (A3) by a factor chosen so that
the reference Einstein oscillator has the same
rms displacement as given by the harmonic theory
in the classical limit, and then the I'"2 coefficient
in (A7) has an order-of-magnitude agreement with
the computer results.
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