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Bethe-Goldstone continuum equations for the scattering of electrons from helium are solved

variationally in the energy range between the n = 2 and n = 3 thresholds. Polarization and
correlation effects are included in the calculations by allowing for virtual excitation of the 2s electron.

Shape resonances are found above the 2 S threshold, in substantial agreement with close-coupling
calculations of Burke, Cooper, and Ormonde. Structures observed immediately below the 3 S threshold
in experimental cross sections for metastable formation are attributed to several Feshbach resonances

whose energies and widths are computed. Cross sections are presented for elastic and inelastic scattering
involving the ground state and n = 2 states of helium. Cusp behavior, expected at various inelastic

thresholds and found in the variational calculations, accounts for several prominent structural features
in the scattering cross sections. The present computed results are compared with previous theoretical
studies and, wherever possible, with experimental data

I. INTRODUCTION

In this paper, we present the results of varia-
tional calculations of the scattering of electrons
by helium i.n the energy range between the 2'8
and 3 '8 thresholds. Bethe -Goldstone equations
describing the virtual excitation of 2s electron are
solved for s, P, and d partial waves. The yresent
work is an extension of the work of Sinfailam and
Nesbet' on elastic scattering from the ground
state of helium. Vfe confirm the presence of '.P'
and 'D' shape resonances at roughly the positions
predicted by the close-coupling calculation of
Burke, Cooper, and Ormonde. ' Several Feshbach
resonances below the 3'8 threshold are computed
for the Qrst time. The evidence for these reso-
nances has been obtained in several experimental
measurements. ' ' These resonances below the
3'8 threshold have not been found in close-coupling
calculations' based on the lowest five states of the
target atom, namely, the ground state and m=2
states of helium. This results from omission of
the n = 3 states from the expansion of the wave
function. Furthermore, in solving the close -cou-
pling equations, Burke et a/. ' have simplified the
contribution from an exchange term by assuming
that the target states used in their ealeulation are
exact solutions of the two-electron Schrodinger
equation. According to Burke et al. ,

' this approx-
imation introduces an error of .unknown magnitude
in their calculation and is most important for low
partial waves. In particular, the s-wave contribu-
tion to the cross section for metastable production,
in their calculation, had to be divided by 10 to
obtain good agreement with the experimental cross
section. In spite of this approximation, however,
their calculation successfully obtains the shape
resonances above the 2 '8 threshold. Sklarew and

Callaway' have attempted to include polarization
and distortion effects in the elastic scattering of
electrons from the 2'8 state of helium by a polar-
ized-orbital -type calculation.

The plan of the rest of the paper is as follows:
Sec. II contains a brief discussion of the method
used. In See. III we describe the basis functions
used in the present work. Section IV contains the
results of the ealeulations, which are compared
with earlier theoretical work" and, wherever
possible, w'ith experimental results. Our conclu-
sions are summarized in Sec. V.

II. COMPUTATIONAL METHOD

The computational procedure for the variational
solution of Bethe -Goldstone equations has been
described elsewhere. "Here we summarize the
nature of the wave function used and the procedure
used to calculate cross sections. First we shall
consider the formalism appropriate to an eleetron-
atom-system wave function which has well-de-
fined values of M~, Ms, and parity m. The reac-
tance matrix X, corresponding to a wave function
which is an eigenfunction of L', S', and w, can be
easily derived.

The (N+ 1)-electron wave function describing the
scattering of an electron by an N-electron atom is
written

O' = Q 88~gp+ Q eq cq .

Here e~ is a normalized stationary state of the
target atom corresponding to open scattering chan-
nel P; g~ is the corresponding one-electron open-
channel orbital with angular momentum l~ and
wave-vector magnitude k~; 4„ is one of the as-
sumed orthonormal set of (N+ 1)-electron Slater
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determinants. The operator 8 . antisymmetrizes
8~/~. The guadratically integrable function

4'„=+4qcq (2)

where each 4, is a normalized N-electron Slater
determinant constructed from the orbital functions

(Q, ; Q,}.The coefficients c~ can be obtained as
a normalizable eigenvector of N-electron Hamilto-
nian matrix II&... corresponding to energy E~. If
E is the total energy of the system, an open chan-
nel k value is defined by

—'k =E-E (8)

for energies in Hartree atomic units.
A modified version of the multichannel Kohn

variational method called "optimized anomaly-
free method"' is used to calculate the reactance
matrix K, with the wave function 4' of Eil. (1)
which has fixed values of M~, M&, and n. In conse-
quence of linearity of the Schr5dinger equation,
Eil. (1) can be written

4 =g c~%~,

is the Hilbert-space component of 4.
The Slater determinants 4& are obtained from

a reference Slater determinant

40= detp, (1)~ Q„(N)

by replacing the occupied orbitals Q, P~, ...,
(f&j &N) with orthonormalunoccupied orbitals

p,Q„... and adding an unoccupied orbital
Q, (N& a& b & c). Thus, in particular,

4 i~" =det' $,(1) ~ Q,(i)Q, ',(j)~ ~ P„(N)Q, (N+ 1) (4)

represents a two-electron virtual excitation (ab/fj }
coupled to an additional unoccupied orbital P, .
The notation det' implies antisymmetrization and

appropriate normalization. Polarization and cor-
relation effects are thus included through 4~, the
Hilbert-space component of the wave function.

The target-atom wave function 89 can be ex-
pressed in the form

e, = pc,c,',

E matrix corresponding to a symmetry-adapted
wave function for fixed values of L', S' and m as

9+
Kp = Q ai Kigag

where K4& is the reactance matrix corresponding
to the wave function of Eq. (1}with fixed values of
M~, Mg, and n.

Designating the initial state of the atom by
quantum numbers e, L, S or collectively by the
symbol y and a final state by quantum numbers
n', L', 8 ' or collectively by the symbol y', the
cross section for the transition y- y' can be
written'

w (2L+ 1)(25+ 1)
k' +2(2L + 1)(2S+ 1)Y ri w (10)

where l and l' are the angular momenta of the
external electrons associated with the atomic
states y and y', respectively, and T is the trans-
mission matrix related to the K matrix via

T =2'j(1 -fK).

HI. CHOICE OF BASIC FUNCTIONS

In choosing the basis functions used in the pres-
ent calculations and listed in Table I, we have
closely followed the procedures investigated by
Sinfailam and Nesbet. ' The basis set is used both
to get a good representation of the target-atom
states and to represent the Hilbert-space compo-
nent of the wave function. A sequence of exponents
in geometrical progression for a fixed n is used.
The one-electron basis functions for quantum
numbers l, m, , m, are of the Slater form

ni =Nr "'e + Y, ,(r')V, . (12)

Moreover, the parameters in Eil. (12) are chosen
in such a way that the maxima of the functions
corresponding to different l lie at the same rela-
tive distance from the origin. To keep the size of
the basis set within computational convenience,
we have not added any orbitals with arithmetic
sequence of exponents to those listed in Table I.
Thus our basis set of functions can be only approx-
imately complete. Furthermore, the achievement

where 4'~ is an (N+ 1)-electron function in chan-
nel P. "/he component of the wave function in chan-
nel p, 49', corresponding to symmetry-adapted
wave function 4"' can be written as a linear
combination of functions 4 9:

TABLE I. Basis-set parameters. The orbitals are of
the Slater form [Eq. (12)] and p, =0.55.

n =1 0. =2.0, 0.5
e =2; 0; =0.5/p, 0.5, 0.5p, 0.5p', 0.5p', 0.5p'

(8)

ith these definitions, it is possible to write the
l=3

n = 2; 0. = 0.5/p, 0.5, 0.5p, 0.5p', 0.5p', 0.5p4

n =3; n =Q.75p, 0.75, 0.75', Q.75p', Q.75p', 0.75p

n=4; 0. =1.0p, 1.0, p, , p2, p3
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TABLE II. Energies and excitation thresholds (in eV)
of different states of He. The entries in the column for
computed thresholds are obtained by fixing the 23$
threshold at its experimental value.

State
Energies

Computed Experimental
Threshold s

Computed Experimental

1'S
22$
2'S
2 '"P

2'P
3 "S

-78.08
—59.16
-58.32
-57.99
-57.76
—56.29

-79.01
-59.19
-58.39
-58.05
-57.79
-56.29

19.82
20.66
20.99
21.22
22.69

0.0
19.82
20.62
20.96
21.22
22.72

of a truly complete basis, by monitoring the rate
of convergence with respect to additional basis
functions, is more difficult for multichannel scat-
tering if the cross sections have a noticeable
structure. This is a consequence of the shifts of
relative positions of thresholds by the additional
functions. From a limited exploration of the basis
set functions, we choose a geometric ratio of
0.55. For s-wave scattering, only s and p orbitals
are used; for P waves only s, P, and 4 orbitals;
and for d waves the fu11 basis set of Table I is
used.

Basis-set orbitals (Q, ; Q,j were generated by
performing a matrix Hartree-Fock calculation
for the 2'S state of helium. The target states
were then generated by carrying out a configura-
tion-interaction calculation corresponding to Eq.
(5). All configurations of the type Isis and IsmP
(s & 1

and+�&2)

were included in the calculation.
The computed energies (Table II) of the various
n= 2 states and the O'S state are in good agree-
ment with the experimental values. " However,
the ground-state energy is rather poor: —78.08
eV as compared with the experimental value of
—79.01 eV. This is due to the fact that only the
minimal correlation needed to obtain good energy
values of the excited states is included in the
atomic wave function of Eq. (5). Because of the
poor value of the computed ground-state energy,
the 2'S threshold lies at 18.92-eV electron energy
instead of the experimental value of 19.82 eV. The
energies of other thresholds differ similarly from
the experimental values. In spite of these differ-
ences, the relative spacing of n=2 thresholds
computed here are in reasonably good agreement
with the experimental values. Therefore if we
fix the computed, 2'S threshold at its experimental
value of 19.82 eV and scale the energies of other
thresholds with respect to this value, the agree-
ment between the computed thresholds so scaled
and the experimental thresholds is quite good. In
presenting our results, we have added to the total
energy a value of 0.9 eV, the difference between
the computed and experimental energies of the

2'S threshold. In actual scattering calculations,
however, we have not parametrized the target-state
energies and have used the unscaled computed
energies.

A better value of the ground-state energy of
helium can be obtained by following the above
procedures, starting from a closed-shell matrix
Hartree-Fock calculation. However, the relative
spacing of n = 2 levels is observed to be poorer.

The wave function of Eq. (1) used here was taken
to be an eigenfunction of M~, M&, and m. The quan-
tum numbers MI. , M& were chosen in such a way
that the doublet and quartet contribution for a
particular partial wave at a given energy could be
calculated simultaneously. Using this procedure,
the atomic states with different values of quantum
numbers m, and tn, correspond to different spin-
polarized channels even when the scattered elec-
tron has the same orbital angular momentum l.
Thus for a given energy, the number of spin-
polarized open channels far exceeds the number
of physical open channels. For example, for s-
wave scattering corresponding to an incident elec-
tron energy above the 2 'P threshold, there are
thirteen spin-polarized open channels, while there
are only five physical open channels for doublet
scattering and two physical open channels for
quartet scattering. The corresponding numbers
for P-wave and d-wave scattering are 16, 7, and
3.

IV. RESULTS

A. Shape Resonances

An isolated resonance in multichannel scattering
is described for n coupled channels by n solutions
5~(E) of the equation"

yf

E -E„=—'r„gy~ cot[5 (E) —5(E)] . (13)

The index i refers to an eigenchannel and the back-
ground eigenphases50(E) are assumed to be slowly
varying functions of energy. Here E„ is the posi-
tion of the resonance and I'„ is its width. The sum
of eigenphases Q~ 5~(E) increases by v rad in
passing through a resonance. Further, since a
noncrossing rule holds for the tangent of the ei-
genphases, an eigenphase associated with a par-
ticular eigenchannel below the resonance becomes
associated with the next higher one above the reso-
nance.

In Fig, 1, we plot the sum of eigenphases for
2se 2P0 a d 2De electron-helium scattering.
Throughout this section, k stands for the magnitude
of the momentum of the electron relative to the
23S threshold of He. For 'P scattering, the sum
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of the eigenphases starts at approximately 0.32
rad and increases well beyond w rad as k is in-
creased. This is, however, quite a broad reso-
nance, since k has to reach approximately 0.242
before the sum of the eigenphases increases by
m rad. The situation with regard to '&' scattering
is further complicated by the fact that the k inter-
val over which the 'D' resonance lies is over-
lapped with new channels opening at the 2 'S, 2'P,
and 2 'P thresholds of He. The sum of the 'D'
eigenphases increases first slowly, starting from
approximately 0.05 rad at the 2'S threshold, and
then more rapidly past the 2 'S threshold and
reaches a maximum value of 2.67 rad at k=0.31.
The new eigenphases, at the 2'P and 2'P thresh-
olds, start at n rad and decrease with increasing
k, which lowers the sum of eigenphases as k is
increased. A similar behavior for the 'D' ei-
genphases has been found in the close-coupling
calculation of Burke et al. '

Since these 'P' and 'D' resonances are rather
broad, and overlapped with new channels, and
since background eigenphases are not well deter-
mined, the search procedure" based on the use
of Eq. (13) in the variational method was not
successful in correctly predicting their positions.
We have, therefore, used the procedure followed
by Burke et al. ,

' who define the resonance posi-
tion as the energy where the sum of eigenphases
has increased by 2m rad relative to its value at
the 2'S threshold and determine its width from
the slope of the sum of the eigenphases at the
resonance position. We find the following param-
eters for the resonance p oisti ons(i)'P' E, =20.17
eV, 1'„=0.33 eV. (ii) 'D'E, =20.85 eV, F„=0.20
eV. Burke et al.' have estimated E„=20.2 eV,
I'„=0.4 eV for the 'P' resonance and E„=21.0
eV, I'„=0.5 eV for the '&' resonance.

These resonances are caused by the dipole-

FIG. 1. Sum of eigenphases for 9, P, and D scat-
tering vs k, the magnitude of the electron momentum re-
lative to the 2 3S threshold.

coupling between the 2 S and 2'P states of He,
which are separated by approximately 1.2 eV, and

by a similar nondegenerate dipole -coupling be-
tween the 2'S and 2'P states. As expected, no
shape resonances were found in s-wave scattering,
since the s-wave potential has no centrifugal
barrier to support a shape resonance. However,
as is clear from Fig. 1, the sum of 'S' eigen-
phases rises abruptly for k values slightly above
the 2 'S threshold. This is due to a rapid rise of
the 'S' eigenphase starting at the 2'S threshold,
in agreement with the close -coupling calculation
of Burke et al.' Burke et al. reason that this be-
havior of the 'S' eigenphase at the 2'S threshold
indicates a virtual state below the threshold, de-
fined by a pole in the S matrix. The rapid rise of
the 'S' eigenphase sum by nearly 5.7 rad below
the 33S threshold is due to the existence of
Feshbach resonances and will be considered in
Sec. IVB.

Also apparent from Fig. 1 is the discontinuity
in the slope of the 'P' eigenphase sum in passing
through the 2'P threshold. We also find a similar
but less pronounced behavior at the 2 'P threshold,
which is not visible on the scale used in Fig. 1.
These structures are consistent with the findings
of Bardsley and Nesbet, '4 who studied the thresh-
old behavior of cross sections for the case of
long-range potentials. According to Bardsley
and Nesbet, a cusp or a point of inflection, asso-
ciated with infinite slope in the cross sections
below and above an excitation threshold, can
appear if the scattered electron has zero angular
momentum. In the present problem, such struc-
tural features can occur at the 2 S and 2'S thresh-
olds only for s-wave scattering, and at 2 P and
2 'P thresholds only for P-wave scattering.

B. Feshbach Resonances

In contrast with the n =2 states, n = 3 states are
more closely spaced. The degeneracy between
the 3'S and 3'P states is broken by a separation
of =0.3 eV, while the energy interval between the
3 'S and 3'P states is =0.2 eV, and the 3D states
are effectively degenerate. This situation of
n= 3 states corresponds closely with the corre-
sponding degenerate situation for H. As a result
we find several Feshbach resonances below the
3'S excitation threshold.

In scanning these Feshbach resonances, we
have allowed only the channels corresponding to
atomic states 1'S, 2 S, and 2'S to be open. This
is dictated by the relative ease in computations
and by the fact that the limited basis of Table I
is found to be inadequate when all physical chan-
nels are open. A further rationale for this pro-
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FIG. 4. P' eigenphases and their sum in the vicinity
of a Feshbach resonance. k is the magnitude of electron
momentum relative to the 2 3S threshold.

scattering with only a 2'S open channel produced
a resonance at 22.56 eV having a width of 0.01 eV.
To our knowledge, these quartet resonances have
not yet been experimentally observed.

C. Cross Sections for Scattering from the Ground

State

The scattering of electrons by He in the energy re-
gion 19.82 to =20.7 eV is characterized by the complex
resonant structure due to the resonances described
in Secs. IV A and IV B and by the appearance of
new channels that open up at the various n =2
thresholds. In Fig. 5, we present the cross sec-
tions of excitation of the 2'S state from the ground
state. Also shown are the experimental cross
sections measured by Brongersma et al. ' and the
results of the five -state close -coupling calcula-
tion. ' Our computed cross sections have the same
general features as the measured cross sections
but the absolute value of the experimental cross
sections are somewhat smaller than our cross
sections. This discrepancy may not be very
serious since the experimental cross sections
have been normalized using the value 4.0@10 "
cm' (+3(Pg) for the 'P' resonance peak. In the
closecoupling calculations the s-wave contribution
to the cross section for 1'S -2'S transition is
larger than resonant P-wave contribution, and to
obtain reasonable agreement with the experimen-
tal cross sections, only 1(P& of the s-wave con-
tribution is included in the total cross sections
shown in Fig. 5.' The s-wave partial cross sec-
tions for other excitations, included in total cross
sections shown in Figs. 7 and 9, were scaled down
in a similar manner. ' All three sets of results in
Fig. 5 showpeaks at =20.2 and =21.0 eV correspond-
ing to the P' and D' shape resonances. The
experimental cross sections exhibit another small

4 0
E
U

3.0—
C)

2.0—
0

I.O —
I

$2"$2"P 3 $
II I

20.0 21.0 22.0 23.0
I

24.0 25.0

but well defined peak at =22.6 eV, which is most
probably due to the combined effect of several
resonances below and above the 3'S threshold.
The Feshbach resonances below the 3'S threshold
in our calculation produce a relatively bigger peak
at =22.45 eV. Figure 6 contains the curves show-
ing the computed spectra for excitation of the 2'S
state at three different angles of 10', 30', and 90'.
Our calculations are successful in producing the
major features present in the experimental re-
sults, ' viz, the structures associated with the
shape resonances and Feshbach resonances.

The cross sections for the 1'S -2'S transition
are given in Fig. 7. In absolute magnitudes, the
experimental cross sections are significantly
smaller than the theoretical estimates of the pres-
ent calculation and those of the close-coupling
calculation. Our results show considerable struc-
ture between =20.6- and =22.0- eV electron ener-
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FIG. 6. Spectra for excitation of 23$.
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FIG. 5. 1 $-23S excitation cross sections. The un-
certainty in the absolute value of the experimental cross
section at the P peak is also sho~.
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gies. The rapid increase in our cross sections
up to =21.0 eV is due to the contribution from
'D'resonance, superimposed on a larger contri-
bution from 'P' scattering which has a cusp at
the 2'P threshold. As stated in Sec. IV A, cusps
in the cross sections at the 2'P and 2 'P excitation
thresholds can appear only for P-wave scattering.
An example of such a behavior is given in Fig. 8,
where we plot, on a fine energy grid, the P cross
sections for inelastic scattering from the ground
state to the 2'S and 2'S states. At the 2'P thresh-

ld find a cusp in the cross sections for 1'S—o, we n
r 1'S-23S2'S excitation and an inverted cusp for 1 S—

excitation, because in the latter case the slope of
the cross sections below the threshold is negative.

cross sections at the 2'P threshold. The corre-
sponding structure for the 1'S -2'S transition
is not shown in Fig. 8, since it is much less pro-
nounced and is not well determined in our cal-
culations. Our computed cross sections for the
1'S -2 'S transition (Fig. 7) also exhibit the reso-
nant structure below the 3'S threshold. The cor-
responding structure in the experimental curve is
less prominent and once again represents the reso-
nant effects below and above the 3'S threshold.

The cross sections for excxtations o df 23P and
2'P states are shown in Fig. 9. Our computed
cross sections are in good general agreement with
the close -coupling results. As indicated earlier,
the cross sections of the close-coupling calcula-
tions include only 10% of the contribution from
s-wave scattering. If the s-wave partial cross
sections were fully included in the close-coupling

Electron Energy (eVj

FIG. 8. ~P' partial-wave cross sections in the neigh-
borhood of 23P and 2 ~P thresholds.
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its the cross sections for the 1'S -2'P tran-
e 1'S -2'Psition would be larger than those for the

t ansition for electron energies exce g =edin =22.0
eV. Near the 3'S threshold, the effects of Fes-h-
bach resonances are obvious on our cross sections
in Fig. 9.

The cross sections for total scattering by the
ground state of He are given in Fig. 10. These
cross sections decrease with increasing electron
energy. However, the total cross sections of our
calculation are consistently larger than the exper-
imental cross section" by approximately 15%.
The corresponding cross sections of the close-
coupling calculation are also larger but are closer
to the experimental values. A detailed comparison
of our cross sections with those of the close-
coupling calculation shows that the differences lie
primarily in the elastic cross sections; our s-
wave and p-wave crosssections being consistently
larger. Our elastic crosssections are, however,
in better agreement with those of Callaway et a .,"
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The cross sections for elastic scattering from
the 2'P and 2 'P are shown in Fig. 13. The doublet
contribution to the 2'P elastic-scattering cross
sections in our computation are in good agreement
with the close -coupling results. For elastic
scattering from the 2'P state, our cross sections
are somewhat smaller than the close-coupling
results. However, both sets of calculations show
the general feature of decreasing values of cross-
sections with increasing electron energy.

The cross sections for excitations from the 2'S
state are given in Fig. 14. Wherever comparison
is possible, our cross sections are in reasonably
good agreement with the close -coupling results.
The peak in the cross section for 2'S -2'S excita-
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FIG. 12. Cross sections for elastic scattering from the
2 ~S state.

FIG. 14. Cross sections for inelastic scattering from
the 2'S state.

tion is due to 'P' resonance and that in the 2'S-
2'P is due to the &' resonance. The broad peak
in the quartet scattering cross sections for the
transition 2 S -2 'P is principally due to the P'
resonance below the O'S threshold. ThIe cross
sections for inelastic scattering from the 2 'S and
2'P states are given in Fig. 15. The two sets of
results for various transitions are in reasonable
agreement with each other. For the 2 'S -2 P
transition, our results for 'P scattering show
evidence of a cusp behavior, not explicitly shown
in Fig. 15, at the 2 'P threshold. At higher ener-
gies, our computed cross sections for this tran-
sition lie around the smooth curve shown in Fig.
15, the largest separation of a computed point
from the smooth curve being of the order of 3%.
All other curves in Fig. 15 are drawn through
actual computed points. This lack of convergence
of the cross sections for the 2 'S -2'P transition
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FIG. 13. Cross sections for elastic scattering from the
2'P and 2'P states.
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FIG. 15. Cross sections for inelastic scattering from
the 2~S and 23P states.
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and for the elastic scattering from the 2 'S state
(Fig. 12) is not surprising in view of the large
dipole polarizability of 2 'S state which has a value
pf 802ao is

V. CONCLUSIONS

We have computed approximate variational solu-
tions of Bethe-Goldstone continuum equations for
the scattering of electrons by He in the energy
region of excitation of n=2 states. By including
virtual excitation of the 2s electron in our calcu-
lations, we have not only included the dominant
dipole polarizabilities of the n=2 states but also
additional contributions to the dynamic energy-
dependent response of the target atom to the inci-
dent electron.

The calculations reported here have been able
to reproduce the 'P' and 'D'shape resonance,
observed earlier in several experiments' ' and
found in the close-coupling calculations of Burke
et a/. ' In absolute magnitudes, our cross sections
tend to be somewhat larger than measured values.
For example, our computed cross sections for
total scattering from the ground state are consis-
tently larger than the experimental cross sections
by approximately 15%. This discrepancy is due
in part to our definition of energies and k values
relative to the 2'S threshold, which effectively
displaces the 1'Selastic cross section by the
relative ground-state correlation energy, not
computed accurately here. Within the constraints
of the basis functions used, our calculations take
into account the dynamic response of the target
atom to the scattered electron and provide
ab initio theoretical estimates of the cross sec-
tions. The calculations of Burke et al.' include
an approximation for an exchange term. In spite
of this approximation, their cross sections for
scattering from n=2 states are in fairly good
agreement with our results and our calculations
confirm their contention that the major effect of
this approximation is the erroneous nature of their
s-wave scattering results for transitions from the
ground state to the n =2 states.

The principal new theoretical results of the
present work concern the computation of energies
and widths pf twp 'S', pne'P, pne P and D'
Feshbach resonances below the 3sS threshold. Be-
cause of the limited basis used here, we have not been

able to obtain convergence in this resonance region.
Therefore, except for the P' resonance, the
energies and widths of the Feshbach resonances
have been determined by excluding the open chan-
nels corresponding to the 2 'P and 2 iP thresholds.
The energies of the Feshbach resonances, so
computed, are not expected to be significantly
different from their actual positions, since in our
calculations the eigenvalues of the bound-bound
matrix responsible for the resonances are unaf-
fected by the number of channels allowed to open.
The widths, however, are likely to be more de-
pendent upon the approximation used. Evidence
for the existence of the doublet resonances has
been obtained in several experimental measure-
ments' and our computed resonance positions
are in good agreement with the experimental es-
timates of Pichanik and Simpson. ' The quartet
Feshbach resonances, predicted by our calcula-
tions, have not yet been experimentally observed.

The wave function used here for the electron-
atom system has well defined values of M~, M~,
and parity, but is a superposition of noninteract-
ing LS components. This is due to computational
convenience and there is no conceptual problem
in calculating physical cross sections associated
with an LS wave function. However, this pro-
cedure has restricted the size of the basis set
that can be used, since the sizes of the matrices
that occur in the calculations increase very
rapidly as the basis set is enlarged. The sizes
of the matrices can be kept reasonable by using
a symmetry-adapted w'ave function and the accura-
cy of the results can be improved by considering
larger basis sets.

The present method is most suitable for investi-
gating resonant phenomenon and other structures
in cross sections, such as the cusp behavior here
at the 2'P and 2 'P inelastic thresholds. Such
structures occur usually in low partial waves.
The contributions from higher partial waves,
expected to be significant at higher electron en-
ergies, can be obtained by using other methods
that are computationally simpler.
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