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The equilibrium properties of a classical one-component plasma, in a uniform background of opposite

charge, are computed for systems of various sizes by the Monte Carlo method of Metropolis et aL

Following the work of Brush, SA»~, and Teller, the periodicity of the system is accounted for by

replacing the long-range Coulomb potential by an effective Ewald sum. Thermodynamic properties are

computed over the whole density range of the Quid phase of the system, and their N dependence is

carefuHy investigated. A semiempirical equation of state is proposed from which aH thermodynamic

properties can be easily derived. Quantum corrections to these properties are calculated to first order in

the %igner expansion. Radial distribution functions, direct-correlation functions, and structure factors at

various densities are tabulated. It is shown that at aH densities, the direct-correlation function tends

rapidly towards its Debye-Huckel form, in contrast to the radial distribution function. The behavior of
the structure factor at sma8 wave vectors is also shown to be in good agreement with the

Debye-Huckel predictions at aH densities.

I. INTRODUCTION

This paper is the first of a series devoted to the

study of dense systems of charged particles of one

species embedded in a uniform background of oppo-
site charge which ensures over-all electrical neu-

trality. Most of the calculations presented in this
series have been done in the framework of classi-
cal statistical mechanics, and the system under
consideration is often referred to as a "classical
one-component plasma" (ocp). Moreover, many

of the results presented in this series have been
obtained by the powerful techniques of computer
"experiments" which have proved very successful
in the study of classical liquids.

The interest of this work appears to be twofold.

(a) From the point of view of statistical mechanics
and the fluid-solid phase transition, the study of
systems of particles interacting through the Cou-
lomb potential completes the recent systematic
computer investigations concerned with many-body
systems interacting through inverse-power-law po-
tentials:

M(r; n) = e(v/r)",

where r is the interparticle distance.
The case n = ~ corresponds to hard-sphere sys-

tems which have received considerable attention
since the pioneer work of Alder and %ainwright. '

The case n = 12 is important because of its ob-
vious relation to the familiar Lennard-Jones 12-6
potential, and has also been thoroughly investi-
gated."

The cases m=9, 6, and 4 have been recently stud-
ied by Hoover et al.4

It thus seemed important to extend these investi-

gations to the case n=1, especially since the long-
range nature of the Coulomb potential introduces
additional interesting features and complications.
(b) The ocp is of great astrophysical importance,
since it provides an excellent model for describing
many features of superdense, completely ionized
matter typical of white dwarfs, the outer layers of
neutron stars, and possibly the interiors of the
heavy planets. The relevance of the model in as-
trophysics has been pointed out many times; for
the case of white-dwarf interiors we refer the
reader to the review paper by Van Horn. ' %e only
briefly recall that under typical ho"t w"hite-dwarf
conditions (temperature T =10' 'K, density d= 10'
g/cm', with predominantly He nuclei) the ratio of
the thermal de Broglie wavelength A over the ion-
sphere radius a=(&mp) "' (where p is the number
density) is

2@I' "' 4mp

whereas the ratio of the temperature over the Fer-
mi temperature of the electrons is

T T
T~ (s'/2m)(3m')'" p'"

The order of magnitude of the first ratio ensures
that quantum effects are small for the nuclei,
which can thus be treated essentially by classi-
cal statistical mechanics, whereas the second ra-
tio ensures that the electrons are highly degener-
ate and can therefore be considered as forming an
inert uniform background in which the nuclei move.
Note that for heavier nuclei the previous ratios
would be even smaller.
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Thus the ocp model appears to be a reasonable
first approximation for the study of superdense
ionized matter. Complications due to quantum ef-
fects and dielectric screening of the electrons will
be examined in subsequent papers.

In fact, Brush, Sahlin, and Teller (BST) have

already made an extensive Monte Carlo study of
the classical ocp. ' The great merit of their work
was to propose an ingenious treatment of the long-
range tail of the potential, taking into account all
of the periodic images of the particles contained
in the initial cell, resulting in the so-called Ewald
sum. Their effective potential will be discussed
and rederived in a slightly different manner in
Sec. II. They were also able to indicate the exis-
tence of a liquid-solid phase transition at high den-
sity (or low temperature). However, their high-
density calculations were insufficient to locate the
transition with any degree of confidence. They re-
ported no computations in the stable-solid region,
and even at lower densities their Monte Carlo runs
lacked sufficient statistics, and probably also suf-
ficient precision in the approximate treatment of
the Ewald sums, to yield equilibrium properties of
reasonable accuracy. Moreover, they arrived at
no definite conclusion concerning the N dependence
of their results.

In this paper, we present new Monte Carlo re-
sults for the fluid phase of the ocp model which
overcome some of the deficiencies of the BST cal-
culations. In particular, the computations are ex-
tended to higher densities with the purpose of lo-
cating the fluid-solid transition with good accuracy.
The following paper' is concerned with similar
data in the solid phase of the model. Other papers
of this series will be devoted to nonequilibrium
(or time-dependent) properties of the same model,
obtained from molecular-dynamics simulations,
as well as to modifications of the results when
dielectric screening of the electron background is
taken into account. Some of the results presented
in this and in the following paper have been briefly
reported elsewhere. '

This paper is organized as follows. In Sec. II
the treatment of the long-range tail for any I/r"
potential is expounded, in the spirit of the BST
work. Section III is devoted to the computation of
the equilibrium thermodynamic properties of the
fluid phase of the ocp. Numerical results from
the Monte Carlo'simulations are presented and
discussed. The N dependence of these data is dis-
cussed in Sec. IV. A semiempirical equation of
state is derived in Sec. V, and various other equi-
librium properties, including the Helmholtz free
energy, are derived from it. Quantum corrections
to the equation of state are examined in Sec. VI.
Section VII is devoted to the presentation and anal-

ysis of the Monte Carlo results for radial distribu-
tion functions, direct-correlation functions, and

structure factors at various densities. Some con-
cluding remarks and indications about future work
in this direction are contained in Sec. VIII.

II. TREATMENT OF LONG - RANGE

INTERACTIONS

Consider a system of N identical particles inter-
acting through an inverse-power potential u(r;n),
defined by (1), and contained in a cubic box of side-
length L. As is well known, the excess thermody-
namic properties of systems of particles interact-
ing through homogeneous potentials (1) do not de-
pend on temperature and density separately, but
only on the dimensionless variable

where a is the "ion-sphere radius. " If the dis-
tances are expressed in units of a, the potential
function divided by kT becomes

u(r; n)/k T = q/r" .

Note that in the case of the Coulomb potential
(n = 1), o ~ e =(Ze)', where Z is the atomic number
of the ion and e the electronic charge; our vari-
able g is then identical with the I' of BST, and we
shall use the label I', rather than g, when we
specifically consider the Coulomb potential.

In order to minimize surface effects, periodic
boundary conditions are assumed, and each par-
ticle interacts not only with the N- 1 other parti-
cles contained in the box, but also with al/ period-
ic images of these particles. Therefore the poten-
tial (divided by kT) between a pair of particles in
the initial box must be replaced by the sum

where the sum is over all vectors X with integer
components; r and L are both expressed in units
of a. If n&3, the sum is divergent and one is
forced to introduce a uniform background of
"charge" —e, in order to cancel the divergence
due to distant images:

n (p)
~~n P~

where the "charge" density w(p) is

w(p) = Q 6(p —L7) ——,.
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This lattice sum ean easily be evaluated using
the mell-known convergence technique introduced
by Ewalds and generalized by Nijboer an

De Wette. '0 Some details are given in Appendix
A; the result is

In this formula, I'(v, x) is the incomplete I' func-
tion and the primed summation means that the A,

= (0, 0, 0) term is excluded. It is interesting to note
that the same formula is recovered for n &3, in the
absence of a uniform background.

The Coulomb case corresponds to n=1, and one
then recovers the "Ewald potential" derived by
BST,

I' ~ erfc(s"'~r/L, +X()
X ~ Jr/I, +X]

kT
I Q U( r(f) +-AT'

where the second term V,/kT represents the con-
tribution to the total potential energy of the inter-
actions of each particle with its own periodic im-
ages. As pointed out by BST, this term is just
e(lual to ,'N(E„/k—T), where E is the Madelung en-
ergy of a simple cubic crystal with lattice spacing
L 0

y, NZ -1.79185& 5+r
kr 2kr 2L

Here erfc(x) denotes the usual error-function
complement, and the variable g is replaced by F.

As pointed out by BST, the 7= (0, 0, 0) term in
the first sum is spherically symmetric, and is
dominant at small separations; it has a behavior
analogous to a screened Coulomb potential. All
other terms are anisotropic, due to the finite size
of the system and the periodic boundary conditions;
they give the dominant contribution to the pair po-
tential for large separations. The sums over X

are rapidly convergent and inclusion of the five
nearest shells of neighbor boxes is amply suffi-
cient to ensure a relative error of less than 1 part
in 10 . However, computing this truncated sum
for all pairs at each step of the Monte Carlo chain
is still much too time consuming, and for that rea-
son we have approximated the potential (5) by an
optimized expansion in Kubic harmonics, which is
discussed in Appendix B. The relative error on
the anisotropic part of the potential is always less
than 1%, and the relative error on the total poten-
tial energy of the system in any configuration is
always less than 0.1/0 if four Kubic harmonics are
used in the expansion. These precisions are im-
proved by almost an order of magnitude if an ad-
ditional harmonic is included in the expansion.

Using (5), the total potential energy of the sys-
tem divided by kT, in a given configuration, reads

III. COMPUTATION OF THERMODYNAMIC

PROPERTIES OF FLUID PHASE

The excess part of the eanonieal partition func-
tion for a system of N particles interacting through
the potential (5) is a function of I' only:

The integration over the r„expressed in units
of a, is over a volume @mN.

The total partition function is simply

where A is the thermal de Broglie w'avelength:

2gMkg 2' gg 2

The excess Helmholtz free energy per ion is
related to Q„by

From this the various excess properties per
particle of the ocp are derived by the standard
thermodynamic and statistical formulas. Their
dimenslonless explesslons depend only on 1 .

The excess internal energy is

(8)



STATISTICAL MECHANICS OF DENSE IONIZED. . .I. . . 3099

r Vorj) Vjgv rj~ + . 9

The excess specific heat at constant volume is

" = -I" a[(1/r)(U/NkT)]/ar

v rjf — v rjf

(10)

The inverse excess compressibility K can be cal-
culated from the relation

( kTZ) '= r-/ -3
9 8I' NkT

c„4U
9Nk 3NkT

'

The thermal expansion coefficient 0 is then ob-
tained from

3Nk 4(U/Nk T) —(c„/3Nk)

The specific heat at constant pressure, c~, is
related to c„by

&~ —c„o'T' 1 (c„/Nk)'
Nk pkTE 3 4(U/NkT) (Cv/3Nk)

In order to obtain the full thermodynamic quan-
tities, the ideal-gas values must be added, and
these depend on volume and temperature sepa-
rately. The derivatives of the free energy can be
computed by the standard Metropolis-Monte Carlo
method. " It is well known that the method does
not yield the excess free energy (or, equivalently,
the partition function) directly, but that quantity
can be calculated in the fluid phase by integrating
the computed internal energy as a function of I".

U dr'
NkT, NkT I" (14)

We have computed the excess internal energy,
specific heat, and other equilibrium properties
for systems of 16, 54, 128, and 250 ions, using
the Ewald potential discussed in Sec. II, for val-
ues of I' in the range between 1 and 300. The
high-I' results, corresponding to the solid phase,
will be discussed in the following paper. The re-
sults presented here correspond to 1 + I (160.
For I'(100, the initial configuration of each

where the brackets symbolize the average over the
canonical ensemble and V,/NkT is given by (7),

The excess part of the equation of state is

PV I' a(F/NkT) 1 U
NkT 3 ar 3 NkT

TABLE I. Monte Carlo results for the 128-particle
system as a function of I'. U/NkT is the excess internal
energy per particle divided by k T, 6U/NkT is the
"thermal" fraction of the excess internal energy, and
(b, U/NkT)qsT is the corresponding BST result for 108
particles (Ref. 6). The results of these first three col-
umns have been corrected for center-of-mass motion
[formula (16)], c„/Nk is the excess specific heat at
constant volume per ion, c&~T/Nk is the corresponding
BST result. F /NkT is the total free energy per particle
(excess+ideal-gas contribution), divided by kT, forkT
=1 Ry [see formula (23)]. g is the amplitude of the
first peak of the rdf, vvhich gives a measure of the short-
range order in the fluid. For F=2, 3, and 4 the only
available BST data are for a 32-particle system.

U h, U h, U ~c cPT
NkT NkT kZ' ~T Nk Nk

F
Smm

1 -0.580
2 -1.318
3 -2.111
4 -2.926

10 -7.996
15 -12.313
20 —16.667
30 -25.429
40 -34.232
50 -43.094
60 -51.936
70 -60.807
80 -69.690
90 -78.569

100 -87.480
110 -96.360
120 -105.284
125 -109.732
130 -114.182
140 -123.095
155 -136.44
160 -140.89

0.316
0.473
0.577
0.658
0.971
1.126
1.252
1.450
1.606
1.703
1.821
1.909
1.986
2.066
2.116
2.195
2.230
2.262
2.292
2.34
2.43
2.46

0.319
0.464
0.570
0.648
0.950
1.09
1.195
1.380
1.478
1.590

1.833
1.792

0.11 0.13
0.22 0.21
0.28 0.30
0.35 0.34
0,55 0.59
0.75 0.70
0.80 0.82
1.0 0.97
1.06 0.95
1.16 1.10
1.30
1.40
1.25
1.6
1.5 1.39
1,5
1.8
1.6
1.5
1.8
1.9
1.9

-1.160
0.289
0.817
0.960

-0.921
-3.754
-7.024

-14.216
-21.874
-29.796
-37 ~ 888
-46.099
-54.399
-62.768
-71.192
-79.660
-88.165
-92.430
-96.702

-105.267
-118.156
-122.463

1.010
1.024
1.135
1.23
1.31
1.44
1.56
1.67
1.76
1.85
1.92
1.99
2.06
2.11
2.19
2.22
2.24
2.31
2.36
2.39

Monte Carlo run was taken to be a regular bcc
lattice configuration; the system then melted rath-
er quickly, and after about 104-10' configurations
a typical fluid-type regime was reached. At higher
values of I" (100(I' (160), the system melted eith-
er more slowly or not at all, and in order to save
computer time the initial configuration for the cor-
responding runs was always taken to be the final
configuration of a previous run, corresponding to
a lower value of I'.

For each run between 3x10' and 2x10' configura-
tions were generated, depending on the value of I'.
To achieve a given precision, more configurations
were needed for larger values of I', as expected.
At least the first 10' configurations were rejected
before averages of the various thermodynamic
properties were taken, in order to allow the sys-
tem to reach "equilibrium. " It should be noted
that our statistics are considerably better than
those of BST, who generated only about 10' con-
figurations in each run. This is insufficient to ob-
tain a reasonable accuracy on the computed aver-
ages, especially at high values of I .
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The results obtained for the internal energy
and specific heat with the 128-particle system
are given in Table I and compared to the data of
BST obtained with a 108-particle system, when
they exist. Because the center of mass of the
system is not fixed in the Monte Carlo calcula-
tions, the fraction of the internal energy due to
the thermal motion of the particles, i.e., the
difference between the excess internal energy
and its purely static value (the value of the inter-
nal energy for a perfect bcc lattice} at the same
value of I', given by

U /NkT = -0.895 929I',

must be multiplied by the factor N/(N-1), '
(15)

U U UMc U

NkT NkT NkT NkT N —1
' (18)

U" /NAT stands for the Monte Carlo average of
the excess internal energy.

The values of U/NOT listed in Table I have been
corrected in this way; we have made the same
correction on the BST data.

Table I clearly shows that the purely static en-
ergy UJNAT accounts for over 95% of the internal
energy at all values of I', except the lowest. Thus
the dominant contribution to the internal energy is,
according to formula (15), linear in I .

The low-I' limit will be briefly discussed at the
end of this section.

Table I lists the thermal fraction of the internal
energy,

&U U- Ug

NkT NkT (17)

Although this fraction represents only a small
part of the total internal energy, it must be cal-
culated with a high accuracy (of the order of lfo)
if the transition between the fluid and the solid
phases is to be determined accurately, as will
become clear in the following paper.

The estimated error in our energy values, a
combination of statistical uncertainties in the

-Monte Carlo runs and a systematic error due to
out approximate treatment of the anisotropic part
of the Ewald potential, is of the order of a few
parts in 10'; this precision is sufficient to ensure
an error of at most 2% on the thermal fraction
of the internal energy. As is immediately clear
from the data of Table I, the difference between
aU/NkT values obtained in the present calculations
and those of BST is considerably larger than our
estimated error, especially at large values of I'.
The BST values are systematically lower than
ours, by as much as 20%. The discussion in Sec.
IV clearly shows that this cannot be due to the

Un" /Nk T = =/3 I' "' (18)

The next-higher-order terms were calculated by
Abe, "

TABLE II. Excess internal energy per ion (divided by
kT) in low-I range as predicted by the linearized DH
theory, the Abe nodal expansion [formula (19)], the cal-
culations of Carley (Ref. 14), based on the theory of
Broyles, Sahlin, and Carley (Ref. 15) (BSC), and by our
Monte Carlo computations.

(NIT) „
0.01 -0.000 866 0
0.05 -0.009 68
0.1 -0.028 86
0.2 -0.077 35
0 -0.1666
1 -0.866
2 -2.449

(Nl 7)

-0.000 865 6
-0.009 38
-0.002 737
-0.071 68
-0.1617
-1.967

I

(Nl 2)

—0.0094
—0.0258
—0.0688
—0.144
—0.577
—1.321

Monte
Carlo

-0.580
-1.318

small difference in N (128 particles versus 108).
We believe that the BST values are in error for
two reasons: First, the number of configurations
over which they average (about 10') is too small
to yield reliable results for values I'~ 10; second-
ly, their approximate treatment (Taylor-series
expansion} of the anisotropic part of the Ewald
potential probably gives rise to large systematic
errors.

Regarding the specific heat, the Monte Carlo
results, obtained by averaging the fluctuation of
the excess internal energy, have statistical un-
certainties of the order of 10% for large I'; our
values are in reasonable agreement with the BST
data. The equation of state can be derived direct-
ly from the internal energy by formula (9). As
already noted by BST the ionic pressure (after
addition of the ideal-gas term) becomes negative
for I'~4. However, the total pressure, obtained
by adding the contribution of the uniform back-
ground, is always positive, as can be easily
checked by adding, e.g. , the pressure of a de-
generate electron gas under density-temperature
conditions appropriate for dense stellar interiors.
This is only a special case of the well-known gen-
eral result of Dyson and Lenard" that Coulomb
systems without any restriction on particle statis-
tics are unstable and that the exclusion principle
(Fermi statistics) is essential for stability.

Before analyzing the N dependence of our Monte
Carlo results and deriving a semiempirical equa-
tion of state, we briefly discuss the behavior of
the internal energy in the limit 1 -0. As is well
known, the Debye-Huckel (DH} formula gives the
leading contribution to the internal energy for
very small values of I',
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fJ /NkT = —,'M31—'"—I'(-,'1n3+-', y- I)
—9 I' 1nI'+O(I' ~2}, (19)

45~
Idz

CO 80 120
FIG. 1. Thermal fraction of the excess internal en-

ergy, (U-Uo)/N4T, as a function of I'; the crosses
are the Monte Carlo results for N =128; the dots are
the results for N= 16.

where y is Euler's constant.
Carley has calculated the internal energy by

using various integral equations for the pair dis-
tribution function. " His results, obtained with a
technique developed by Broyles, Sahlin, and
Carley" for treating the long-range part of the
potential, appear to be the most reliable. The
predictions from these various theories are com-
pared with each other in the range 0.01- I ~

&
in Table II, and with the Monte Carlo results for
I =1 and 2. It is clear from inspection of the
table that the DH law is accurate up to I'=0.01.
The Abe formula gives good results up to I'=0.05,
whereas the results of Broyles, Sahlin, and Car-
ley are still in good agreement with our Monte
Carlo data at I = 2. We are presently investigat-
ing up to what value of I' the method of Broyles,
Sahlin, and Carley, or a related method due to
Lado, "predicts reliable energy values.

Finally, it is also clear from the table that the
internal-energy values are everywhere bounded

from below by their DH values, as has been demon-
strated by Mermin. " It should also be pointed
out that for I'&1 the Abe formula predicts ener-
gies which are even locker than the DH energies.
This illustrates the difficulty of calculating con-
vergent correction terms beyond the DH approxi-
mation.

IV. N DEPENDENCE OF MONTE CARLO

RESULTS

In Sec. III, we have presented the Monte Carlo
results for the equilibrium energy pressure and
specific heat of a 128-ion system, for values of
I' between 1 and 160. However, for a long-range
potential like the Coulomb potential the dependence
of the computed thermodynamic properties on the
size of the simulated system appears to be a cru-
cial question. For that reason, we have investi-
gated the properties of systems of 16, 54, and
250 ions at various values of I', and compared
the results obtained for these systems with the
data for the 128-particle system.

In Fig. 1 the results for the thermal part of the
excess energy (I'I) are shown as a function of I'
for N= 16 and N= 128. It is seen that for I"&20
the difference between the thermal energies re-
mains within the statistical errors. At larger
values of I' there are large deviations, the energy
curve of the 16-particle system exhibiting a loop-
like behavior in marked contrast with the mono-
tonic increase of the 128-particle thermal-energy
curve.

In Table III, we list the Monte Carlo results for
N=16, 54, 128, and 250 at three values of I' 70,
100, and 140. This last value is close to the fluid-
solid transition, as will be shown in the following
paper. The energy values are equal within statis-
tical errors for N=54, 128, and 250, at I'=70
and 100; only the results for N = 16 differ from
the energies obtained for N= 54, 128, and 250,
by considerably more than the combined statistical
errors. We conclude that for I ~100 our numeri-
cal energy values should lie close to their thermo-
dynamic limit for N& 50. At I' = 140 the situation
is slightly different, because the energy obtained
for ¹ 54 now also differs significantly from the
results for N=128 and 250. Thus it appears, not
surprisingly, that as one approaches the Quid-
solid transition region larger systems are re-
quired to yield results close to their thermody-
namic limit. Our data seem to indicate, however,
that even for Coulomb systems, a system size of
a few hundred particles is sufficient to predict
energy values close to their thermodynamic limit
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TABLZ III. Comparison of Monte Carlo results for systems of N =16, 54, 128, and 250
ions. 4U/ÃkT is the excess "thermal" energy per particle, divided by kT.

c„peak

is the
excess specific heat per particle at constant volume; gris the amplitude of the first peak of
the rdf.

r =140

N
EU

NkT
c„/Nk

gmax

184 128 143 137 24 142 15 155
1.S5 1.862 1.848 1.844 2.3 2.10 2.07 2.06

1.4 2.3 1.8 2.15
2.S2 2.45 2.31 2.32

54 128 250 16 54 128 250 16 54 128 250

2.041 1.944 1.909 1.928 l.90 2.153 2.116 2.14S 1.80 2.16, 2,34 2.37

for all values of I', provided the averages are
taken over a sufficiently large number of con-
figurations. This apparent paradox is due to the
well-known screening effect which strongly re-
duces the long range of the Coulomb forces. Vfe
are now in a position to write down a semiempiri-
cal equation of state for the one-component plasma,
valid in the range 0 ( l ~160.

V. EQUATION OF STATE OF CLASSICAL
ONE - COMPONENT PLASMA

To calculate the various thermodynamic proper-
ties given by formulas (8}-(14},it is useful to
have at one's disposal a simple analytic expres-
sion giving the excess energy per particle divided
by AT (or equivalently, the equation of state), as
a function of I'. %e have pointed out in Sec. III
that IJ/ÃAT behaves like I'"' in the I'-0 limit
(DH law), and predominantly like I' in the limit
of large I'. These two features are included in
the simple functional form

Z 312
~AT (A, +I'}"' A, +I

a3 a4
'V ~1""0 ~)') (20)

a, = -0.895 929,

a, = 0.113406 56,

b, =4.6664860;

b, = 13.6V5 411;

a, = -0.908 V28 2V, b, = 1.890 560 3;

a4= -0.116 14V V3, b4=1.02V V554.

a, is fixed to yield the correct static term (15) for
large values of I'; a„b„a„b„anda„b, are
chosen so as to give a least-squares fit to the
Monte Carlo data presented in Table I (128-parti-
cle system), which, we have reason to believe is
close to the thermodynamic limit values and to
the results of Broyles, Sahlin, and Carley" for
I &1; finally b, is chosen so that the coefficient of
&"' equals -~v 3 in the limit I'-0 (DH law}.

The optimum coefficients thus obtained are

FIG. 2. Excess specific
heat at constant volume
as a function of 1 . The
straight line corresponds
to Eq. (21); the dots are
the Monte Carlo resu1ts.

0 20 I 0 60 80 100
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The data of Table I are then fitted everywhere
within their statistical accuracy by formula (20).

By differentiation, the corresponding formula for
the specific heat at constant volume reads

N2 2 =(4, ~ r )""(4, + r)* ' (4, ~ r)' "((,, + r) 2 (4, + r)""4, ~ r '
(2, + r)"* '(4, + r)*) (21)

In Fig. 2 the c„/Nk values obtained from Eq. (21)
are compared to the values determined directly
in the Monte Carlo calculations.

By integration of (20), the' excess free energy
becomes

=a,g(I') +a, V;(I') +a, f;(I') +a,f;(I'),F

g2

NAF 24M(NT. )' JN

where g(r) is the radial distribution function of
the classical system and av(r) is the Laplacian

TABLE IV. Radial distribution function and direct-
correlation function, forF=2, 3, and 4, as a function of
interionic distance r in units of a(~3~) (i.e., p / ).

r,(r) = r2~2(b, +r)2('+-.'b, lnb,

—b, in[I""+(b,+ I')"'],

I'=2
g(r) -c(r)

I' =3
g(r) -c(r)

r=4
g(r) —c(r)

1/2

g,(i') = 2l' "'—2b,"'arctan 1/2 (22)

2I I/2

~,(i) =-( '
~)„,—lnb, +2ln[I'"'+(b, +I')"'],

3+

I 1/2

r,(I') = — + „,arctan
$4+ I b4 4

The total free energy is obtained by adding the
ideal-gas contribution,

=-0.7153+3 lnI'+ —' ln(kT)„„, (23)

VI. QUANTUM CORRECTIONS

So far all our calculations have been made in the
framework of classical statistical mechanics;
i.e., the ratio A/a (de Broglie wavelength divided
by the ion sphere radius) was supposed to be 0.
This condition is only approximately verified in
real dense stellar matter, and during the cooling
down of dense stars (e.g. , white dwarfs) there will
always come a stage where the ratio A/a becomes
non-negligible. That means that quantum correc-
tions cannot be ignored any longer, and as long as
the ratio remains reasonably small, the quantum
corrections to the free energy can be calculated
by the well-known 8 expansion of Wigner. ' The
leading correction to the free energy in that ex-
pansion is

where (kT)„„means that the energy kT must be
expressed in ionic rydberg units. The total free-
energy values from (22) and (23) for (k T)R„=1 are
tabulated in the last column of Table I.

0.01
0.05
0.09
0.13
0.17
0.21
0.25
0.29
0.33
0.37
0.41
0.45
0.49
0.53
0.57
0.61
0.65
0.69
0.73
0.77
0.81
0.85
0.89
0.93
0.97
1.01
1.05
1.09
1.13
1.17
1.21
1.25
1.29
1.33
1.37
1.41
1.45
1.49
1.53
1.57
1.61
1.65

0
0
0
0

0.006
0.019
0.051
0.098
0.157
0.225
0.301
0.380
0.460
0.537
0.608
0.671
0.727
0.774
0.816
0.852
0.883
0.908
0.929
0.945
0.958
0.968
0.977
0.984
0.990
0.993
0.995
0.996
0.997
0.9975
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1,000

3,091
3.091
3.089
3.080
3.057
3.018
2.960
2.883
2.791
2.685
2.569
2.448
2.324
2.202
2.084
1.973
1.870
1.774
1.685
1.602
1.525
1.454
1.389
1.330
1.276
1.226
1.118
1.135
1.094
1.057
1.023
0.992
0.963
0.934
0.907
0.881
0.856
0.834
0.813
0.794
0.774
0.756

0
0
0
0

0.001
0.003
0.014
0.037
0.072
0.119
0.182
0.256
0.339
0.426
0.512
0.593
0.666
0.732
0.790
0.841
0.883
0.917
0.944
0.964
0.978
0.990
0.998
1.004
1.008
1.010
1.009
1.008
1.0065
1.005
1.0035
1.003
1.003
1.0025
1.0025
1.0020
1.0015
1,0010

4.273
4.269
4.259
4.241
4.213
4.173
4.118
4.048
3.959
3.852
3.726
3.583
3.430
3.270
3,109
2.952
2.801
2.658
2.522
2.395
2.277
2.169
2.071
1.981
1.899
1.823
1.753
1.687
1.627
1.572
1.522
1.475
1.432
1.390
1.350
1.313
1.277
1.242
1.210
1.179
1.151
1.124

0
0
0
0
0
0

0.004
0.009
0.029
0.063
0.112
0.175
0.251
0.338
0.431
0.523
0.612
0.695
0.770
0.834
0.887
0.926
0.956
0.979
0.997
1.009
1.014
1.017
1.019
1.022
1.024
1.022
1.018
1.014
1.019
1.009
1.007
1.005
1.002
0.999
0.998
0.998

5.511
5.500
5.476
5.443
5.403
5.355
5.293
5.216
5.119
5.002
4.865
4.708
4.531
4.341
4.143
3.943
3.746
3 ~ 554
3.370
3.197
3.039
2.896
2.764
2.642
2.529
2.426
2.333
2.247
2.165
2.087
2.014
1.949
1.892
1.837
1.784
1.731
1.682
1.639
1.660
1.561
1.523
1.486
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of the interatomic potential. In the case of the
one-component plasma in a uniform background,
the formula becomes

(ge)'
NkT 24M(kT )'

mh 'p(Z e)' I'
6M(kT) 16 (24)

FI P3

NkT NkT 8
(25)

Thus the quantum corrections break the simple
relation (9) between internal energy and equation
of state.

VII. RADIAL DISTRIBUTION FUNCTIONS AND

STRUCTURE FACTORS

where we have used the fact that g(O} = 0 for all
values of I'. F'/NkT does not depend on I' alone,
but on p and T separately (or, alternatively, on
I' and T); this is to be expected, since the intro-
duction of a characteristic length into the problem,
in this case the thermal de Broglie wavelength,
breaks the scale invariance typical of systems
interacting through homogeneous potentials of the
form (1}.

Formula (24) shows that for a fixed value of
I' quantum corrections increase as the tempera-
ture increases; this will have important implica-
tions in our discussion of the phase transition
(following paper}.

The corresponding correction to the equation
of state is also given by (24), whereas the cor-
rection to the excess internal energy per particle
ls

F= 120
N =128

F= 140
N =128 N =250

F=160
N =128

0.71
0.75
0.79
0.83
0.87
0.91
0.95
0.99
1.03
1.07
1.11
1.15
1.19
1.23

0
0.003
0.026
0.112
0.343
0.766
1.305
1.820
2.123
2.191
2.060
1.819
1.560
1.319

0
0.001
0.013
0.073
0.271
0.677
1.253
1.820
2.190
2.291
2.163
1.901
1.603
1.332

0
0.001
0.012
0.070
0.264
0.653
1.238
1.821
2.201
2.321
2.176
1.922
1.613
1.321

0
0

0.007
0.051
0.219
0.597
1.192
1.820
2.270
2.380
2.252
1.955
1.622
1.335

1.27
1.31
1.35
1.39
1.43
1.47
1.51
1.55
1.59
1.63
1.67
1.71
1.75
1.79
1.83
1.87
1.91
1.95

1.112
0.936
0.815
0.731
0.673
0.648
0.637
0.647
0.672
0.714
0.760
0.829
0.899
0.979
1.046
1.108
1.170
1.213

1.100
0.922
0.800
0.711
0.656
0.621
0.618
0.622
0.652
0.694
0.754
0.818
0.891
0.972
1.053
1.124
1.183
1.226

1.098
0.918
0.786
0.703
0.638
0.606
0.596
0.616
0.643
0.690
0,746
0.822
0.896
0.987
1.067
1.141
1.199
1.238

1.095
0.909
0.772
0.687
0.629
0.602
0.595
0.613
0.645
0.683
0,736
0.803
0.885
0.975
1.056
1.133
1.198
1.246

TABLE V. Radial distribution functions for F=120,
140, and 160 and the 128-ion system. At F=140 the rdf
for the 250-ion system is also tabulated; y is in units of
g+.}1/3 (i e p-1/3}

Another important quantity which can be calcu-
lated relatively easily with good accuracy by
Monte Carlo "experiments" is the radial distribu-
tion function (rdf) g(r) from which, in principle,
the excess internal energy can be calculated:

U 3F
NkT 2

(26)

where the r are, as usual, in units of a.
However, formula (26) is in general not very

useful because of the long range of the Coulomb
potential and the fact that Monte Carlo calculations
yield g (r) only for r & &~L, where L is the length
of the Monte Carlo cell, which is relatively small
for systems of a few hundred particles. Only at
small values of I', where g (r) tends rapidly to-
wards 1, can (26) be used to check the internal-
energy value obtained with the Ewald potential.
We have found excellent agreement between the
two determinations of the energy for I' & 4; this
can be considered to be a good consistency test

1,99
2.03
2.07
2.11
2.15
2.19
2.23
2.27
2.31
2.35
2.39
2.43
2.47
2.51
2.59
2.67
2.75
2.83
2.91
2.99
3.07
3.15

1.232
1.227
1.205
1.167
1.120
1.071
1.023
0.977
0.941
0.909
0.888
0.876
0.871
0.878

1.246
1.245
1.224
1.189
1.143
1.087
1.032
0.980
0.934
0.892
0.877
0.864
0.860
0.865

1.260
1.256
1.223
1.193
1.138
1.080
1.021
0.969
0.925
0.887
0.855
0.847
0.846
0.854
0.893
0.973
1.034
1.079
1.095
1.077
1.049
1.010

1.269
1.267
1.238
1.197
1.143
1.088
1.028
0.976
0.934
0.900
0.863
0.850
0.841
0.848
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8(u) = 1+31 [g(~}-1]r* d~ .
4p

In the DH hmit, S(k) reads

(2'7)

for the use of the Ewald potential.
The rdf are interesting for their own sake, be-

cause their variation as a function of interionic
distance gives indications on the short-range
order in the fluid phase. The small-& behavior of
g (r} is directly related to the enhancement of nu-
clear reaction rate in astrophysics, due to the re-
duction of the Coulomb barrier relative to the two-
body case by many-body correlations. " Several
authors have calculated rdf's for small values of
I' using various integral-equation techniques or
cluster expansions xe"o In their paper BST mad
extensive comparisons between some of these re-
sults and their Monte Carlo data, and clearly ex-
hibited the limitation of integral equations for the
rdf 's in the one-component plasma model. The
various integral equations yield widely different
results already axound 1 = 1 and break down com-
pletely for larger values of I'.

In a recent paper Cooper" solved a modified
version of the HNC equation valid for the screened
Coulomb potential of the Abe-Mayer modal clus-
ter expansion, instead of the bare Coulomb poten-
tial, and found results in good agreement with the
BST data at I'=10. However, the height of his
first peak is slightly less than that of the Monte
Carlo result, and this discrepancy between ap-
proximate and exact" rdf at F =10 is confirmed
by our own Monte Carlo results.

Another question which has received consider-
able attention in recent years is at what value of
I", g(r) starts to exhibit oscillatory behavior, in
contrast to the monotonic behavior [g(r) &1 for
all v'] typical of the nonlinearized DH predictions
at low 1"."" The integral-equation results of
Cooper indicate that the onset of short-range
order takes place for 2& I'&3. This is confirmed
by our Monte Carlo calculations with the 128-par-
ticle system, as illustrated by the data of Table
IV, which lists our g(r} results for I'=2, 3, and 4.

At higher values of I", up to I'=100, our rdf's
are in reasonable agreement with the BST data,
and for that reason our results are not tabulated
here. In Table V we list the rdf 's computed for
I'=120, 140, and 160; (in that range no data had
been previously tabulated by BST). At I' = 140 the
results for both the 128- and 250-particle sys-
tems are listed; the differences are within statis-
tical errors for all values of r (about 1%, except
for small r, where they are larger because of
poor statistics).

The Fourier transform of the radial distribution
function is the stxuctux e factor

k2
Sos(@= q. ,3~. (2S)

The well-known Stillinger-Lovett conditions"
on the zeroth and second moments of the radial
distribution functions of Coulomb systems applied
to the one-component plasma imply that the small-
@ behavior of the exact 8(k) is equal to that of the
DH solution. More specifically, the zeroth mo-
ment (or electroneutrality) condition implies

8(Q) = O.

The second-moment condition implies

8(k) —k'/31' for k 0, (30)

p P eric rg

4

(32)

over several hundred independent configurations
generated during the Monte Carlo runs. The k
vectors in (32) arethose o, f the reciprocal lattice
associated with the periodic repetition of the ele-
mentary Monte Carlo cell containing N particles.
The length of the smallest fc vector compatible
with the size of this cell is thus 2v/I, . It is re-
markable that for the 250-particle system the
small-k results for S(k}are in good agreement
with the predictions of formula (2S) at I' values as
large as I"=100 and 140, as shown by Table VI.
Thus a system of a few hundred ions is already
capable of exhibiting essentially collective be-
havior over distances of roughly 10 ionic radii.

The structure factors obtained for F =4 and 10
from the 128-particle system, and for I' = 100 and
140 from the 250-particle system, are tabulated
in Table VI. 8(k) has also been computed for the
128-particle system at I' = 140, which is close to
the fluid-solid transition, and compared to the
structure factors at crystallization of hard spheres
and various other inverse-power potentials by
Hansen and Schiff. '4 The essential conclusion of
that work was the great similarity between the
main peaks of the various structure factors at
crystallization, which are nearly independent of
the exact nature of the interatomic repulsion.

where the wave vector is in units of e '. Again,
because g (r) is only calculated for r & I,/2 by the
Monte Carlo runs, formula (2'l) is useless to ex-
tract 8(k), especially for small 0, except for
small values of I; when g(r) tends rapidly to-
wards 1. S (k) was obtained by the simple Fourier
inversion (2'I) for I' ~ 4. For larger values of I',
8(k) had to be calculated directly from its defini-
tion,

8(&) =(I/&)(PI P T, ),
by averaging the product of collective coordinates,
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S(k} computed for N =250 and I' =140 is in excel-
lent agreement with the previous computation for
N =128. Finally, the Fourier transform of the
Ornstein-Zernike direct-correlation function,
C(k), is obtained immediately from S(k) through
the defining relation

S(k) —1
C(k) = ~s v

(k)
(33)

which behaves like -4wl'/k' at small k [see Eq.
(3o)).

From this, the direct-correlation function (dcf)
can be obtained by Fourier inversion:

r=4 F =10 F =100 I'= 140

TABLE VI. Structure factors at I'=4, 10, 100, and
140 as a function of the wave vector k, in units of
a (&m) (i.e., p ). At I'=4 and 10, S(k) was obtained
'through formula (27) from the Monte Carlo rdf. At
F=100 and 140, S(k) was computed directly [formula
(31)j with the 250-particle system.

c(r) = — C (k) k' dk.
0 ar (34)

Table IV lists c(r) together with g (r) for I' = 3, 3,
and 4. A remarkable feature of the c(r) extracted
from our Monte Carlo data is that they tend rapidly,
for increasing r, towards their DH limit,

c "(r)=—I'/r, (35)

1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
8.2
8.6
9.0
9.4
9.8

10.2
10.6
11.0
11.4
11.8
12.2
12.6
13.0
13.4
13.8
14.2
14.6
15.0
15.4
15.8
16.2
17.0
17.8
18.6
19.4
20.2
2I.O

0.032
0.063
0.106
0.162
0.230
0.304
0.390
0.484
0.582
0,675
0.764
0.841
0.904
0.954
0.987
1.010
1.021
1.028
1,029
1.028
1.026
1.024
1,020
1.016
1.012
1.009
1.006
1.003
1.002
1.001
1.000
0.999
0.998
0.998
0.998
0.999
0.999
1.000
1.000

0.011
0.024
0.042
0.071
0.110
0.158
0,221
0.299
0.400
0.512
0.642
o.784
0.914
1.025
1.094
1.135
1.141
1.122
1.098
1,071
1.045
1.026
1.010
0,999
O. 991
0.986
0.983
0.982
0.984
0.987
0.990
0.994
0.996
0.998
0.999
0.999
1.000
1.000
1.001

0.0013
0.0027
0.0047
0.0079
0.0127
0.0188
0.0259
0.0396
0.069
0.108
0.183
0.290
0.650
1.345
1.944
2.130
1.860
1.402
1.011
0.820
0.767
0.748
0.728
0.734
0.783
0.864
0.940
1.000
1.058
1.113
1.149
1.147
1.114
1.062
1.020
0.988
0.963
0.945
0.937
0.956
0.983
1.013
1.029
1.020
1.009

0.0009
0.0019
0.0035
0.0059
0.0094
0.0143
0.0225
0.033
0.049
0.078
0.140
0.248
0.522
1.035
2.18
2.66
1.92
1.33
0.96
0.81
0.71
0.66
0.655
0.68
0.76
0.84
0.935
1.06
1.13
1.185
1.20
1.17
1.12
1.07
1.00
0.94
0.92
0.90
0.91

and this for all values of F.
Only the short-range behavior of c(r) differs

considerably from the DH limit. The "exact" dcf
is negative everywhere and goes to a finite limit
as r 0, contrary to cn" (r). The situation is il-
lustrated by Fig. 3, where we have drawn c(r) and
cn" (r) for I'=100. The two dcf's are seen to differ
markedly only for r& 1 (in units of a}. This re-
markable feature illustrates the spirit of the Orn-

C

-520.

0.

FIG. 3. Direct-correlation function c (r) as a function
of interionic distance v (in units of a (~r)+3). The dots
correspond to the Monte Carlo results, the crosses to
the linearized DH approximation.



STATISTICAL MECHANICS OF DENSE IONIZED. . .I. . . 3107

stein-Zernike theory, in which much of the im-
portant information on pair correlation is concen-
trated in the short-range behavior of c(r}, which
goes to its DH limit much faster than the rdf.

VIII. CONCLUSIONS

This paper on the classical one-component
plasma describes work on the Quid phase of that
model which, although it partly goes in the same
direction as the beautiful work of Brush, Sahlin,
and Teller, ' brings important improvements and
several new contributions. At low values of F our
equation-of-state data and radial distribution func-
tions are in good agreement with the work of
Broyles, Sahlin, and Carley, "the recent work of
Cooper, "and the earlier Monte Carlo results of
BST. For I'& 10, where computer "experiments"
seem to be the only reliable tool for computing
thermodynamic properties of the one-component
plasma, , our equation-of-state data differ marked-
ly from the BST results, although the rdf's are
in good agreement. This apparent contradiction
is probably due to the fact that the rdf are rather
insensitive to the details of the weakly varying
anisotropic part of the Ewald potential. For I'
& 100 the data presented here are entirely new.
The N dependence of the various computed quan-
tities has been carefully checked, and it seems
that a system of N ~ 100 ions yields results very
close to the thermodynamic limit in the whole
fluid range.

Our Monte Carlo data for all F are summarized
in a relatively simple semiempirical equation of
state from which all other thermodynamic proper-
ties can easily be extracted. The first W'igner

quantum correction to that equation of state has
also been calculated. Finally, we have computed
the structure factor and the direct-correlation
function for various F. The dcf results are par-
ticularly interesting because they exhibit a fast
convergence towards the DH limit, even at high F,
in marked contradiction to the rdf.

The following paper is devoted to the study of
the solid phase of the one-component plasma, to
the melting transition of that system, as well as
to the extension of the phase diagram to the
whole p-T plane. Time-dependent properties of
the model will be examined in a later paper, and
the effect of dielectric screening will be consid-
ered in the following and further papers of the
series.
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APPENDIX A: DERIVATION OF THE EWALD FORM
OF AN INVERSE - POWER

PAIR POTENTIAL

The purpose of this appendix is to show brieQy
how the effective pair potential (2) for a finite
periodic system of particles interacting through
an inverse-power potential (1) in a uniform back-
ground of opposite "charge" can be expressed as
a rapidly converging Ewald sum, by the technique
of Nijboer and De Wette. ' Consider

(A1)

m(p) = Q 5(p —LX) ——,. (A2)

The sum over X goes over all vectors with integer
coordinates.

Introduce an auxiliary "convergence" function
q(x) and rewrite (Al):

~(P}t}(lr+p I) ds
If+~In P

~V»[1-n(lr+pl)]
I+ I'

A convenient choice for g is"
r(n/2 ~[[Ir +p I']/L'))

(A3)

(A4)

where 1 (-',n, x) is the incomplete r function de-
fined by

where

~(~l, W[lr+ 0 I']/L'))
r(-,'n)

(A5)

f X

y(~2, x)= ~ e 't"~' 'dt.
0

The parameter u in (A4) and (A5) is arbitrary
and must be chosen finally so as to ensure good
convergence of the Ewald sum. BST made the
choice n= m in the case of the Coulomb potential
(n =1); this choice is not optimal, but in order
to avoid any confusions we shall adopt the same
choice in the following.

S(r,n) now reads

(zo(p}r(-,'n, w[I r +p I']/L') „,
r(-,'n) 3 lr+pl"

nfp)r(~a, e[ I r +p I
']IL'} d.

(A6)
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The first term on the right-hand side is rapidly
convergent, because of the presence of the I'
function, and thus presents no problem.

The second term is transformed using Parseval's
theorem:

Owing to the periodicity of the lattice, "te(k) can
be rewritten

1~ X' 1
fv(k)= —~ 5 k- — ——b(k)

I= sop p d p= wk k dsk 5(k ——). (AS)

where

(- y(~a, s I
r-+ p I'/L')

Ir+ p I"

f(k) = lP ~'k" '1'[-'(3 -n), 1rk'L']e" '" '
w(k) = Q e""~"'"——5(&)Ls

(AV)

The primed summation means as usual that the
term A. =O is omitted. Hence I reduces to

~-3/2
~n-sl [ (3 „) „~2]e'iwx ri~ (A9)

with z= IiI.
Putting (A2) and (A9) into (AS) and integrating

the incomplete I' function finally yields

APPENDIX B: APPROXIMATION OF EWALD

POTENTIAL BY KUBIC HARMONIC

EXPANSION

The Ewald potential (5) has cubic symmetry by
construction. It is made up of an isotropic term

convergence of the series inside the sphere in-
scribed to the basic Monte Carlo cell. The con-
vergence appears, however, to be poor outside
that sphere. For that reason we have preferred
to approximate (B2) by a function of the form

erfc(w '~'r/L) 1
v(r) = (Bl)

~- ~4 +y4 + g4 ~ 2@22
v'(r) =v,(r)+v,(r), +v, (r)y'

which tends towards the bare Coulomb potential as
r-O, and a cubically symmetric term

+ v, (r)
x'+ y'+z'

r' + ~ ~ ~ (B3)

The isotropic term can be handled easily in the
Monte Carlo program by simply tabulating the
v(r) as a function of the interionic distance
r~ [O, KS-,'L/].

The nonisotropic term is more difficult to handle.
A three-dimensional tabulation with interpolations
is feasible, but the computer memory require-
ments are important, for a given precision, even
if one allows for the important reductions due to
the cubic symmetry.

An alternative way of proceeding is to expand the
potential v'(r) in its natural basis, i.e., the Kubic
harmonics introduced by Von der Lage and Bethe."
The coefficients of the Kubic harmonics in such an
expansion are simple functions of the radial dis-
tance r, which can be easily calculated by project-
ing (B2) on each of these harmonics. Calculating
these functions up to the K, harmonic shows good

where v0(r), v, (r), v, (r), v, (r), ... are chosen to
be simple polynomials in r2, rather than the exact
coefficients of the Kubic harmonics. The coeffi-
cients of the various powers of the polynomials
are adjusted so as to yield a least-squares fit to
the pair potential (B2). For that reason we call
the form (B3) of the nonisotropic potential an
"optimized" expansion in Kubic harmonics. If this
expansion is truncated after Es, a set of optimized
functions v„v„v„and v, is

-r2v, (r) = a0+e '" (a,r'+a, r'+a r'+a, 0r"),

-ffv, (r) =e ""
( r4bb,+r' b,+r' b+r»),»

2
v8(r)=e "(c,r +csr +c»r' +c»r ),

v, (r) =e '" (d,r +d»r" +d»r»).

a has been fixed to give the exact value of v'(r) at
the origin.
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a =0.162703;

a4 = -3.090 150,

a6 =4.676413 1,
54 =9.801067 1;
b,= -19.994 017;

as = 97.681 783, bs= -237.904»;
a~a 110 956 81 ~ 5~0 312 866 29

c,= -22.645 201;
cs= -656.4341

0~0 440 658 02

ds= 357 747 14

dao= 570 95501 i

c~ = 96.923 540, d~ = 133.224 53 .

The relative error on the nonisotropic part of
the potential is small (of the order of 1g or less)

for all interionic positron vectors r. The error is
of variable sign for various r and, consequently,
the error on the total potential energy is consider-
ably smaller, less than 0.1$ for all configurations,
and also of variable sign.

As averages over many configurations are taken
in the Monte Carlo runs, the error on, e.g., the
potential energy is expected to be negligible, com-
pared to the statistical uncertainties. This was
explicitly checked by making Wo independent
Monte Carlo runs at I'=100, one using the previous
approximation of the pair potential, another using
a still better approximation of that potential ob-
tained with five Kubic harmonics instead of four.
The final results for the various equilibrium
properties differed by less than the combined sta-
tistical uncertainties.

*Laboratoire associh au Centre National de la Recherche
Scientifique. Addresse: Batiment 211, Universith
Paris-Sud, 91405 Orsay, France.
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