
PHYSICAL REVIEW A VOLUME 8, NUMBER 6 DEC EMB ER 1973

Calculations of Effusive-Flow Patterns. II. Scattering Chambers with Semi-Infinite Slits
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The method presented in the first paper of this series for computing distributions in steady-state efFusive

flows was applied to beam-scattering chambers of especially simple geometry having identical long, narrow

slits of negligible channel length. The results are presented as correction factors u which, when multiplied

by the chamber length, give the efFective length of scattering path through an attenuating medium of
uniform density equal to that in the scattering-gas source. Predictions of the calculations compare well with

scattering measurements made with a chamber of variable length.

I. INTRODUCTION

The distributions of moleeules in steady-state
effusive flows are sensitive to the geometric
arrangement of all surfaces in the Qom system
as well as to the orientation of gas sources and
sinks. The first paper of this series' presented
a general method for computing details of such
distributions when the system geometry is speci-
fied subject to the restraints: (i) Gas-phase col-
lisions are rare compared to gas-surface inter-
actions and (ii) the surfaces reflect gas molecules
diffusively, in accordance with the cosine law.
This paper reports on the use of that method to
determine the effective scattering path lengths
for beam-scattering chambers of a simple geome-
try, namely, chambers with very long slits. The
results confirm the idea that systematic errors
known to appear in the calculation of total scat-
tering cross sections by conventional methods can
be substantial, but are subject to reduction by
ayplication of the present method to chambers of
more realistic geometry. Later papers in the
series mill deal mith the results of those calcula-
tions.

II. TOTAL SCATTERING CROSS SECTION

It is eharaeteristic of modern physical science
that attempts be made to rationalize the apyarent
behavior of bulk mattex in terms of interactions
between submicroscopic systems. One important
may to study such interactions more ox less di-
rectly is to observe the scattering of particulate
beams by gases. The information that such ex-
periments provide about the details of the pairmise
interactions between beam and target systems
is often stored in values of the total scattering
cross section Q. The desired information must
be extracted from the cross-section data by ap-

propriate theoretical means. Some interesting
interaction details may be inferred from geomet-
ric features of the cross section vs collision ener-
gy relationship, and numerous experiments are
performed to observe such features as slopes,
curvatures, and the locations of singularities
which sometimes oeeur. In general, however, it
is desirable to know the magnitude as mell as the
shape of the cross-section function. Such total
or absolute cross sections are not observed di-
rectly but must be computed from experimental
parameters and measurements. Usually the total
cross section is evaluated as

(((u, ) in(I /l)R(v=, ) E J n(z(dz.

In this equation, I and Io are beam intensities
with and without attenuation by scattering gas,
and are commonly measured to -0.1% precision.
R(v, ) and E~ are terms which correct for the
finite angular resolution of the apparatus and fox
the syread of relative velocities between beam
and target particles, respectively. These cor-
rections have been the subjects of extensive in-
terpretation' ' and are mell-enough known to in-
troduce only small uncertainty into values of Q.

ln E(i. (l) the definite integral of scattering-gas
number density n along the beam direction reylaees
the simpler pxoduet nl in the familiar Beer-Lam-
bert equation for beam attenuation in a homo-
geneous dispersing medium and accounts for the
nonuniform distribution of scattering gas along
the beam path. The limits of integration are from
beam source to detector. In the present state of
the art of computing total cross sections from
scattering measurements, uncertainty in the value
of this integral generally intx'oduces the greatest
uncertainty in the final result. In practice, one
measures the scattering-gas pressure p, =nokT
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n = (1/4m) fn, de, (2)

where n, is the effective radiative density asso-
ciated with surface element d S, and d(d is the
solid angle subtended by d S at P. The integral
as usual is to be evaluated over all exposed walls.
The problem of determining the density distribu-
tion and hence the integral is seen by Eq. (2) to be
essentially the problem of finding the steady-state
distribution of n8 over the apparatus walls. The
method of doing this is detailed in paper I.

p= /teal)

in some volume of the apparatus and then attempts
to relate the gas density both inside and outside
the scattering chamber to the reference density
n~. Because typical scattering pressures are low

(sub m Torr range) and scattering chambers small,
accurate reference pressure measurement has
proved to be a formidable task, but with care
values accurate to about 1% can be measured at
sites near the scattering zone. ' Since failure
to account correctly for nonuniformity of scat-
tering gas can lead to errors larger than this, it
is important to find adequate ways to reduce this
substantial uncertainty in experimentally deter-
mined total cross sections.

The problem is complicated by the fact that
scattering-gas distributions are usually not homo-
geneous over a finite path length but exhibit gra-
dients characteristic of some steady-state flow.
The flow patterns are generally difficult to evaluate
exactly from first principles, but special features
of the flows common to beam work lead to simpli-
fications in the problem. These features are the
aforementioned preponderance of gas-surface
interactions and the resultant diffuse reQection.
Under these conditions the local number density
near a point P exposed to such radiating walls is'

III. SEMI-INFINITE SLIT GEOMETRY

The geometry chosen for the first application of
the above theory to a scattering chamber rather
than a Knudsen cell is the "semi-infinite slit"
configuration illustrated in Fig. 1. This geometry
was chosen because it reduces the general case of
a two-dimensional variation in wall density to a
one-dimensional one, since the walls and source
extend to infinity along the slit direction, designa-
ted as the y-axis, and because it approximates the
common situation such as used in this laboratory
of a scattering chamber having long narrow slits.
Referring to Fig. 1, all chamber dimensions are
measured in units of the width of the slit which
is set at unity. 2* and S* are the reduced length
and half-height of the chamber, respectively. The
chamber is comprised of "walls" of reduced height
S~ -0.5 which serve as steady-state diffuse gas
reflectors and the "source" region, which can be
considered either as an open tube through which

gas flows at such a rate as to keep the gas density
at the source constant at no or as a gas-emitting
surface similar to the source surface in a Knudson
cell, which emits gas at a constant rate. The
second method of visualizing the source serves to
emphasize the fact that if the slits are closed,
i.e., slit height equals zero or Z* and S * equal
infinity, the chamber will have a uniform gas
density equal to n~.

It has in fact been common practice to assume
this equilibrium condition to exist inside the cell
even with the apertures open to the vacuum cham-
ber. We refer to this idealized situation as the
"static" case. It is useful to note that for this
case it has been shown that the value of

0 D
n(.)«

reduces to the product nl for scattering chambers
with identical entrance and exit slits of negligible
channel thickness. "' We will use this value as
a basis of comparison for results of the present
calculation.

IV. CALCULATIONS

/ ////////

rr
source/

~)p 2"

FIG. 1. Scattering chamber with semi-infinite slits.
Chamber extends to infinity along the y axis.

The method of solution is the same as that out-
lined in Ref. 1. First the gradient in n(z) over
the reQecting wall is determined by applying the
following sequence of steps:

(A) Divide the walls between the slit edge and
source into n equal bands parallel to the slit and
of reduced width AX*= (S*-0.5)/n. The quality
of the final result will depend on the magnitude
of LX* and, hence, on the number of bands chosen,
For the present calculation n was 25.

(B) Assume the effective radiative density of
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each band to be unifox m over the entire band and
of reduced magnitude n,*=n, /n, .

(C) Choose initial trial values of s, . A rea-
sonable starting place is to assume the reduced
density in the bands nearest the slits to be less
than n0 by a factor equal to twice the fractional
solid angle subtended at a point on such a band by
the opposite aperture. The initial gradient was
then taken to be linear between the source and the
first band. .

(D) Calculate the total flux of molecules I;. in-
cident on each band. The Qux of molecules on
surface element dS centered on bandi from ele-
ment dS' on band j (Fig. 2) is

dI&& = cos8 dry,
tip v

(3)

where V is the average speed of scattering gas
molecules, d~ is the solid angle subtended at d S
by d S', and 8 is the angle between the z axis and
the line connecting dS and dS'. The contribution
to the flux on d S due to the entire jthe band ob-
tained by integration over that band is

nq* v X)q+ R~*
8 [Z~+(X,*, +-,'m*P]"*

1
x]*~ ——,m*—[."~ ['*,, --.'* [*[ ")

The contribution to the flux incident on the ith
band due to molecules arriving directly from the
source regions is

~r1, source 8 [z u[c + (Su xu)$] 1lz

S*+g ]*

[z"'+(S*+x*PI'")'

(E) Replace the trial values of n,* with those
obtained by requiring the rates of diffuse reflec-
tion from each band to equal the rate of molecular
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FfG. 3. Effective radiative density gradient for square
scattering chamber (G= 0.5).
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incidence on it:

r, =n,*v/4.

(F) Continue by iteration, calculating new values
of l, and n,* until satisfactory convergence is
achieved. For the present results the calculations
mere terminated when agreement between succes-
sive iterations was better than one pax t in 10'.
Typical results of these gradient calculations are
shown graphically in Fig. 3 for scattering cham-
bers having a fixed ratio of 6 = S /S* =0.5. The
deviation from the "static" distribution increases
with reduced relative chamber length.

Having determined the gradient along the scat-
tering walls, the reduced number density nu(z}
along the beam axis (z axis} is found using Eq.
(3). For the present geometry the element of solid
angle is that subtended at point P(0, 0, z*) by an
element of vrall area of width dx* at distance x*
from the beam axis and situated parallel to the
slit. It is

————STATIC (10. 5)
S 820

~ ~ ~ ~ ~ ~ e pe I60

n{z)vs z
Z'= 20
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FIG. 2. Geometry for the evaluation of impact flux.
HG. 4. Typical scattering-gas density px ofiles for

semi-infinite slit chambers.
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TABLE I. Effective-length parameter 0. as a function of Z* and G.

0.25 0.50 1.00
G =S*/Z*

2.00 4.00 8.00 32.0

1.25
2.50
5.00

10.0
20.0
40.0
80.0

160
320

0.967 805
0.969 299
0.980 035
0.988 967
0.967 212
0.997 049
0.998 514
0.999256

0.888 738
0.906 050
0.934 888
0.962 081
0.979 626
0.989 465
0.994 655
0.997 313
0.998 653

0.785 891
0.819220
0.882 398
0.932 337
0.963 632
0.981 166
0.990 429
0.995 177
0.997 580

0.633 975
0.712 885
0.809 861
0.887 901
0.938 703
0.967 906
0.983 578
0.991695
0.955 823

0.505 117
0.593 279
0.717 407
0.825 607
0.901 604
0.947 484
0.972 842
0.986 185
0.993 032

0.373 661
0.472 100
0.606 974
0.742 459
0.847 829
0.916405
0.965 053
0.977 448

0.204 483
0.266 523
0.351312
0.536 148
0.685 878
0.837 266
0.911552
0.953 828

For each configuration the reduced axial density
was calculated at 25 equally spaced points inside
the scattering chamber between the center and
one 'aperture. The calculation was carried out at
the same intervals outside the chamber for up
to V6 additional points or until n~(0, 0, z) was less
than 0.1% of the source density. I, was evaluated
from these values by numerical integration. The
contributions to this integral from points lying
beyond the range of the tabulated data were ob-
tained in the following way. For each geometry
axial densities were calculated for the static case
as well and the integral evaluated numerically
over the same range above. Since for this case
the total integral must equal l, the length of the
scattering chamber, the tail contribution is taken
as the deficit of the numerical integration below
l . The corresponding contribution for the real
case is approximated as the fraction n,* of the
static tail, where n*, is the reduced effective
radiative density of the band nearest the slit.
Typical reduced axial density profiles are shown
in Fig. 4, where the disparity from the static case
is clearly evident.

V. RESULTS

The results are tabulated as a correction factor
e of the static case result, defined as

a =I,/n, l = n*(z) dz
S

This definition facilitates the correction of cross-
section values, since Eq. (3) becomes I, =n, l,„
=n,n l. The effect is to reduce the actual scat-
tering-chamber length to the effective length l,ff

of an ideal static chamber that would produce the
same beam attenuation.

Values of a are given in Table I for values of
Z* from 1.25 to 320 and values of G from 0.25 to
32. An empirical function which has been found
to fit the values of a to within 1% for 2~ greater
than 5 and for G less than or equal to 4, is

&emp= 1 [G (0,5/z ) ]/z (8)

The simplicity of the empirical expression for +
suggests that it may be part of an exact analytic
expression for e, but what that relationship might
be is not presently known.

Although the geometry used in these calculations
does not have an exact physical counterpart, it
might be expected that for a chamber with a long
narrow slit of small thickness compared to its
width, the correction factor e, which would make
l,& =al, should be of roughly the same order of
magnitude as those calculated here. In an attempt
to verify or disprove this contention, a pair of
scattering experiments were made in which a
thermal velocity-selected Cs atom beam was
scattered from room-temperature Ar gas in a
scattering chamber equipped with slits with a
length-to-width ratio greater than 60 and for which

TABLE II. Experimental scattering cross sections for Cs Ar with two scattering box
lengths.

Run No.

1625
1626
1627
1628
1629
1630
1631

Chamber length
(cm)

0.1003
0.1003
0.1003
0.2578
0.2578
0.2578
0.2578

Pressure
(mTorr)

0.9777
1.3314
2.1685
0.5968
0.5206
0.8303
0.5577

(IpP),„

1.2584
1.3370
1.6681
1.4495
1.3964
1.6886
1.4165

Cross section
( arbitrary units)

5.9515
6.0830
5.9737
6.2462
6.3189
6.2165
6.1507
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TABLE III. Ratios of effective-length parameters for
0.2578 cm length/0. 1003 cm length.

Run No.
(0.1003 cm

length)
Run No. (0.2578 cm length)

1628 1629 1630 1631

1625
1626
1627

1.0495 1.0614 1.0445
1.0268 1.0385 1.0219
1.0456 1.0575 1.0406

Average value: 1.0383+0.0144

1.0335
1.0112
1.0297

the value of Z* could be varied from 10 to 25; the
source distance remained constant at a, value of
about 20. The apparatus was the same as that
described previously. For each of the two ex-
treme geometries, cross sections were measured
at a series of pressures and the effects of velocity
spread and resolution accounted for. When this
was done ratios of cross sections for one geometry
to those for the other geometry were calculated
as shown in Tables II and III. These ratios should
correspond to ratios of values of e for the two

geometries. The average value of the ratio for
the experimental case is 1.038+0.014, while the
calculated value for semi-infinite slits is 1.085.
Thus the variation in effective length with geome-
try is indeed present but the more favorable ex-
perimental geometry resulting from finite slits
of non-negligible channel thickness leads to a
smaller correction for the experimental than for
the theoretical geometry. Work is now underway
to extend the calculations performed here to a
more realistic geometry of a rectangular slit in
a rectangular wall with sources on all four sides.
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