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A theoretical calculation of the chemical potential, spreading pressure, and inverse compressibility at
0°K is reported for He* adsorbed on a graphite-like substrate for monolayer densities of 0.10 to 0.13
A2 These functions are obtained from a ground-state variational wave function constructed of
single-particle functions multiplied by Jastrow correlation factors. Use was made of a cluster expansion
in the calculation of the ground-state energy. The theoretical results agree quite well with the empirical

values.

I. INTRODUCTION

The current wisdom regarding the adsorbed
helium monolayer film is that for low enough
temperatures and for areal densities near that
of the completed monolayer, the film behaves
as a highly compressed two-dimensional quantum
solid.!™® The maximum density of the first layer
(~0.115 A2 for He* adsorbed upon Grafoil) is
essentially achieved at monolayer completion,
at which point further addition of helium atoms
to the film results in the formation of a second
layer of adatoms with negligible further com-
pression of the first.* This behavior seems to be
typical of adsorption of helium upon a variety
of solid substrates.

A recently published calculation of the ground-
state properties of the helium monolayer used
the Hartree approximation to calculate such
properties as the density of monolayer comple-
tion, Debye temperature, Debye-Waller factor,
and structure factor.® Using a semiempirical
potential for the helium-helium interaction, and
neglecting the effect of adatom zero-point motion
normal to the surface upon the lateral interaction,
the calculation produced results in reasonable
agreement with experiment. No results were
reported for the spreading pressure or compress-
ibility.

Since the publication of that calculation, more
extensive empirical information has become
available.’*® In particular, the compressibility
at 4.2°K has been measured and the chemical
potential at 0°K has been empirically determined—
both of these parameters were determined for
helium adsorbed upon the substrate Grafoil. It
is thus appropriate to examine in a quantitative
manner some specific questions regarding the
high-density helium monolayer. For example,

|

how important to the thermodynamics of the mono-
layer is the vibrational softening of the lateral
helium-helium interaction due to zero-point os~
cillations perpendicular to the surface? Is there
any significant coupling between lateral and nor-
mal zero-point oscillations? Furthermore, what
specific role does the substrate play and does the
periodic structure of the substrate surface in-
fluence the structure of the monolayer film at
high density? Finally, it would be useful to shed
some light upon the extent to which the bare
helium-helium potential is modified by the pres-
ence of the substrate.

The calculation reported here is that of the
chemical potential, spreading pressure, and
compressibility at 0°K as functions of areal den-
sity p in the range 0.10 sp <0.13A72, These
functions are calculated from a ground-state
energy derived from a variational wave function
which describes a quasi-two-dimensional close-
packed lattice of helium atoms. In this calculation,
the effects of both zero-point motion normal to
the surface and lateral correlations are examined,
although the zero-point oscillations normal to
the plane are “decoupled” from the lateral zero-
point oscillations. In this manner, the variational
problem is separated into an effectively two-di-
mensional one and an effectively one-dimensional
one.

The philosophy of this calculation is to obtain
good quantitative estimates of the important phys-
ics of the monolayer beyond the simple two-di-
mensional Hartree approximation. However, no
attempt was made to do a final state-of-the-art
calculation. Instead, the goal was to elicit re-
sults which have the same confidence level as
experiment (~10%), as judged by some reasonable
criterion.
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II. VARIATIONAL CALCULATION

The Hamiltonian A chosen for the adatom-sub-
strate system describes the substrate as an ideal
and rigid lattice of carbon atoms with the graphite
crystal structure. The substrate is assumed to
be a semi-infinite solid with a basal plane sur-
face. The helium-graphite interaction is repre-
sented by a static potential U(F, z), where ¥ is
the lateral position vector of the adatom and z
is its normal coordinate. The calculation of
U(TF, z) as a sum of two-body potentials is de-
scribed in Ref. (7), Appendix A. The helium-
helium interaction is described by the Beck poten-
tial, as this form seems to be about the best of
the semiempirical potentials which have been
used to describe the interaction of two helium
atoms in vacuum.®*® The assumption is that
substrate-mediated effects!®*!! are unimportant
in the high-density region. The Hamiltonian is
then

+ Y olmy), (1)
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where v is the Beck potential and 7% =7,/ + 2,7.
The trial wave function is written as a product
of single-particle functions (which describe the
z-wise localization and the lateral configuration)
multiplied by a product of Jastrow factors which
describe the lateral correlations. Therefore,
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The function ¢; is written as a separable function
in the normal and lateral coordinates™:

Su(Fy, 2,) = (A/2m)/ 26~ A - B)/4 > c'MU(z),
Y 3)

where the R are the direct lattice vectors for a
two-dimensional hexagonal lattice, the {M*} are
a suitably chosen orthonormal set of basis func-
tions, and the parameters A and C” are deter-
mined variationally.

The variation of the correlation function f(7)
was restricted to a given functional form having
variational parameters. This form was chosen
in such a way that it is capable of reproducing
the typical t-matrix function used in bulk-solid
studies.!?> The form of f(r) was constrained so
as to satisfy (in the »— 0 limit) the one-dimen-

sional Schr8dinger equation for two helium atoms
with an interaction given by the Beck potential.
This is, of course, just the WKB form f(#)=e™“",
with () given by'®

u(r) =( = 1/k) f dr [M¥P)]2 . (4)

The form of f(7) for finite » was modified by use
of Pad¢ approximates so that f(») is given by

f(r) = e W (1+Pyr) /(@ + Q1) (5)

In general, P,, @, and @, can be treated as varia-
tional parameters. For the purposes of the pre-
sent calculation, @, was set equal to unity, P,
was set equal to —04 A™!, and @, was used as the
sole variational parameter. The resulting shape
for f(r) gives a quite reasonable fit to the Glyde—
Khanna!? correlation factor if @, is set equal to
zero. In fact, @, =0 gives the energy minimum
(Q, positive), with the results for finite @, being
quite near the Hartree results (@, — «) if @, is
larger than 1.0 A™, R

The calculation of E,= (¥ |H|¥) is carried out
via a cluster expansion truncated after the two-
body term.”*'* The energy E, is given by E,=Egs
+E01.U+E02V: where

N
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J=1
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- ( fav )
E""'Izq o oas (®
Fu=fUF,=F]), (9)

V= V('FJ—FII) ’
V(7) = v, () = (B2 /2M)V? Inf(7) .

In the preceding, two Ansatze are made to facil-
itate the evalution of Ey; and Ey,;,. Because the
close-packed lattice used to describe the film
has no simple relation to the lattice structure

of the surface, Eyy is evaluated by replacing
U(¥, z) by U(z), where

(10)

Uiz) = —91— fn dF UG, 2) (11)

with © being the unit-cell area. The tacit assump-
tion is that the structure of the high-density solid
is determined almost entirely by the helium-he-
lium interaction and is nearly decoupled from

the lateral structure of the surface. The mis-
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match between the monolayer and surface struc-
tures results in some averaging of the substrate
potential, and in Eq. (11) this averaging is taken
to be random. The calculation of E, involves
the calculation of

voolr ) = [ 7 deyday M¥aoin, Mz, (12)

where M(z) =3} ,C"M"(2). The functions used for
M"(z) are “Morse functions” that is, solutions to
the one-dimensional Schrodinger equation for the
adatom in a Morse potential. Appendix B of Ref. 7
gives the details of these functions and appropriate
references.

Rather than actually do the integral in Eq. (12),
a weighted average of v was used to evaluate v,j.
That is, v,p was approximated by

0y p(7) = [5.5 A7) +6.00((r2 +02)1/2)

, (13)
+4.50((r 2 +40%)'/2)] ,
where o is given by
o= dz M¥2)[2® -2, (14)
zsf‘” dz zM?(2) . (15)

This approximation is equivalent to replacing M?
(2) in Eq. (12) with a normalized parabola having
a maximum at Z and zeros at Z +20 (with the
limits of integration now being from Z - 20 to
Z +20), and evaluating each line integral via a
five-point Simpson’s rule. Although Eq. (13) is
only an approximation to Eq. (12), it contains
all the important physics, namely, the softening
of this lateral interaction v,, due to the zero-
point motion normal to the surface. The approx-
imation was checked by comparing Eq. (13) to the
actual numerical evaluation given in Eq. (12).
This comparison showed that uv(7) — v,(7) was
given to better than 5% by Eq. (13) for 1.0< »
<2.5A. For»>2.5 A, the approximation was
accurate to a fraction of a degree.

The task is now to evaluate numerically E, for
a given value of @,, and to minimize E, as a func-
tion of A and the {C"}. The value of E,/N for
optimum values of {A, C'} is denoted by &(p),
where p is the areal number density of the mono-
layer. For a given value of @, the term E
is solely a function of A, E, is solely a function
of C’, while E,, is a function of both A and C”.
In minimizing E,, the variation of E, with C’
is ignored so that the C” are determined by only
minimizing E, ;. This set of C” is then used to
calculate o, and then E, 1 + Eyy are minimized
with respect to A. This procedure decouples

lateral and normal vibrational modes, the assump-
tion being that compressing the film in the lateral
direction has no significant effect upon the ampli-
tude of vibrations normal to the surface—at least
not in the range of experimentally accessible
densities. The calculation was repeated for sev-
eral values of @ in the range from 0 to 2.0 A2,
and @, =0 always corresponded to the lowest value
of E,.

In order to compare theory with experiment,
the chemical potential pu, spreading pressure ¢,
and inverse compressibility K™ were calculated
from €(p) using

de
w=etp5o (16)
_ 2 3¢

K1 =26 +p° 28

8p2 . (18)

Since each of the above parameters involves a
different combination of €(p) derivatives, both
the general placement and shape of €(p) can be
examined.
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FIG. 1. Correlation function f(r) with @,=1.0, Py
=-0.4 A™1, and (A) @;=0 and (B) ;=0.25 A™!,
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III. RESULTS

The cluster expansion for the Jastrow factor
given by Eq. (5) has not been examined in detail,
so that the rate of convergence (especially at
high densities) is somewhat of an unknown for
arbitrary values of the parameters P, @, and
Q,. However, for @,=1.0 and P, =~-0.4 A™, f(»)
has all the characteristics associated with rapid
convergence of the expansion for bulk helium near
the melting curve, and recent work by Brandow
indicates the rate of convergence is not sensitive
to reasonable changes in density.'®*'® In particu-
lar, with @, and P, fixed at the above values, f(7)
is similar in shape to other correlation functions
for which E, has been shown to be small,”»!4+15
Furthermore, the two-dimensional nature of the
monolayer means that there are simply fewer
neighbors than in the bulk, so that the higher-
order clusters will have smaller weight in two
dimensions than in three. Finally, the correlated

300 T T T T T 1

200

CHEMICAL POTENTIAL (°K)

100

o Lo
0.10 o.11 0.2 0.13
AREAL DENSITY (R~2)

FIG. 2. Chemical potential at 0°K. (I) Two-dimension-
al Hartree; (II) quasi-two-dimensional Hartree; (A)
quasi-two-dimensional cluster expansion using correla-
tion function with @ =0; (B) same as (A) but using cor-
relation function with B, =0.25 A™!. The dots are em-
pirical values (Ref. 5).
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results are not very different from the Hartree
results, for which all higher terms vanish.
Nevertheless, it is profitable to have some con-
sistency check of the truncation error. This was
done by comparing results for two correlation
functions which can be expected to have some
reasonable difference in convergence rates, but
not so different that the exact variational re-
sults could be expected to differ drastically.

The one characteristic of f(») which does affect
the rate of convergence is the deviation of f(7)
from unity for those values of » where the Gaus-
sian factors assume large values.!*™® The two
correlation functions are plotted in Fig. 1, func-
tion A being given by f(») with @, =0 and function
B by f(r) with @, =0.25 A™'. Function B differs
from unity by about half the amount of function A
in that region where the Gaussian factors have
their largest values. It is just this property
which should cause function B to be associated
with a better convergence rate.!> Furthermore,
the optimum Gaussian for function B was about
10% narrower than that for A, a property which
also speeds the convergence rate. The energy
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FIG. 3. Spreading pressure at 0°K. Curves I, II, A,
and B are theoretical results using same notation as in
Fig. 2. The dots are empirical values (Ref. 5).
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values associated with A were always less by
about 10% than those associated with B.

The theoretical results for u, ¢, and K™ are
plotted in Figs. 2-4, each graph displaying four
theoretical curves. Curve I is the Hartree re-
sult [ f() =1] for a strictly two-dimensional solid
(v,p=v). Curve Il is also a Hartree result, but
with v, calculated via Eq. (13). The difference
between curves I and II shows the effects of nor-
mal vibrational motion upon the lateral interaction,
and the concurrent effect upon the thermodynamic
functions. Curves A and B are the theoretical
results using correlation functions A and B, re-
spectively, and again v,, calculated via Eq. (13).
The differences between these curves and curve
IT demonstrates the effects of correlations. The
difference between curves A and B is small in
each case, so no attempt was made to separate
the contribution due to truncation and the differ-
ence due to better functional form. Rather, the
small shift is evidence that the cluster results
are consistent with higher-order corrections
being small.
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FIG. 4. Inverse compressibility. Curves I, II, A,
and B are theoretical results at 0°K using the notation
of Fig. 2. The dots are experimental results at 4.2°K
(Ref. 6).

The experimental (or empirical) results for He*
adsorbed on Grafoil are shown as dots in Figs.
2-4. The empirical results of Elgin and Good-
stein for the chemical potential at 0°K are shown
in Fig. 2 shifted by their empirical binding energy
of a single He* atom on Grafoil (~145°K).5 Their
0°K result was obtained by numerical thermo-
dynamic analysis of the finite p and T chemical
potential and specific heats. The spreading pres-
sure in Fig. 3 was calculated by integration of
the Elgin and Goodstein chemical potential via

#(p) = p(po) = Poki(py) +pilp) = f; dp’ u(p") ,
(19)

with p, taken at about 102 A™2, In plotting ¢(p) it
has been assumed that ¢(p,) << ¢(p), and so ¢(p,)
was ignored in Eq. (19). The inverse compress-
ibility K™ plotted in Fig. 4 is the measured re-
sult (at 4.2 °K) of Stewart ef al.® This result is
in good agreement with the result found by dif-
ferentiating the chemical potential of Fig. 2. The
dip in the experimental inverse compressibility
at about 0.11 A™2 is apparently due to experimental
error rather than any intrinsic structure.!” The
“preak” in the curves for u and ¢ at 0.115 A2

is due to monolayer completion.

The general agreement between theory and ex-
periment is from about 10% for curve A to about
10 to 15% for curve B. The question as to the
uncertainty to be associated with the experimental
results is difficult, but one source of error is
simply the measurement of the film density, with
a reasonable estimate of this being about 1%.!®
Another source of error would be lateral inhomo-
geneities causing a variation of film density from
one region of the surface to another.® A down-
ward shift of about 1% in the experimental density
would bring experimental results into excellent
agreement with curve A. It was because the dif-
ference between curves A and B is less than the
difference between curve A and experiment that
no attempt was made to examine the effect of
higher-order clusters.

IV. CONCLUSIONS

The chemical-potential and spreading-pressure
results show that vibrational motion normal to
the surface has as important an effect as lateral
correlations, at least for monolayer densities
within 15% of completion. The sum total of both
effects—curve I vs curve A—is about 20% of the
magnitude of u and ¢. However, this translates
into only a 2% effect upon the density of monolayer
completion. The major effect of lateral correla-
tions on ¢ and p is to lower the magnitude of each
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by about 10% without much effect upon the density
dependence. However, the effect of correlations
on the density dependence of K™ is quite notable
since they are responsible for the rather flat
density dependence of this parameter. The agree-
ment between theory and experiment, especially
with regard to K™, strongly indicates that there
is no significant coupling between vibrational
motion normal and lateral to the surface. That
is, the film gives little indication of an instability
normal to the surface as the film is compressed
laterally. With a suitable substrate potential,
this effect could be an important factor in deter-
mining the density and physics of monolayer com-
pletion.

The high density of the solid film considered
rules out any hope of observing substrate-medi-
ated effects on the bare helium-helium interaction
unless these effects significantly affect the
strongly repulsive region of that potential. One
such possibility is the presence of electric fields
at the surface, since this causes an additional
dipole-dipole repulsion between the helium atoms.
This effect has been discussed at length,'® and the
contribution to the chemical potential is positive
and additive in the classical limit. Since the data
lie below the theory there is no evidence for the
existence of such fields for the helium-Grafoil
system. Nevertheless, it is useful to calculate
a maximum value for such a field assuming some
maximum contribution to u. For the purposes
of an order-of-magnitude estimate, it is sufficient
to do the classical calculation for a simple hex-

agonal lattice neglecting depolarizing effects of
nearby helium atoms. If Ay is the contribution
due to a uniform electric field generated by a
surface charge o, then

Ap=201%cP0 3 # , (20)
i J

where a is the helium static polarizability, v,
is the number of atoms in the jth nearest-neigh-
bor shell, and R, is the corresponding distance.
If the value or Apu is chosen (ad hoc) to be 10%
of the total, then the excess charge per surface
carbon atom is about 1072 electrons. In fact, it
is probable that these fields are zero.

The general agreement between theory and ex-
periment leads to the conclusion that the main
effect of the graphitelike substrates upon the
physics of the high-density monolayer is simply
to restrict the adatoms to a plane with small-
amplitude zero-point oscillations about this plane.
There is little, if any, effect upon u, ¢, and K™
due to crystal surface structure, although this
surface structure would probably effect the over-
all topological structure of the film. This be-
havior at high densities contrasts sharply with
the superlattice phase, where the structure of
the surface has a very important effect upon the
basic structure and thermodynamics of the film,7*2°
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