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The Lamb semiclassical laser theory is developed uniformly for multimode unidirectional ring, two-mirror,

and bidirectional-ring lasers. Equations are given which determine the mode amplitudes and frequencies to

third order in the electric-dipole interaction energy. A diagram technique called the perturbation tree is used

to bypass most of the algebra for the complicated multimode bidirectional-ring case. Numerical results are

given for a variety of multimode laser configurations in the free-run approximation. In particular it is shown

that the multimode, two-mirror gas laser exhibits an asymmetric spectrum in agreement with the

experimental observations of Garside. This asymmetry is found to be absent in the unidirectional-ring case

and is attributed to mode competition for the same pairs of velocity ensembles (an origin related to that for

the Lamb dip). The coupling role of population pulsations is discussed with numerical illustrations.

Treatment of mode locking is deferred to a forthcoming companion paper.

I. INTRODUCTION

Semiclassical perturbation theory has proved to
be particularly effective in the analysis of laser
operation. The original theory of Lamb' is based
on a self-consistent field approach; that is, the
field assumed to induce the polarization of the
active medium is set equal to the field produced
by this polarization. The elassieal field is gov-
ex'ned by Maxwell's equations, while the atomic
medium is treated quantum mechanically. Lamb' s
paper predicted threshold and linear pulling and

gave insight into a variety of effects such as hole
burning, ' population pulsations, ' and frequeney-
pushing phenomena. In particular, the theoxy
predicted a dip in intensity of a single-mode
standing-wave laser as the resonator is tuned

through the center of the atomic iine ("Lamb dip");
it described mode competition effects in the two-
mode laser and beat frequency locking in a three-
mode laser. A theoretical approach to laser
operation similar to Lamb's has been given by
Haken and Sauermann. '

The theory has subsequently been extended in
many directions. For example, the case of a ring
laser with two oppositely directed traveling waves
was investigated. The general Zeeman laser was
solved' for an arbitrarily oriented magnetic field,
a vector electric field, and cavity anisotropy. In
this treatment the two-level atomic system was
generalized to include isotopes, arbitrary angular
momenta, and hyperfine structure. The third-
order theory has been extended to fifth order in
the perturbation enex'gy for a single-mode standing-
wave laser. ' A fully quantized generalization was
developed' in order to treat the laser linewidth
and buildup from vacuum. Effects of collisions
in the atomic medium have been investigated. '
More recently, the single-mode semiclassical

theory has been extended to arbitrary intensity
for both the standing wave' and ring lasers. "
A review of these laser theories has been given

by Sargent and Scully. "
None of the previous work has investigated in

detail the operation of either normal or ring lasers
with more than three modes. Because of the
complexity of the analysis the discussion of even
the three-mode standing-wave laser has been
largely qualitative, except for specific eases
presented by Sayers and Allen. " The present
paper presents the Lamb theory in a computer-
oriented version similar to that of Sargent, Fork,
and Lamb' with additional simplifying techniques
such as use of the population matrix p(s, v, t),
a partial fraction evaluation of the third-order
integrals, and a diagrammatic device called a
"perturbation tree. " This device enables us to
write the third-order polarization components with

considerably less algebra than in previous develop-
ments. Furthermore, we can derive the general
amplitude- and frequency-determining equations for
multimode operation of unidirectional-ring, two-
mirror, gad bidirectional-ring lasers in a unified
fashion. These equations for the bidireetional-
ring laser are given hex e for the first time. "
Atomic collisions are partially treated by a phe-
nomenological increase in the polarization decay
constant. Inasmuch as the theory is carried only
to third order in the atom field interaction, appli-
cation is limited to low intensities. Nevertheless,
a simple criterion reveals that many cases of
multimode opex ation can be adequately described
and, in particular, the theory agrees with experi-
mental observations of Garside. '4

In See. II we derive from Maxwell's equations
the field self-consistency equations relating oscil-
lation amplitudes and frequencies to the induced
polarization of the active medium. In Sec. GI the



3072 C. L. O'BRYAN, III AND M. SARGENT, III

polarization is evaluated for an arbitrary inter-
action energy. We then specialize this energy
to yield polarizations for the unidirectional-ring
and two-mirror lasers in Sec. IV, and for the
general bidirectional-ring laser in Sec. V. We
discuss the free-run approximation (neglect of
all terms whose relative phases are not identically
zero) in Sec. VI and present an algorithm for
finding steady-state multimode intensities. In
the remainder of the paper we examine various
cases of interest. The two-mode cases can be
solved analytically and are used to illustrate physi-
cal mechanisms responsible for mode interactions
(Sec. VII). We consider lasers with up to ten
modes in Sec. VIII. Here we give results of
computer "experiments" which show the effects
of variations in several laser parameters. We
compare the free-run intensities to those obtained
from rate equations in which population pulsations
are neglected. We also vary the placement of the
medium in the cavity, the cavity quality factor Q,
and other physical parameters. Finally we com-
pare the results with experiments. A subsequent
paper will treat further solutions in which all
slowly varying phase angles are retained. These
solutions include mode-locked operation. We
refer the reader to the review article of Smith"
for other references of multimode mode-locked
operation.

II. ELECTROMAGNETIC FIELD EQUATIONS

In this section we derive self-consistency equa-
tions relating the field Fourier amplitudes, fre-
quencies, and phases to corresponding components
of the induced polarization. The analysis provides
for multimode-ring (as well as two-mirror) laser
operation.

The wave equation obtained from Maxwell's equa-
tion in an inertial frame for the scalar electric
field E(s, t) is

s'E(s, t) sE 8 E s P(s, t)
ss' ""st "'"st' ="' sf

where s is the direction along the optical path
of the laser (see Fig. 1). The medium is assumed
to be dilute, and the electric field is linearly
polarized perpendicular to the axis of the laser
structure. Transverse variations of the field are
neglected. The cavity losses are represented
by a fictional ohmic current S=trE.

We express the electric field as a sum of modes,

E(s, t) = —,
' g E„(t)e x[p- [stvp+„(t)]jU„(s) +c.c.,

(2)

where the amplitudes E„(t) and phases p„(t) are

U„(s) = sin(E„s}, E„=srr/L (4)

where now L is the distance between the laser
mirrors.

Similarly, we write the polarization in the form

P(s, t) =-,' P (P„(t)exp[-i(v„t+Q„)]U„(s}+c.c. ,

(5)

where 6'„(t) is a complex slowly varying function
of time which will be referred to as a complex
polarization.

We obtain the self-consistency equations for the
field amplitudes and phases by substituting (2) and

(5) into (1) and projecting onto U„(s)—that is,

(a)

s=0

Reflectors~

active medium

re

flee

tor

(b)

FIG. 1. (a) Diagram of two-mirror laser showing re-
Qectors in plane perpendicular to the laser (s) axis and
active medium between the reflectors. Brewster win-
dows are sketched on the ends of the active medium to
help enforce the condition that only one polarization
component of the electric field exists, as assumed
in this paper. (b) Corresponding ring-laser config-
uration. Usually both r»»&ng waves oscillate in a
ring laser; the unidirectional situation can be
achieved by insertion of a device with high loss for
one running wave in the cavity.

real slowly varying functions of time and U„(s)
are (possibly complex) normal-mode functions
of the laser cavity having the highest Q, namely,
those corresponding to the TEM„„ longitudinal
modes. The functions considered here are real
standing waves for the two-mirror laser [Fig. 1(a)]
and complex traveling waves for the ring laser.
For traveling-wave modes, the mode index n is
negative for modes traveling in the negative s
direction. The wave number of mode m is given
by E„defined, along with the mode function, by

U„(s) = e'r~', &„=srr/L

for the bidirectional ring, where L is the round-
trip cavity length. For the unidirectional ring,
only positive values of n are considered. Modes
have no directional dependence for the two-mirror
lasers, so again only positive values of n are
necessary, and
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operating on the equation by j,~ de p„*(e).
gleet small terms containing E„,$„, y„E„,gj„, and

pE„, since the coefficients are slowly varying and
the losses are also small. The polarization
components are nearly monochromatic, so that

82—,fd'„(t) exp[-i(v„t + p„)])
= -v„'6„(f)exp[-f(v„t+y„)]. (6)

We can treat the optical carriers e '"~' and
e""~' as orthogonal components and equate their
coefficients separately to zero. We will therefore
concentrate on the coefficients of the positive-
frequency term exp[-i(v„f + p„)]. The operating
frequency of the laser is close to the cavity
resonance frequency, so

Q„' —(v„+y„}'= 2 v„(Q„—v„—y„) . (I)

Setting o = e,v/Q to yield the desired Q of the
nth mode and equating the real and imaginary
parts of the coefficients separately, we find the
amplitude- and frequency-determining equations

E„+,'(v„/Q„)E„= =2-(v„/e, ) Im(6'„),

v„+y„=Q„-—,'(v„/e, )E„'Re(6'„) .
The E„equation leads to conservation of energy
and the v„equation expresses a (real} index of
refraction (see Ref. 11 for discussion).

For a rotating ring laser, we should in general
consider Maxwell's equations in a noninertial
frame, which might require general relativity
theory. However, for small rotation rates,
Lorentz transformations give similar results.
Further, Menegozzi and Lamb4 have shown that
the only effect of laser rotation on the amplitude
and frequency equations (8}is a shift in the empty-
cavity resonance frequencies Q„= jR„~c by
2AOQ„/I. c, where A is the area enclosed by the
laser path and g is the laser rotation rate.
Traveling-wave modes are up or down shifted
by this amount, depending on whether they are
going in the opposite or same direction as the
cavity rotation. It is also possible to achieve
frequency splitting between oppositely directed
running waves using magneto-optic devices. "
We denote such a nonreciprocal frequency shift
by g, for which

is the cavity resonance frequency of a traveling-
wave mode.

With this understanding, (8) determines the
field amplitudes and frequencies for either a
ring or normal standing-wave laser, once the
P„(t) are known in terms of the E„(t). To evaluate

d'„(t), we turn to a quantum description of the
atomic medium.

III. POLARIZATION OF MEDIUM

with

a ab

The average electric-dipole moment corres-
ponding to this density matrix is

(P) = Tr(epr} = IPp„+c.c. (12)

To find the macroscopic polarization P(s, t), we
combine all the microscopic dipoles contributed
by atoms excited into either state a or b at any
time and location which arrive at s at time t. Thus

FIG. 2. Level diagram
for quantum systems com-
prising the active medium.
In addition to the level de-
cay constants y, and y~,
the dipole-moment term
p~~ decays with the constant
Pe

We assume the laser medium consists of
independent two-level atoms, as depicted in
Fig. 2. The atoms are excited to either the upper
state g or the lower state b at random positions
s and times t. Decay from levels g and b proceeds
with spontaneous lifetimes y, ' and y, ', respective-
ly. In the absence of collisions, an atom with
axial velocity g moves such that at time I; its
position is

S = So +5(t —to} ~

When the atom is in the presence of an electric
field, it experiences a perturbation interaction
with energy

z.,(s, t) = -sE(s, t),
where P is the real matrix element for the elec-
tric-dipole moment of the atom.

The density matrix p(n, s„t„v, t) for one atom
excited to the 0. state at time f, and position s,
with velocity g obeys the equation of motion

p = (-i/h)[X, p] --,'(I"p+pI'),
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p(s, t)= p dv I dt, f ds S,( s„u, t, )
» se

xpab(Q) s()s f(ts vs t)5(s —8() —vt +vt()) +C.c.s

(13)

where «(s„u, tb) is the number of atoms excited
to state 0. at time t„position s„with axial velo-
city v. It is convenient to integrate the density
matrix over the excitation tim &0 plac s so and
states a before integrating (11). This results in
the population matrix

p(s, v, t)= g f dt, t ( sv, t, ) (p,tsst„vt),
ef» b»00

(14)

in terms of which the maeroscopie polarization
is given by

t
f(s, v, t) = dt' g(s', v, t'),

p.b
= -(b(d +y)p~+(f/I)u. b(s ~) [p.. pbb]-,

~ba ~eh &

(18)

where s' = s - v(t —t'} is the position at the earlier
time I,". Accordingly, in the perturbation elements
g~ to follow, we take the s dependence to be that
at the times indicated, e.g., ~„(t') has s' = s —v

x(f -t'}, ~~(t' ) has s =s —v(t —f ), etc T. he
equation of motion (17) for the population matrix
has components

p.,= «. —yp, . [(b—/ff)~„(s, f)p„(s, u, t) +c.c.],
pbb=«, -y,p„+[(b/g)~. b(s, t}p,.(s, u, t)+c.c.],

P(s, t}= f) dv p„(s, v, f)+c.c. (15)

where ~= ~, —~b. Here we take the decay constant
of the off-diagonal elements to be

Combining (5) and (15}, we find the complex
polarization

Ip„(t) =spa ss)l[1(u t+e„)]f dv„

X dsU~ S $pgb S~Vy t (18)

where A, is the matrix of excitation rates

The time derivative in (17) is given by

8 8
+V

dt bg Bs '

which appears to result in a partial differential
equation. However, it is ordinary, for an equation
of the form

has the formal integral

where the normalization factor is
L

5R = ds i U„(s) (
'.

0

Qniy the slowly varying contribution to 6)„(f) is
retained in (16). The complex conjugate terms
have been neglected, since they oscillate at optical
frequencies in time.

The population matrix (14) obeys an equation
similar to that (11) for the pure case, namely,

P =« —(b/$)[X, P] --,'(rP+Pi'),

1I
& ~ya yb} yphase yeh yphase s

in which the additional term y~h results from
consideration of interactions which cause slight
shifts in the energy levels but not changes of state.
These interactions cause smaB random shifts in
the phase of the radiating atomic dipole, effectively
terminating its coherent contribution to the field.
Hence the decay constant for p,b is increased with-
out much change in y, or ybe The ensemble average
of the random phase shifts leads to the additional
decay constant y~t . This accounts for the
largest effects of collisions. In practice y (often
referred to as 1/T, ) can be considerably larger
than y,b.

Equations (18) can be solved to any desired order
in the perturbation g„(s, f). For incoherent pump-
ing processes (those leaving p» unexcited) there
are contributions to the diagonal components of p
in even orders of ~~ and to the off-diagonal
components in odd orders of Q,b. The zeroth-
order population difference is [from integration
of (17) with t)„=0]

Ã(s, v, t) = p"..'(s, v, f) p",,'(s, v, t)—

«„(s, u, t) «,(s, v, t)
YQ

We assume that the velocity distribution for the
a and 5 levels is identical, and that the population
difference can be factored as

X(s, v, t) =X(s, f)W(v) .
Further, we assume that N(s, t) has negligible
variation in atomic lifetimes and the velocity
distribution is Maxwellian,

W(v) =(ss'~')-se-[»'
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where u is 2' ' times the rms velocity.
Higher-order contributions to the matrix ele-

ments can be found from formal integrals of (18).

In particular, one has for the off-diagonal (polar-
ization) element

t

p,~(s, v, t) = (i/I) dt' ~,~(f') exp[-(i&u+y)(t —t'}][p.,(s', v, f'}—p»(s', v, t'}]
a

=(i/g) dr'g„(t') exp[-(i&u+y)r'][p„(s', v, t —r') —p»(s', v, t —r')],
0

where 7' = t —t', s' = s —gv', and the perturbation interaction is integrated from -~ to the present. In
evaluation of (21) and formulas to follow, it is helpful to remember that t' = t —r'. Similarly,

(21)

p„(s, v, t) —p»(s, v, t) =N(s, v, f) +((i/g) dr' [exp(-y, r') + exp(-y~r')] [U~(t')p~, (s', v, i —r') —c.c.]}. (22)
0

Saturation effects in the population difference arise
from the bracketed expression in (22).

The 2m+1 oider of p~ comes from evaluation
of (21) using the 2n order of the population dif-
ference, which is similarly found from the brac-
keted portion of (22}, using p',~ 'l. The total pop-
ulation matrix consists of summing the contribu-
tions from all orders considered in the calculation.

Using (20) in (21), we find the general first-
order contribution to the off-diagonal element

p,'s(s, v, t) =iN(s, t)W(v)R '

x dr' e xp[-(i&e+y)r')g„(t') . (22)
0

Substituting p,', into the appropriate portion of
(22), we find the population-difference saturation
term

so

p' —p' = N(s, f)W-(v)ff ' dr'
0

dT" exp -y~7' +exp -y,r' ~,~
t'

0

«xp[-(-ite+y)" ]%),.(f")+cc, (24)

where the interaction energy is possibly complex,
„=~, and T" =t'-t". Finally, we find the
third-order contribution to the off-diagonal
element

~0

p' = -iN(s, f)W(v))f dr' dr" dr"' exp[-(isr+y)r']g, ,(t'}[exp(-y,r") +exp(-y~r")]
0 0 0

x(g,.(t")e~(t"') exp[-(i(e +y) r"] +~.,(t")t),.(t"')exp[-(-ite +y) r'"]j, (25)

p(3)
~ab

eab

~ha(t )eab

Wab(t')eaa

~ab(t )eba

~ab(t ) bb

~ba(t )eab ~ab( ) ba

W b(t'")N ~ha(t"')W &b (t"')N

FIG. 3. Perturbation tree for calculation of the third-order matrix element p, & (s, v, t). The interaction energy 'Q, z is
evaluated at earlier times and positions. The Greek superscript is the multimqpe su~~ation index which we use for
that level interaction. The symbols e'„„=(i/+~0 dr'e &„, e„'S= -ea„'*= (i/Si~& dr'e e"+ "l '

~ and N= p( &-pPzl
= N(s, e,t). The treebranches(products of four terms connected by descending lines) are labeled by t. The third-order
contribution to p&3&& is given by the sum of the tree branches.
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where 7"'=t -t '. It is also useful to remember
that t" =t —g' —w" and t"=t —v' —v."—7."when
particular g„'s are substituted into (25}.

It will be helpful to represent the third-order
contribution (25) by a perturbation tree (Fig. 3)
especially for the multimode-ring laser considered
below. One finds p~,', by multiplying terms con-
nected by branch paths in the tree (vertically) and
summing all the branch results (horizontally).
The symbols e and e 6 stand for the time inte-
gral and exponential factor in the integrand of

(22) and (21), e.g. , e =(i/4) J drexp(-y„r). Each
branch point in Fig. 3 represents the sum in the
integrand of the expressions for the population
matrix elements. At the first branch level, the
splitting is due to the p .and p» terms. The next
branch level is split due to p„and p„contribu-
tions. The final branch has been consolidated,
using (20) for p~,',~- p~',~. The compact notation for
the first (t =1) branch in Fig. 3 is thus expanded
to a portion of p,'~ in (25}:

e,'~g„(t')e,",g~,(t")e,",'g~(t"')N - (i/tt)' dr' exp[ (i &a-+y) r'] ll„(t')
0

oo

x dr" exp( y, r"-)g~,(t") dr" exp[-(i+ +y)r"]g,~(t"')N(s, v, t) .
0 0

(26}

'The Greek superscript on g,~ in Fig. 3 is the mul-
timode summation index which we use for that
level interaction. The index p is always used for
the complex conjugate (g„) terms

Using (2) for E(s, t) and making the rotating-
wave approximation in advance (i.e., neglecting
negative-frequency components of p„, since we
know that they lead to terms which have large
denominators compared to the positive-frequency
terms), we find

Q„(s, t) = =,' Ip P E„(t)exp[-i(v„t+y„)]U„(s).

(2V)

Evaluating the first order of p„, integrating over

s and g, and projecting onto the nth mode, we
obtain the first-order complex polarization

~0 L
6"„'~= -iP'E„(CIR) ' dv W(v) dsN(s, t)U„*(s)

0

~o

d7'U„s —vr' exp —i~-iv„+y T' .
0

(28)

We have neglected terms oscillating at intermode
frequencies in 6'~', because the high cavity Q
restricts oscillation to frequencies close to the
passive-cavity values. Aided by the perturbation
tree (Fig. 3}for p~',~ we similarly evaluate the
third-order contribution and find

-1 L
iP'0 ' g g g E„E E, exp(ig„„~ ) dsN(s, t)U„*(s)

p p a 0

OO ~0

x dv W(v) dr' dr" dr" exp[ i(&u —v„-+v~- v,) T' -yr']
~ oo "o o o

x(exp[ i(vz —v -)T" —y, r"] + exp[ t(vq —v~-) r" —y~ r"$U„(s —vr')

x{exp[-i((d —v )T —yT ]Up+(s —vT —vT )U (s —vT —vT —vT )

+exp[ i(v~ —~)r"' -yr"']U, (s ——v r' —vr")U~ (s —v r' —v T' —v T")), (29}

where the relative phase angles are

(v~ ~ vp v~)t (Q~ Qv Qp Q~} ' (30}

When we label the sums such that the subscript p remains with the complex conjugate (g,„) interaction
term, all tree branches have the same relative phase angle.

In our discussion of laser mode intensities as functions of cavity tuning we will delineate the roles played
by various mechanisms of population saturation. For this purpose we evaluate the population saturation
term (24) for the multimode interaction energy (2V),
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p't'~ —
p~~

= ~(p/g) N(s, t)W(v) g g E&E,exp[i( vz
—vu)t+i(Qz —pu)]

p a
a

x dv' dT'] exp[-(ivy —i v, +y,)r'] + exp[-(iv~-i v, +y, )T']}
0 0

&]exp[-('LV —i(d +y)T ]U (s —vT }Up(s —vT —vT }

+exp[ (i-&u i-v, +y)T"]U~(s —v7'}U, (s —vr' —vr" }}. (3l)

We see that most of the saturation terms vary in
time at intermode frequencies. These lead to the
"population pulsations. " Whenever p = g, the
population saturation is time invariant. These
constant terms are generally larger than the oscil-
lating terms by about (v —v,)/y, and give rise to
hole burning. We now investigate particular solu-
tions for the complex polarization 6'„=6'„' +6'„',
choosing different mode sets U„(s).

IV. UNIDIRECTIONAL-RING AND

STANDING-WAVE LASERS

The simplest case to evaluate, but nevertheless
one of practical importance, is the unidirectional-
ring laser. This laser has been made to operate
by use of a Faraday rotator in conjunction with
Brewster angle surfaces inside the cavity, "thus
preferentially reducing the cavity Q for radiation
propagating in one direction. The modes are

6'„"= y'(Kuh) 'EQZ[y +i((u —v„)],

where the excitation density is
L

N = (1/L) dsN(s, t)
0

and the plasma dispersion function is
a

Z(u) =iKn +' dT' dv exp[-(v/u)']
0

x exp[-(u +iKv) v']

(32)

(33)

= cKw ~' dv e px[-(v/u)']/( +uiKv) . (34)
«a

Other equivalent definitions and some properties
of the plasma dispersion function are found in the
Appendix. Similarly, substituting (3) into (29) we
find the third-order complex polarization

traveling waves moving in only one direction; i.e.,
K„ is positive. Substituting (3} into (28}, we find
the first-order complex polarization

L
6"„'~(t)= —,'(iP'/k') g g g E„E E, exp(iy„„) — dsN(s, t) exp(-iK„s) dv W(v)

p a 0 «a

a OO

x dr' dr" dr"' exp[ [i(&u —-v„+ v~ —v, ) +y]v'}
0 0 0

x (exP[-[i(v —v,) +y,]r"}+exP[-[i(vu - v,) +y, ]r"})exP[iK (s —vs')]

x(exp[-[i(&o —v, ) +y]&"}exp[ iK&[s -v(7'+ r" )pe—xp[+iK, [s —v(v' + 7" + r")]}
+ exp[-[i(v~ —&u) +y]r' }exp[ iK [s —-v(T' + r" + v"'}]}exp{+iKgs —v(v'+ r")]}),

(35)

n= p, —p+0. (38)

where the relative phase angles g„„„aregiven
by (30).

As in the first-order polarization (Eg. 28), we
neglect terms which oscillate at intermode beat
frequencies. Here this results in retaining only
terms satisfying the relation

With this constraint, the wave number K„equals
ns/L= (p —p+o)s/L, and the integral over the
laser path length reduces to the average excita-
tion density N for all terms in the summations.
Further, since Ku«v, we let K„v=Ãpv =E,v=Kv
in the time integrals. With these considerations
(35) becomes

t
a ~o a

6„"(t)=-,'p', g g g E„E,E, exp[i'„», ] J dv exp[-(v/u}'] d7' dr" dr'" exp( u„r')-
p P a OO 0 0 0

x [exp( u» T") + ex-p(- u„7")](exp[-u»v'" —iKv(v' + r")]+ exp[ u4~r" —iKv-(v' —T )}', (3V)
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where the complex frequencies u„are defined in Table I, and the Maxwellian distribution has been used
for W(v). The subscript t refers to the branch number of Fig. 3. The integrals in (37) are particular ex-
',mples of the standard form

eo ~o oo

T =iKv ~' dv exp[-(v/u)'] d7' dv" dr"' exp[-(v+ic, Kv)v' —(U, +ic,Kv)r" —(v, +ic,Kv)T" ]
~ eo 0 0 0

=iKn' ' ' dvexp —v u ' u+icKv U+icEv v+ic v
~ eo

(38)

This integral can be expressed in terms of the
plasma dispersion function (34) by the method of
partial fractions, as shown in the Appendix. The
value of T depends markedly on the constants
cy c2 and c, ~ Only certain combinations of
c's appear in the laser theory. We find it con-
venient to distinguish between the T's occurring
in the present theory by assigning a subscript
w as defined in Table II. In the unidirectional cal-
culation only w =1 and 2 time dependences are
found. Further affixing the branch index t of
Fig. 3, we write the integral (38)

T, =i' ~' dvexp —v u
~ oo

x [(v„+ic „Kv)(v„+ic Qv)(&„+ic +v}] ',
(39)

in which U„and the c, are defined in Tables I
and II, respectively. In this notation, the third-
order polarization (37) is

a), (a(u) = 1/(y, +in(u) . (43)

Numerical results and physical discussions are
given in Secs. V -VII.

Using a similar analysis, we investigate the
two-mirror standing-wave laser. For this case,
the boundary conditions require that the electric
field be superpositions of standing waves through-
out the cavity. The modes selected are given by
(4), where L is now the one-way cavity length.
Since the velocity distribution is assumed to be
even, only the even portions of the expansions
of sines give nonzero contributions to the velocity
integrals. Thus

sinK„(s —v 7'}—sinK„s cosK„vs'

6" = in~'lP—'N(g'Ku) ' P P g E„E E e'~~coo
p p a

X [Q~(vp —v~} +@~(vp —vg)]$)(vp 2 v~ 2vg),

(42)

where s)(a&a) stands for the frequently recurring
denominator

x e'~"»'(T„+T»+ T»+ T„). (40)

only for this calculation.
Substituting (4) into (22), we find the first-order

complex polarization
As an example, we examine a laser whose

Doppler width Eu is much larger than the atomic
decay rates y, y„yb, as well as various frequency
differences ~ —v„, etc. This is the "strong Dop-
pler limit" of the Appendix for which the T,
reduce to

T„=2in' '[Uts(U»+ vts)] ~ T„=T„=O. (41)

The third-order complex polarization then be-
comes

6'~'~(t) = IF'[}tKu] 'NE„(t)Z[y i(&+u —v„)], (44}

which is the same result as that (32) for the uni-
directional ring. We have neglected a contribu-
tion containing the integral

r
L

N(st) cos(2K„s) ds,
0

which averages to zero since N(s, t) varies little
in an optical wavelength.

TABLE I. Definitions of complex frequencies vt& ap-
pearing in the third-order integrals (39). TABLE II. Definitions of the constants c & used in the

third-order integrals (39). The total time dependence
in (39) is given by& .

4 y+i(co —
v& + vp

—v~) yb +g( — )

t =1 y+i(co —v&+vp v ) p +i(vp v )

2 y+i (co —
v& + vp v~) f~ +i(vp v~)

3 y+i(cu —
v& + vp v~) yb +i(v —v~)

/+i(Qp —v )

y+i(vp -co)

y+i(vp -co)

y+i(co —v~)

c~ 0=1 2

0 -1
X~=C~iT +C~2T +C~gT

Tc Tw'

T +T

T +2T + T'"
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The third-order contribution to the polarization
(29) involves two products of four sine functions,
each sine evaluated at a different initial point in
time. One of these products can be expanded to

s(cos[(K„-K„-K~+K, }s]cos[Kv(7'" —7') ]

+cos[(K„-K„+K -K,}s]cos[Kv(7"'+ 7')]

+cos[K„+K„K -K, )s-] cos[Av(7."+27"+ r')]j,
(45}

while the other is given by (45) with the indices

p and 0 interchanged. We have again retained
only the slowly varying part, which is even in v.

In the unidirectional calculation, the space and
time dependence of the mode functions separated
trivially, and the spatial portion became constant
when the slowly varying restraint (36) was im-
posed. In the present case, as well as the bi-
directional ring (Sec. V), the space and time
dependence still separates, but the spatial de-
pendence is more complicated. However, the
separability of the product of four-mode functions
allows us to examine the integral over the excita-
tion density separately. In general, this integral
depends on the mode indices n, p. , p, and o, and
can be written

TABLE III. Definitions of the excitation integral N~
in terms of N2& (47) for the standing-wave laser and
N2 (53) for the traveling-wave laser.

N

N2( p —0')

N

N2( p —0)

N

N2(p -0)
N2( p —0)

N2(P -P)

N2(p -P)

N2(P -P)

N, (p —p)

N„pp =2N»
L

= (2/L) dsN(s, t) cos(2l((s/L)
0

(47)

for any of the functions of s in (46). We call the
small-integer difference of two-mode indices L

Substituting (45} in (29} and writing the time-
dependent consine functions as exponentials, we
again find the third-order integrals of the form
(39). Note that the sign of Kv is immaterial in
(39). The indices t and (v are still associated with
the perturbation tree branch and time dependence,
respectively. The u„and c „are found in Tables
I and II. With these conventions, 6'„' is written

L

N„„~,=3g ' dsN(s, t)f„„z,(s),
0

(46)
4

6'„— 3 EPEPE
P P

including the normalization factor 3}i;f„„~,(s) is
some function of position s alone. For the stand-
ing-wave laser, there are three possible values
of f„„~,(s) which are given in (45). With the
constraint n = p. —p+g, the excitation integrals
take the form

4 3

t= 1 ttr= l

with N, given in terms of N» in Table III and

T, given by (37}. In the strong Doppler limit
of (41) this expression reduces to

(48)

(p„'~(t) =('((ts't'p'(g'Ku) ' Q g QE„EpE, exp(iq„„p, )[~,(vp v,)+a, (-vp —v, )]
P P 0

x [N2(p ~)s((u —
2 v + 2 vp - v~) +F0(-g v~ —2 v~+ vp)] . (49)

V. BIDIRECTIONAL-RING LASER

Many experimenters have investigated the bi-
directional-ring laser, encouraged by its use as
a rotation rate sensor. Several researchers have
applied theories based on Lamb's model to the
ring laser. Aronowitz' originally developed this
theory for a two-mode laser with one traveling-
wave mode in each direction. Note that while
"mode" refers to a standing wave in a two-mirror
laser, it denotes a traveling wave in a ring laser
since both sine and cosine can exist. Close" in-
vestigated the population excitation density for two
traveling waves in the same direction. Whitney"
obtained mode-coupling relati. ons in the limit of

no population pulsations. As mentioned above, the
two-mode ring laser has been investigated using
a theory applicable to high intensity by Mennegozzi
and Lamb. ' Miyashita, Mori, and Ikenoue" have
applied Lamb's theory to investigate phase locking
in special cases of ring-laser operation.

We chose the electric field for the ring laser to
be a sum of waves traveling in both the positive
and negative s directions. The field is periodic
but not necessarily a superposition of standing
waves. While the two-mirror standing-wave laser
field is also composed of positive and negative
traveling waves, the amplitudes, frequencies, and
phases of oppositely directed waves with the same
E„have the same values. These degeneracies
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eab(t')

/ ab(t')eaa(t") ub(t')cab(

g ba(t")eab(t 'Uba(t )cab(t ) ~ba(t )cab(t ) gba«")cab«)

Vab«"')& gab(t"')& ~ab(t'")& ~ab(t'")N Va+b«'"@' Vab«'"@' ga+b(t"')X 'Uah(t

FIG. 4. First branch (t = l) of the expanded perturbation tree for the general ring laser. '0,
&

——'0,+~+ '0,&, where the

sign superscript refers to the direction of the traveling-wave modes. Other notation is the same as in Fig. 3.

are removed in the ring laser. It is convenient
to index the traveling-wave modes by the subscript
n. Thus the interaction energy matrix element is

6'„"(t)= -e'P[)d'fu] 'E„(t)z[y+i((u —v„)]. (51)

It is now useful to expand the perturbation tree
in Fig. 3, decomposing g,~ into the sum of its
positive Q', negative ~ running waves, that is,
~„=~,'~+ ~,~. The first branch (t = 1) of such an

expanded tree is shown in Fig. 4. The third-
order contribution p,~ is found by summing the
products of the integrals operating vertically.
In the expanded tree, there are 32 separate third-
order time integrals arising from the direction
of travel of the modes. Each level of the tree in
Fig. 3 is doubled, producing 2' times as many
terms in p,',. Fortunately, it is not necessary to
explicitly write the sum from the perturbation
tree for p,', Rather, we can find p,', from a

g.,(s, t) = =,' p Q Z„(t) exp[ i[v„t+y„-(t) -K„s]],
(50)

where K„=2nm/L and s is negative for waves
running in the -s direction. Here L is the round-
trip cavity length for the stationary cavity. In

general, the phase factor may depend on both s
and t. However for uniformity with previous
cases, we neglect the s dependence.

From (28) we find that the first-order contri-
bution to the mth polarization component is given by

TABLZ IV. Definitions of the excitation integral (53)
as a function of traveling-wave directions of the inter-
acting modes. A given set of directions only contrib-
utes to the complex polarization of modes traveling in
one direction. These integrals are related to the N&

format in Table IV. Two combinations always lead to
rapidly varying integrands in (53).

sgn(Ep ) sgn(Ep ) sgn(X ) sgn(X„) +2l

alp =N

Q(p -v)
none

X2(P -0.)
+2(P —~)

none

X2(P -P)

Xp =N

table (Table IV) which contains only the distin-
guishing characteristics of the tree branches.

From (50) we see that the time and space parts
of the U„(s), etc. , separate easily. The depen-
dence on the present time I, leads to the usual
relative phase angle g„„,in 6"„'~, while the spatial
dependence goes into the general excitation inte-
gral. Since g„„,does not explicitly depend on the
mode directions, the restriction to slowly varying
relative phases again requires ]n( =

[ p. (
—(p(

+ )o(. The excitation integral can then be written
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L

N„„,=(1/L) dsN(s, t) exp[-t(K„-K„+K~-K,)s],
0

(52)

including the normalization factor 9g = L, ' and
the slowly varying phase restriction. Since N(s, t)
varies slowly, the non-negligible contributions
to N

p p
occur onl y wh en the exponential ter m is

slowly varying also. Thus only certain combina-
tions of positive and negative running waves are
allowed. All of the non-negligible excitation in-
tegrals can be written in the form

TABLE V. Summary of the calculation of the T, for
6'„(t) of the general ring laser. The direction of travel
of the interacting modes are given by the d„' s[= sgn(KJ].
The variables s', s and s give the signs (+1) of the
coefficients of -Ke T', -Kv(T'+ T") and -Ke(T'+T +7"')
in (29), respectively. For the p terms, s' is always as-
sociated with K& and hence has the same sign. The p
terms are correlated so that s" and s'" has the opposite
sign from dp when associated with p (see column under t
for associations). Hence for t =1 (depicted in Fig. 4),
'V~ occurs for T'+T" and s" has the opposite sign from
Kp. When s" and s' are associated with K they have
the same sign as K~. The sum s' T'+s" (7'+T )+s"(T'
+T" +7 ') is given by

L
X„=(1/L) dsN(s, t)e ""'~

0
(53) (S +S +S )T +(S +S )T +S T

2 3
Tl +g TN' +g Titl

6'„"'= ,'p'(ff'K-u)QQQ E„EpE,e' ~sooty N, T,
p p a

(54)
where T, is defined by (39) and N, by Table IV.
Here the sums over the mode directions determine
w instead of the explicit sum appearing in the
standing-wave case [Eq. (46)]. The value of ts is
given by the combination of running waves as
defined in Table V, where the sum over the trav-
eling-wave directions is explicitly recorded (or
equivalently, the perturbation tree branches are
summed}.

Note that if we let g =0, the general ring results
collapse to the unidirectional results of Sec. IV.
Alternatively, if we assume

E„(t)=E„(t)= 'E„(t), -
Vn+

—Vn- n &

p„, (&) = p. (&)+-.'s,
Q. (t) =p.(t) -ss,
L mlg~ 2 L standing wave

the general ring reduces to the standing-wave

(55)

where l is a small integer 0, +1,+2, . . . . Table
IV gives the permissible combinations, as well.
as relating these to the N, format of Table IG.
Note that the complex excitation integrals are
related to the real integrals (47) of the standing-
wave case by

+.I~l++-. ) ~, „-~
1 )

The third-order complex polarization is given by

which yields the c's in Table II defining the subscript w
of T, . Table V is worth understanding because it takes
the place of a tremendous amount of algebra.

d d d s' s" s'
P P 0

1or 4

P~ ~ T

P~ T
CT~~T

2 or 3

P, ~ ~T
P~ ~ Till

0'~~T

+ 1
+1
+1
+1
-1
-1
-I
-1
+ 1
+1
+1
+1
-1
-1
-1
-1

-1 +1 2
-1 -1 3
+1 +1 none '
+1 -1 1
-1 +1 1

-1 none a

+1 +1 3
+1 -1 2

+1 -1 1
-1 -1 3
+1 +1 none a

-1 +1 2
+1 -1 2
-1 -1 none a

+1 +1 3
-1 +1 1

Tt2
Tt3
0

Tti
Tti
0
Tt3

t2

T«
T t3
0
T t2

Tt2
0

Tt3
Tt&

These terms contain rapidly varying integrands in z
and hence vanish.

laser, as it should.
In the strong Doppler limit of (52), we note that

only two sets of mode direction combinations lead
to non-negligible terms. These are (i) all modes
in the same direction and (ii) modes s, it, and o
in one direction and p in the other. For the time
being we specifically indicate the direction of
travel of a mode by adding a subscript + or —.
With these conventions, the complex polarization
of the positive traveling mode of wave number
K„, is

6'„",'=isv"p'(4''Ku) ' Q Q Q]E„,Ep,E„[s,(vp, —v )+s,(vp, —v„}]

XNS(-sv„+ v + sv )e'S"+-&+ &+ o++E„E E,
x[z) (vp —v, }+a,(v~ —v, )],(s,&z)((u- —', v„,+-,'vp —v ) e' ~+,~+. p-.~-]. (56)
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Here, for example, the relative phase angle is

UI. GENERAL FIELD EQUATIONS AND

FREE-RUN APPROXIMATION

When the expressions for the complex polariza-
tion 6'„' = 6'„' +6"„', derived in terms of the field
amplitudes E„ in previous sections, are substituted
in the self-consistency equations (8), we find a
set of coupled differential equations which deter-
mine the amplitudes and frequencies of the laser
modes. For the general case describing the uni-
directional- and bidirectional-ring lasers, as well
as the two-mirror (standing-wave) laser, the
equations are written

En = Dn En — EpE

x Im(8„„~,e'~~ufo),
(57}

v„+y„=0„+g„—Q Q QEqEpE E„'
p a

xRe( „e„,e'~~vs~),

where the coefficients are summarized in Tables

ff+ jJ+ P» g»

(P~+ Vp+ Vp- V~ )t -(Qq+ Qp+ Qp- fg -}'

The negative traveling-mode result is obtained by
changing all + and —signs.

VPand VII.
In these equations E„, p„, 0„, and P„are the

electric field amplitudes, oscillation frequencies,
passive-cavity frequencies, and phases, respec-
tively, defined in Eqs. (2) and (8). The relative
phase angles g„„,are defined by (30). In the
remainder of this section we discuss the multi-
mode "free-run" case of the amplitude- and fre-
quency-determining equations in general terms.
In Sec. VII two-mode cases are used to illustrate
the formalism and physical processes. Finally,
in Sec. VIII numercial cases of multimode opera-
tion are given.

We will find it useful to express the coefficients
in (57) in terms of the relative excitation

Ã/F~, e,„,=NP'QZ((y)(Mue, ) ', (58)

in which the threshold excitation N~„h,„ is deter-
mined by setting the linear net gain coefficient
n„ to zero at line center. In Table VI, the use of
the relative excitation is included as an alternate
definition of the first-order factor F,. Together
with the notation for dimensionless intensities
(61) introduced below, this representation estab-
lishes a uniform notation independent of the elec-
tric-dipole matrix element P, which is often not
known directly.

We have already invoked the constraint that the
relative phase angles be slowly varying, i.e.,
n = p, —p+0. There are three groups of mode in-
dices which satisfy this requirement:

TABLE VI. Summary of coefficients appearing in the amplitude and frequency determining
Eq. (57). The primes are dropped for two-mirror and unidirectional ring configurations.
Variables used here are defined by equations as follows: Z„and Z& are the real and imagi-
nary parts of the plasma dispersion function Z(v)~ of Eq. (34), y is the polarization decay con-
stant (1/T2 in NMR language) of Eq. (19), co is the atomic resonance frequency (Fig. 2), v„ is
the frequency of the nth mode, Q„ is the quality factor of the nth mode, 1Vt is the excitation
component defined in Table III, Tt is the third-order velocity integral (39) with frequencies
and constants given in Tables I and II.

Coefficient

O.„=Z~[y +i (cu —v„)]P~
—v/2Q„

0 „=Z„[y+i(cg —v„)][(co —v„)/y]E
4

=EqQ (N,~/N)Tt~
t=f

4 3

=Esp Q pl't /N)Tt~
t =1 to=i

Physical context

Linear net gain (all configurations)

Linear mode pulling (all configurations)

Complex saturation coefficient
(bidirectional ring)

Complex saturation coefficient
(two-mirror laser)

&~ ~ =(Tf2+T2i+Tsi+T~)F 3

Ef 2 v P 1V(+Kac e~)

= »[2QZ (7)]

F3 =(p/2W) Fg

Complex saturation coefficient
(unidirectional ring)

First-order factor

First-order factor with relative
excitation X of (59)

Third-order factor



THEORY OF MULTIMODE LASER OPERATION 3083

(a) n= p, p=o=m,

(b) n = o, p. = p =m,

(c} n +p = p, +o [excluding (a) and (b) ] .
The first group results from hole burning, that
is, reduced population inversion due to transitions
induced by the fields. The second group results
from population pulsations discussed in connec-
tion with the second-order population difference
expression (31). The third group (also resulting
from population pulsations} gives rise to the
combination tone terms, which act as injected
signals to induce phase locking. At present
we seek steady-state solutions for free-running
lasers and assume that effects coming from the
combination tones average out, and that there is

i„=u„~„- e„ i. . (61)

The saturation coefficients are now expressed as

e„.=2&.),)-'(p-'lm(s„„..+s„..g(1--,'()„.), (62)

where 5„ is the Kronecker 5.

no phase (mode) locking. We retain in the calcu-
lation only terms in groups (a) and (b), which are
phase independent. This constitutes thefree ru-n

approximation for which the amplitude and fre-
quency equations are explicitly decoupled, since
only terms with t[„„v,=0 are retained. The equa-
tions of motion for the dimensionless mode in-
tensities become

(60)

TABLE VII. Formulas for the general saturation coefficient 0+pg of Table VI and Eqs. (57)
for the unidirectional-ring, two-mirror, and bidirectional-ring lasers in both Doppler and
homogeneously broadened limits. With use of (55), reduction of the bidirectional ring case to
the two-mirror case is easily seen in all cases.

Approximation

Unidirectional-ring laser

= F(vp vg )Q(—2vp 2vg + vp)

'=—5'(Vp Vg )X)(Q) Vp + Vp Vg)

& [$((o —vg ) +$(vp -co)]

Doppler limit

Homogeneously broadened
limit

Two-mirror Standing-wave laser

~ 6'(v& —vu)[S(&u-qvv -~v& —vn)Nt(~os%

+5)(—'v --'v +v )]2 p 2 g p

F(Vp Vg )[1 + qV@p g) +Neap p) )/Ã]

X Q(CO —
Vp + Vp Vg )[$(M Vg ) +S(vp (d)]

8'(Vp Vg ) =&(y /~') l&g(vp g) +&y ( p g )]

Doppler limit

Homogeneously broadened
limit

Bidirectional-ring laser

deaf d~ dp cf g (d„=sgng„), etc.)

(), Util-DOP

F(vv —vn)[X@v o)/N)
Doppler limit

y Ulll&O

y unl&n [iJ(

Homogeneously broadened
limit

eunVeu [lJ( gN
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There are 2" possible steady-state solutions
(I„=O for all n) for the N-mode case, since each
I„can be zero or nonzero independent of the other
modes. The solutions are

8'&=0, neS
I„'&= g (8 ')„g, n, medal

(63)

where g is the subset of mode indices corres-
ponding to zero intensities and 5 is the subset
for nonzero intensities. Here g

' is the inverse
of the truncated 8 matrix, which includes satura-
tion terms of nonzero modes only. Both physical
(I„~0) and stable solutions are required. These
can be found using an analysis of small vibrations
about steady state. Two subsidiary stability re-
quirements are found. First, the effective-gain
coefficients

u„' = u„—g 8„ I~„',n Cg, m & 9t (64)

must be negative. These coefficients represent
the gain of a mode in the presence of other modes.
If u„&0, the intensity of that mode builds up.
The second restriction is that the eigenvalues of
the matrix with elements -2I„*~8„(n,m~%) must
have negative real parts. Otherwise, the intensity
of at least one mode in g decreases to zero.

VII. TWO-MODE OPERATION

To illustrate the formalism and the physics
represented therein, we consider the two-mode
laser. There are no nonzero slowly varying phase
angles, so that the algorithm for finding free-run
intensities presented in Sec. VI applies equally to
all three lasers under consideration. The intensity
equations for two modes are given by

I( = 2I((u) —P(I) —8)~I~),

i, j=1,2; i&j (65)

where P,. = g«, the self-saturation coefficient and

8,&
are the cross-saturation coefficients. Clearly,

if either 0., is less than zero, the respective mode
is below threshold and its intensity must go to
zero. If both net-gain coefficients are negative,
no oscillation occurs. If only one is positive the
solution I, =u, /P, is stable f.or that mode. If both
u's are positive we evaluate the subsidiary sta-
bility conditions to see which modes oscillate. The
stationary-state (I, = 0) equations yield

I~&~=a,'[P, (1 —C)] ', i =1,2 (66)

where the coupling constant C = 8»8»/(p, p, ). If
C &1, then the self-saturation predominates and
we speak of "weak" intermode coupling. If C &1,

TABLZ VIII. Conditions for both stationary and stable
solutions of two mode intensities, The coefficients are
defined as follows: e& by Table VI, Og& by (62), 0,

& by
(64), p, =e„, and C =efmegf/pfp2.

C VPi
1 —C

I2

«i -PiI1&/'~f2

Conditions for stability

el&0, 0.2&0

Gf&0, n2&0 or{el, and n2&0, C&1)

al&0, e2&0

C&1

an unusual occurence, the cross-mode saturation
is predominant. This is called "strong" coupling.
C =1 is called "neutral" coupling.

The stability criterion to be considered requires
that the eigenvalues of the matrix -2I„'~8„must be
negative. For both modes 1 and 2&9t the matrix
has eigenvalues

X, , = -(u,'+ u,')/(1 —C)

~ f(a', +a,')'/(1 —C)' -4u', a,'/(1 —C)}'~'.

(67)

If both n,' and n,' are greater than zero and C & 1,
the real parts of both eigenvalues are negative,
since the magnitude of the square root is less than
that of the leading term. Then (66) represents a
stable solution. However, if C&1 and both n's
are negative, one value of A. must be positive, so
both modes cannot oscillate simultaneously. Since
both effective-gain coefficients are negative, each
single-mode solution is independently stable with
value I, = u,./P„while the other mode has zero
intensity. The initial conditions determine which
mode oscillates, as illustrated by Lamb. ' We
term this condition "bistable operation. " If, with
C &1, either n' is positive, the fundamental re-
striction I, & 0 is violated for that mode. The same
is true for C& 1 when either e' negative. The so-
lutions for the two-mode free-run analysis are
summarized in Table VIII.

To illustrate the formalism and physical mecha-
nisms we consider the two-mode bidirectional-
(one mode traveling in either direction) ring laser,
the two-mode unidirectional- (both modes in same
direction) ring laser and the two-mode standing-
wave (two-mirror) laser. Inasmuch as the last of
these consists of four running waves with specific
degeneracies yielding the two standing waves, it
is the most complicated. In fact, the special case
of the two-mode bidirectional-ring which reduces
to a single standing wave reveals the nature of
interactions responsible for the Lamb dip. To
simplify the analytic aspects of our discussion, we
take the Doppler limit of Eq. (41) in evaluating



THEORY OF MULTIMODE LASER OPERATION 3085

the saturation coefficients in Table VI.
For the bidirectional ring, the two modes E

and E, coincide with the +1 and -1 in Table V.
For higher-mode operation, all modes in the same
direction correspond to one of these. Furthermore
in the Doppler limit, only the T„ integrals are
nonzero with values given by (41) in conjunction
with the complex frequencies of Table I. Reading
through Table V, we find that the complex self-
saturation coefficient g„„contains the nonvan-
ishing integrals T» and T» which have constant
values yielding the imaginary part P, (P,) given
in Table IX. Similarly, the other running wave
has the same value from T» and T„ integrals.
The cross-saturation coefficient 9~ is given by
the imaginary part of d,~, +g~„. The first of
these (8,~, ) is given in Table V by T» and T„
integrals. It is due to hole burning, for the final
subscripts are ellual (2), indicating a reduction
in population difference due to atomic transitions
induced by mode 2. The second complex coeffi-
cient 3~» results from population pulsations (the
final two subscripts are different) and vanishes in
the Doppler limit. This can be understood phys-
ically, for the pulsation terms arising from atoms
moving with axial velocity v contain an exponential
factor exp(2iKv) due to the opposite Doppler shifts
encountered for waves running in opposite direc-
tions. The total contribution comes from the sum
of all velocity groups, that is, from an integral
over v. This integral vanishes in the Doppler
limit due to the cancellations introduced by the
exponential factor. For slower moving media
this cancellation is less complete, and for non-
moving media the population pulsations can play
an important role, as an analysis of our equations

in that limit reveals. The values for 8~ and e„
are the same and are given in Table IX. For both
the self- and cross-saturation coefficients, we
have taken the same cavity Q's. The frequency
Vp = p(V, + V,).

The coupling constant C varies with tuning as
Z2(&o —v,). The mode coupling is always weak;
however, it is much more appreciable near line
center. When the modes are symmetrically placed
about line center, C = 1 and neutral coupling exists.
Figure 5 shows a particular solution for the bidi-
rectional laser. The increasing intermode satu-
ration comes from the hole-burning terms, and
the intensity dip near central tuning is similar to
the Lamb dip of a single-mode standing-wave
laser. Specifically, the overlap of the atomic
velocity components when tuning is within a homo-
geneous linewidth of line center reduces the num-
ber of atoms available for interaction with the
field. At the symmetric tuning point, one of the
modes may completely quench the other.

We next investigate the two-mode unidirectional-
ring laser. The self-saturation (Table IX) is the
same as that for the bidirectional ring, as one
would expect. However, the cross-saturation co-
efficients 8» and g„differ from the bidirectional
case. The leading term on the right-hand side
is the hole-burning contribution, while the second
term arises from population pulsations in the
medium. In this case the pulsations do not contain
an integral over the factor e"~", since both waves
are Doppler shifted with the same sign. Note that

2.8

TABLE IX, Two-mode self- and cross-saturation co-
efficients appearing in Eq. (65).

2. 1

Coefficients

Pl =P2 =P = 2 v+'YsQ/%7)

ei2 =821 =g =Ps(~- vQ)

Pi =P2 =P =yv&V~/%V)

Bidirectional-ring

Unidirectional-ring

Physical meaning

self-saturation

cross saturation,
VQ

—2(Vi + V2)

self-saturation

~ I&+I

1 4

0.7

8„=e„=PS(~/2)v,
& [1+(VY,—2&')(n', ) '&,(&)]

Standing-wave (two-mirror)

cross saturation

0.0
—450 —225

I

0

4Q (MHz)

225

I

450

P„=gVggsb(Q&) [1+g(CO —V„)]

e„=e„=e =P.(»v, (16m e)-'«-.'»
Xge(E)[1-b, /(2ysy)](1+N2/Ã)

+y,—yg

self-saturation

cross saturation for
symmetric tuning
((d —V„=+ 2')

FIG. 5. Two-mode bidirectional-ring intensities vs
average cavity detuning. The parameters y, =15.5 MHz,
y&=41 MHz, y=80 MHz, Eu =1010 MHz, %=1.2, L=3 m,
and the frequency splitting A is 15 MHz. Solid curve
depicts wave ru»ing along increasing s; dashed curve
along decreasing s.
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there is no special dependence on the location of
atomic line center. Here we have a situation
where the velocity ensembles of the medium which
interact with the two modes can never overlap.
The coupling constant is always less than 1. If
the laser is short enough so that only two longi-
tudinal modes are supported, the intermode spac-
ing b, is large and [2(-,'A)]' =0.005. With almost
no cross coupling, the relative intensities of a
two-mode unidirectional ring (Fig. 6) are essen-
tially proportional to the atomic gain profile.

Finally, we examine the two-mode standing-
wave laser. Here we assume symmetrical tuning
about the inhomogeneous line center, v, —~ = ~
—v, =24. The self-saturation (P) terms contain
the constant encountered in those of the bidirec-
tional ring plus the Lorentzians appearing in the
ring's 8's. This is due to the presence of two

oppositely directed running waves in a single stand-
ing-wave mode, and the Lorentzian (here produc-
ing the Lamb dip) is seen to be due to the satura-
tion by one running wave on the gain of the other
wave. This cross saturation is greatest at line
center where the velocity ensembles contributing
to both running waves coincide. This conclusion
was given earlier by Bennett based on a pheno-
menological hole-burning model.

Since a standing-wave mode interacts strongly
with two velocity ensembles, the coupling with a
second mode is strongest when the two modes are
symmetrically tuned, for it is here that maximum
competition for the same velocity groups occurs.

2.8

If only hole-burning effects are considered, the
cross saturation just equals the self-saturation
(the bracketed expression in the e comes from the
population pulsation terms). Although the popula-
tion pulsation contribution is smaller than the
hole-burning terms by about y/n, , they can give
rise to cases of strong coupling, and hence bi-
stable operation.

Under normal conditions for two-mode oscilla-
tion, the cavity is fairly short, corresponding to
a fairly large intermode separation 4. Also, uni-
form excitation of the laser medium assures
~N, ~

=0 &N. Therefore the population pulsation
contribution is negative and the coupling is weak.
However, if a long laser is operated at low enough
excitation so that only two modes are above thres-
hold, it is possible that 2yy, &h, and strong cou-
pling (C& I) results Fi.gure 7 is a plot of C as a
function of intermode separation, which illustrates
the transition to strong coupling. Another consid-
eration, mentioned by Lamb, ' is a variable exci-
tation density. If N(r, , t) is positive in the center
of the cavity, but negative in the end quarters,
N, &-N and again 8&P.

Figure 8 shows relative intensities versus cavi-
ty detuning for a two-mode standing-wave laser
with C & 1. The coupling is strongest in the mid-
tuning region, where both frequencies compete
for the same velocity ensembles. The mode com-
petition results in a rapid intensity crossover at
midtuning, where the mode closest to line center
dominates. The dominant mode actually quenches
the other mode for some values of detuning. At

2 0

2. 1

~ml

& 1.4
1.4

0.7 1.2

1.0

0.0
—450 -337 -225

v1 —~ (MHz)

-112 0 6 I I I I I I l I I I I I I I I

0 50 100 150 200

FIG. 6. Two-mode unidirectional-ring intensities vs
cavity detuning of the first mode. The parameters are
the same as Fig. 5, except there is no cavity rotation.
Detuning values of the higher-frequency (second) mode
are given by the abscissa plus the cavity mode separa-
tion of 450 MHz.

6 (MHz)

FIG. 7. Two-mode coupling constant vs intermode
separation frequency, in the strong Doppler limit. The
parameters y=100 MHz, y, =15.5 MHz, y&=41 MHz,
N2/N =-0.25. Strong coupling can occur for lasers
longer than 2 m.
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the edges of the plot one or the other mode is tuned
to line center and experiences a Lamb dip due to
its increased self-saturation.

VIII. MULTIMODE RESULTS

This section is devoted to the discussion of spe-
cific examples of many-mode operation. Steady-
state solutions of (62) are presented as functions
of various parameters, primarily cavity detuning.
These mode intensities can be interpreted using
the physical mechanisms discussed in previous
sections. %henever possible, the theoretical re-
sults are compared to laboratory experiments.

The stable intensities of a four-mode bidirec-
tional-ring laser are shown in Fig. 9. The oppo-
sitely directed traveling waves have been frequency
split by 15 MHz. The features of this solution are
quite reminiscent of the two-mode standing-wave
result (Fig. 8), as might be expected. However,
near the edges of the plot, only two traveling
waves are above threshold, and the traveling wave
nearest line center dominates. The frequency
splitting leads to significant intensity differences
of oppositely directed modes far fxom line center.
If nonreciprocal transmission losses and frequency
splitting are absent, the traveling waves of the
same frequency have equal intensities. If the polar-
ization decay constant y is increased, thus increas-
ing the competition for available atoms, one set
of traveling waves can be extinguished altogether,
as in Fig. 1Q.

2 (j

1.5 '

i

~~ ~ fll

0 ~o J
e' 1+

I

It
0
0 I

0.5 ~
I

I

-450 -337 -225 -112 0

Q1 —~ (MHz)

FIG. 9. Four-mode bidirectional-ring laser (two run-
ning waves in each direction). The parameters are y
=15.5 MHz, y~=41 MHz, Xu =1010.0 MHz, L =3 m. The
solid and dashed curves are for positive and negative
running waves of approximately equal frequency, and
the dashed-dotted and dotted curves are corresponding
waves for a higher cavity frequency. Abscissa value is
the average detuning of the first two waves. The corre-
sponding average detuning for the higher-frequency pair
is given by the abscissa +450 MHz. Compare this figure
with Figs. 5 and 8.

Another example of steady-state intensities in a
bidirectional ring is considered in Figs. 11 and

12. Here we present the solutions of positive and
negative traveling waves, respectively, for the
six-mode case. Here there are regions of strong
mode coupling near symmetric tuning which ex-
hibit bistable operation. For the ring laser, re-

1.5—

P. 1.0—
CJ

C

3.3 4

~

0.0
--450 --337

t I l. i I I t I kt

Q1--~ (MHz)

FIG. 8. Two-mode standing-wave intensities vs de-
tuning of the first mode. Corresponding detuning values
of the second mode are given by the abscissa plus the
intermode spacing of 450 MHz. The parameters y=2x
x128 MHz, y, =2mx15. 5 MHz, y~=2mx41 MHz, Xg =2m.

x 1010 MHz, %=1.2 and I =0.3333 m.

0 ~

PO

1.1

ha

0 0 a I t I I l

-450 —337 —225

&1-~ (MHz)

—112

FIG. 10. Four-mode bidirectional-ring laser. Same
as Fig. 9 except that y is increased to 128 MHz.
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call that pairs of modes have similar frequencies,
which are spaced from the next pair by the longi-
tudinal mode separation. Thus when the central
pair of the six-mode ring is symmetrically tuned,
there is a large amount of mode competition.
Modes 3 and 4 see essentially the same velocity
ensemble, and are strongly coupled, as we saw in
the two-mode laser (Fig. 8). Further, modes 1, 6
and 2, 5 are symmetrically tuned, and since they
are also traveling in opposite directions they com-
pete strongly for the same atoms. This degree of
coupling between all sets of modes brings about
bistable operation, where the laser becomes uni-
directional over a significant detuning range. In
the single solution of Figs. 11 and 12, we show the

1.80

.l!
-300 -250 -200 —150 —100

V) Cd

FIG. 12. Six-mode bidirectional ring laser. As in Fig.
11but for negative running waves. Solid line: mode 2;
dashed line: mode 4; and dashed-dotted line: mode 6.

I

0 Plo I
~ ~ ~ I ~ 1 ~ I ~ ~ j t ~ ~ ~

-300 -250 -200 -150 -100
V) Cd

FIG. 11. Six-mode bidirectional ring laser. Intensi-
ties of positive rumning waves vs average detuning of
the lowest frequency modes (1 and 2). CXher parameters
as in Fig. 9. Solid line: mode 1; dashed line: mode 3;
dot-dashed line: mode 5. Bistable (unidirectional)
region is indicated by vertical lines below detuning axis.
Pattern repeats in 200-MHz intervals. Average detuning
values for modes 3, 4, and (5, 6) are given by the abscis-
sa value plus the mode separation of 200 MHz (400 MHz).
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I— ~ Q'.

P 00
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negative (counterclockwise-traveling) modes non-
zero. The other solution is also symmetric but
with the positive modes having nonzero intensities.
Near the edges of the plot, one pair of modes is
detuned away from line center, and the other four
modes are again in position to compete for the
same velocity components. Again there are two
possible solution sets. The detuned modes both
oscillate, while the traveling-wave modes in one
direction are suppressed. It is interesting to note
that the configuration near -300 MHz of Fig. 12 is
similar to symmetric tuning of the four-mode ring
(-225 MHz in Fig. 9) with the exception of the de-
tuned mode pair. The extra modes contribute addi-
tional beat frequency pulsations in the polarization
as well as a small constant saturation. This addi-
tional coupling increases the saturation of the
center two modes unequally, and one of these is
suppressed relative to the oppositely traveling
wave symmetrical to it. Thus, while the four-
mode ring shows a standing-wave character, the
six-mode ring shows unidirectional character near
points of maximum symmetry.

An example of the solutions of (62) for standing-
wave laser operation is given in Figs. 13 and 14.
Here we consider a five-mode laser, which ex-
hibits two separate stable solutions in some re-
gions of cavity detuning. Comparison of the fig-
ures reveals that whenever modes are symmetri-
cally placed with respect to the atomic line center,
the maximum mode competition leads to bistable
operation. When the mode locations are not so
symmetric under the gain curve, only one stable
solution exists. Near central tuning of mode 3
(i.e., v, —&u = -300 MHz) modes 1, 5 and 2, 4 are
symmetrically placed. They experience maximum

FIG. 13. Intensities of five-mode standing-wave (two-
mirror) laser vs detuning of first mode (lowest fre-
quency). Other parameters as in Fig. 8. Detuning values
of other modes are given by the abscissa value plus
their frequency differences with respect to the first mode.
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FIG. 14. Five-mode standing-wave laser. As in Fig.
13, but other solution of bistable pair.
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competition for the same atomic velocity ensem-
bles, and the intensities cross over rapidly, simi-
lar to the cross over in Fig. 8 for two-mode cou-
pling. The actual cross over point is offset from
the exact symmetry position in cases of bistable
operation. The detuning regions having two solu-
tions occur between points of rapid crossover.
The other regions where two solutions exist are
located near the edge of the plots. On the left
side, modes 2, 5 and 3, 4 are paired symmetrically
to the gain curve, while on the right modes 1, 4
and 2, 3 are similarly paired.

The onset of strong coupling occurs at the sym-
metric tuning point, and the bistable region
spreads outward in both directions as the contri-
bution of the population pulsation terms is in-
creased by decreasing the intermode spacing fre-
quency. In this connection, we note that the bi-

FIG. 16. Five mode unidirectional ring laser. Same
as Fig. 15 but withy=128 MHz.

stability vanishes here as for the two-mode case
(Fig. 8}when population pulsations (artificially}
are dropped. It also disappears in the uni-
directional-ring laser, where each mode sees
essentially a single velocity group instead of the
symmetrically placed pair contributing to standing
wave modes. This fact is illustrated in Figs. 15
and 16 for unidirectional-ring operation. In Figs.
1V and 18 ten-mode standing-wave operation
characteristics are shown.

Note that at central tuning for the middle mode
the mode spectrum is asymmetrical such that
modes oscillate either above or below line center.
Asymmetrical operation has been reported by

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3.

1.05 ~

V)Z 0 ~ 70-
LLJ
I—

0.35-

Line center

0.00
-375 -337 -300 -262 -225 1 2 3 4 5 6 7 8 9 10

Mode number

FIG. 15. Intensities of five-mode unidirectional ring
laser vs detuning of first lowest-frequency) mode. De-
tuning values of other modes are given by the abscissa
value plus their frequency differences with respect to
mode 1.

FIG. 17. Diagram depicting mode placement in ten-
mode standing-wave bistable operation. Modes oscillate
on either side of line center, but not on both. The cor-
responding unidirectional laser has a single symmetric
solution.
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Garside, ~ who notes that for a free-running He
Ne laser, the spectrum is dominant on the low-
frequency side. Garside suggests that the trans-
verse character of the mode leads to focusing of
the beam below line center and defocusing above.
This results in slightly different cavity Q's for
different modes. The focused modes have higher
Q's, leading to the observed operation on the low-
frequency side. Figure 1V shows the two bistable
solutions of the ten-mode standing-wave laser at
central tuning. By increasing the relative Q for
the low-frequency modes by 1%, the high-frequency
bistable solution is extinguished, but the resultant
mode spectrum retains the asymmetric form of
Fig. 18.

ACKNOWLEDGMENTS

The author would like to thank A. G. Fox, W. E.
Lamb, Jr., and D. R. Hanson for stimulating con-
versations.

APPENDIX: PLASMA DISPERSION FUNCTION

AND ITS THIRD-ORDER GENERALIZATION

The plasma dispersion function is historically
defjned as

z(c) = -"I z e-*'I( - () (A1)

valid for Im&) 0, and the analytic continuation of this
for Imp(0. If f is wholly real, Z(f) is the Hilbert
transform of the Gaussian. Another expression for
Z(f) is related to the error function:

sC
Z(t)=2ie ~ e ~dt

=iw't'e (' [1+erf(ig)]. (A2)

375 -356 -337 -318 -300
P) QJ

FIG. 18. Ten-mode free-run standing wave. Intensi-
ties vs detuning-first of two stable solutions, with oscil-
lating mode on dc side of line center. Figure 17 shows
relationship of this solution to the other stable solution.

In the present theory, we derive the double inte-
gral

iKw-x/2
~t d~( t dv e-(vl zP e (+-iwv)

Jo oo

(A3)

which we call the plasma dispersion function also.
When the integral over T' is evaluated first, the
result is similar to (1),

Z(u) =iKw ' ' t dve '" "' (u+iKv) '.2
(A4)

We note that these definitions are identical if
t =i u/Ku. However, we find it convenient to denote
(3) and (4) by Z(u), which has an argument with
dimensions of frequency. The integral over v can
be evaluated first, leading to yet another form of
the dispersion function

Z(u) =iKu dT' exp[-uT'- —(K~u)'7 "].
0

(AS)

In evaluation of coefficients in the third-order
theory, it is useful to know the following symme-
try properties:

Z(-u) = -Z(u),

Z(u )= [Z(„)]*.
(AS)

Several limiting cases are of interest. If there is
no atomic motion,

Z(u)„, =iKuu '. (A7)

When the Doppler width Ku is much larger than the
homogeneous broadening width y, that is, in the
"Doppler limit, "

Z(it (u) =iw' 'e &

2

(elf» y)
b,a)/g u

2 e-(~~/ru) dxe' . (AS)
0

Finally, if the radiation is on resonance with the
atomic medium, v is wholly real, and

Z(y) =iw' e & w" (I- erf(y/Ku)j. (A9)

In the third-order perturbation terms, there
appear three time integrals in addition to the
velocity integral. These integrals form a natural
extension of the plasma dispersion function, with
three complex frequencies u„u„and ~„and
three wave numbers K„K„K,. Here we assume
that the wave numbers are the constant multiples
c,K, c~, and c+. Then by simply writing Z(v)
as (3) and tripling the integral on T, we arrive at
the third-order integral

T =iKn ' ' dv exp —v u dr', dT" dT"'

x exp{-[(u, +ic,Kv)7'+ (v, +ic+v)w" + (v, +ic+v)r"']]
(A10)
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It is possible to express T in terms of Z(ti) by com-
pleting the square in v and then suitably trans-
forming variables. This method was used in Sar-
gent, Lamb, and Fork. However, it is simpler
as well as more general to integrate the time
variables first and use partial fractions to expand

the resulting integrand. Thus
2

T=jK77 ~

&& [(v, +ic,Kv)(u, +ic+v)(u, +ic+v)] '. (All)

and the denominator can be expanded to

1 Cx C2 1

c, , —c. . .+ ic Kv, + ic~,+ ic/iu)

1 c~ C~ C3 - cg C2 C~
~

~
~ (A12)

chum —emu~ cp~ —cuui vi+1 cKiv us+icuK5 cmv3 —cavm u2+ic2Kv v~ +ic+s

Using (A4) for Z(&), along with (All) and (A12), we find

z(.,/, ) -z(. ,/~, ) z(.,/~, )-z(.,/~, ))tm Cj —C2
C2v ~

—C~v2 C~v3 —C3v j C2v& —C3 2
(A18)

In the laser theory, the three complex frequen-
cies depend on which particular branch t of the
perturbation tree is under consideration. The
values of the v„are given in Table I. Likewise,
the constants c, depend on the direction of the
interaction components, or the index w. Table II
summarizes the values of c„, required. Using
these values, we find the particular cases of T, :

Tzi = [1/u~][z(u &i)+Z(u&~)]/(u&~+ v&u), (A14)

TN = —[1/u e][Z(v ~,) —Z(v c,)]/(v c, —vc,), (A15)

1 1 Z(v, 3) —Z(v „)
"e/2 ups

Tt — ~KB/ v fl ~utu3
g~Q

(A18)

An assumption often used to write results for
the third-order complex polarization is the "strong
Doppler limit. " In this approximation all fre-
quency intervals ~ —v, 2' vy etc., are assumed
much smaller than the Doppler with Ku. The
homogeneous decay constants y, y„and y~ are
also much less than Ku.
Then

z(.)

lim [Z(v,u) —Z(v „)]/(u,~
—v~, ) = dZ(v „)/dv „

t3 Vt

(A17)
in T~ and Tt3.

For stationary atoms, Z(u) is given by (A7) and

Z(u „)—Z(kv)i2
1 ~

t3 2 t2
(A16) In this stringent but often applicable limit, the

third-order integrals become
It is not uncommon for v ty to equal vt3 If this
occurs, we can use T„=2iw'/ [ (u„u,+)u]3', T~ =, T,S=O. (Alg)
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