Variation-Perturbation Treatment of Scattering Problems. II. Inelastic and Rearrangement Processes*

Stephen K. Knudson[†]

Department of Chemistry, Queen's University, Kingston, Ontario, Canada

Bernard Kirtman

Department of Chemistry, University of California, Santa Barbara, California 93106 (Received 30 October 1972)

A variation-perturbation (VP) treatment of inelastic and rearrangement scattering processes is presented. We show that the first-order perturbation functions determine the scattering parameters through third order and develop a variation principle for the approximate calculation of these functions. It is seen how adjustable parameters in the zeroth-order potentials can be optimized separately for each scattering event by the Hulthèn variation condition, which yields a first-order function that is normalizable in the exit channel. We also propose that terms coupling different channels be included in the initial approximation. A comparison of the VP method with the usual distorted-wave Born series reveals certain practical advantages of the former, despite the formal similarity. Some of these advantages are illustrated in a sample calculation on a system characterized by a model inelastic potential.

I. INTRODUCTION

Recent experimental advances in the study of atomic and molecular collisions¹ and, especially, in electron-impact spectroscopy² have stimulated a number of attempts to generate quantitative methods for the calculation of scattering parameters. These include pseudoresonance variation methods,³ Green's-function techniques,⁴ semiclassical approaches,⁵ an exponential form of first-order perturbation theory,⁶ and others.⁷ We have begun to formulate a variation-perturbation (VP) treatment of scattering problems so as to utilize some of the promising new developments⁸ for bound states such as pair-function expansions⁹ and exchange perturbation theories.¹⁰ Our first paper¹¹ dealt with potential scattering. Here, we extend the formalism to inelastic and rearrangement processes. In doing so the most significant features of I are preserved, i.e., (i) there exists a variation condition for the first-order perturbation function $(\Psi^{(1)})$ which, in turn, determines the scattering amplitude through third order, and (ii) the unperturbed potential may contain adjustable parameters to be optimized by means of an appropriate Hulthèn¹² condition. As a consequence of this condition the first-order transition amplitude vanishes and $\Psi^{(1)}$ is normalizable in the corresponding exit channel. One new feature in our treatment of inelastic processes is the addition of terms to the zeroth-order model which couple different channels in cases where this coupling is important.

After a brief outline of the definitions and notations used in multichannel scattering theory, we derive the variation-perturbation method in Sec. III. Section IV—on optimization of the initial approximation by Hulthèn's method—completes the presentation of the VP formalism. In Sec.V the relationship of our treatment to the conventional distorted-wave Born series¹³ (DWBS) is analyzed. We conclude with sample calculations for a model inelastic system. The VP reactance matrix elements, which appear to converge in each instance, compare quite favorably with those obtained from a conventional third-order DWBS. In fact, the former are accurate to 5% or less except in one case where the initial approximation is clearly inappropriate.

II. DEFINITIONS AND NOTATION

The Hamiltonian for a system of two fragments referred to a stationary over-all center of mass in an arrangement channel α may be written, in atomic units, as

$$H = H_{\alpha}(\vec{\mathbf{r}}_{\alpha}, \vec{\mathbf{r}}) + V_{\alpha}(\vec{\mathbf{r}}_{\alpha}, \vec{\mathbf{r}})$$
$$= -\frac{1}{2\mu_{\alpha}} \nabla_{\alpha}^{2} + h_{\alpha}(\vec{\mathbf{r}}) + V_{\alpha}(\vec{\mathbf{r}}_{\alpha}, \vec{\mathbf{r}}) , \qquad (1)$$

where $\vec{\mathbf{r}}_{\alpha}$ is the vector connecting the two individual centers of mass and $\vec{\mathbf{r}}$ designates the entire set of internal coordinates. Here $-(1/2\mu_{\alpha})\nabla_{\alpha}^{2}$ is the relative kinetic energy of the fragments, V_{α} is the potential between these fragments, and h_{α} is the Hamiltonian for internal motions. We shall assume that $r_{\alpha}V_{\alpha}$ tends to zero in the asymptotic limit when $r_{\alpha} \rightarrow \infty$ and symbolize this by $r_{\alpha}V_{\alpha} \neq 0$. The internal Hamiltonian is a sum of two terms,

8

one for each of the isolated fragments. Its eigenfunctions are, therefore, simple products that satisfy the Schrödinger relation

$$(h_{\alpha} - \epsilon_{\alpha i})\varphi_{\alpha i}(\mathbf{\bar{r}}) = 0, \qquad (2)$$

in which i denotes the total internal state. In the asymptotic limit

$$\langle \varphi_{\alpha i} | \varphi_{\alpha j} \rangle \rightarrow \delta_{ij}$$
 (3)

The solution of the complete Schrödinger equation

$$(H - E^{(0)})\Psi_{\alpha d}^{\pm} = 0 \tag{4a}$$

is subject to the boundary conditions (BC)¹²

$$\Psi_{\alpha i}^{\pm} \xrightarrow{\sum}_{m} \left[e^{i \vec{k}_{\beta m} \cdot \vec{r}_{\beta}} \delta_{\alpha \beta} \delta_{i m} + r_{\beta}^{-1} f_{\beta m, \alpha i}^{\pm} (\vec{r}_{\beta}) e^{\pm i k_{\beta m} r_{\beta}} \right] \varphi_{\beta m} (\vec{r}) , \quad (4b)$$

where + (-) indicates that just outgoing (incoming) radial waves are allowed and \vec{k}_{gm} is the relative momentum vector. In Eq. (4b) the sum over mincludes only open channels for which

$$k_{\beta m}^2 = 2\mu_{\beta}(E^{(0)} - \epsilon_{\beta m}) \ge 0 \quad . \tag{5}$$

The quantity $f_{\beta m, \alpha i}^{*}(\mathbf{\tilde{r}}_{\beta})$ is the outward scattering amplitude in the direction $\mathbf{\tilde{r}}_{\beta}$ for transitions from the entrance channel αi to the exit channel βm . And, finally, the corresponding experimentally observable differential cross section is

$$\sigma_{\beta m, \alpha i}(\vec{\mathbf{r}}_{\beta}) = \left(\frac{\mu_{\alpha}}{\mu_{\beta}}\right) \left(\frac{k_{\beta m}}{k_{\alpha i}}\right) \left|f_{\beta m, \alpha i}^{*}(\vec{\mathbf{r}}_{\beta})\right|^{2} .$$
(6)

III. VARIATION-PERTURBATION METHOD

We shall now derive expressions for the scattering amplitudes through third order in terms of the initial approximation and the first-order perturbation functions. This initial approximation satisfies the Schrödinger equation

$$(H_{\alpha}^{(0)} - E^{(0)})\Psi_{\alpha i}^{\pm (0)} = \left[-(1/2\mu_{\alpha})\nabla_{\alpha}^{2} + h_{\alpha} + V_{\alpha}^{0} - E^{(0)}\right]\Psi_{\alpha i}^{\pm (0)} = 0 , \quad (7a)$$

with the boundary conditions

$$\Psi_{\alpha i}^{\pm(0)} \xrightarrow{\beta} \sum_{m} \left[e^{i k}{}_{\beta m}^{* r_{\beta}} \delta_{\alpha \beta} \delta_{i m} + r_{\beta}^{-1} f_{\beta m, \alpha i}^{\pm(0)} (\mathbf{\tilde{r}}_{\beta}) e^{\pm i k_{\beta m} r_{\beta}} \right] \varphi_{\beta m} (\mathbf{\tilde{r}}) .$$
(7b)

For convenience in comparing with the DWBS, $\varphi_{\beta m}$ is taken to be an exact internal eigenfunction of h_{β} . However, the treatment may be amended to accommodate an approximate eigenfunction as well. Note that the solution of Eqs. (7) yields the zeroth-order scattering amplitudes $f_{\beta m}^{\pm (0)}(\tilde{r}_{\beta})$.

As usual, we consider the Schrödinger equation

297

$$(H^{0}_{\alpha} + \lambda V^{(1)}_{\alpha} - E^{(0)})\Psi^{\pm}_{\alpha i}(\lambda) = 0 , \qquad (8)$$

where $V_{\alpha}^{(1)}$ is defined as

$$V_{\alpha}^{(1)} \equiv V_{\alpha} - V_{\alpha}^{(0)} , \qquad (9)$$

so that the desired wave function [cf. Eq. (4a)] is obtained when $\lambda = 1$. If $\Psi_{\alpha i}^{\pm (0)}$ is a sufficiently accurate initial approximation, then the exact solution of Eq. (8) can be expanded in a convergent power series:

$$\Psi^{\pm}_{\alpha i}(\lambda) = \sum_{p} \lambda^{p} \Psi^{\pm (p)}_{\alpha i}$$
(10)

for $0 \le \lambda \le 1$. There is, of course, a corresponding expansion

$$f^{\pm}_{\beta m, \alpha i}(\lambda; \vec{\mathbf{r}}_{\beta}) = \sum_{p} \lambda^{p} f^{\pm(p)}_{\beta m, \alpha i}(\vec{\mathbf{r}}_{\beta})$$
(11)

for the scattering amplitude. Substituting the expression (10) into the Schrödinger relation (8), and equating like powers of λ , we obtain the perturbation equations

$$(H_{\alpha}^{(0)} - E^{(0)})\Psi_{\alpha i}^{\pm (0)} = 0$$
 (12a)

and

$$(H_{\alpha}^{(0)} - E^{(0)})\Psi_{\alpha i}^{\pm(p)} + V_{\alpha}^{(1)}\Psi_{\alpha i}^{\pm(p-1)} = 0 \quad (p > 0) . \quad (12b)$$

In a similar manner, the boundary conditions on $\Psi_{ai}^{\pm(p)}$ are found using Eqs. (11) and (4b) to give

$$\Psi_{\alpha i}^{\pm(p)} \xrightarrow{\beta} \sum_{m} \left[e^{i \vec{k}_{\beta m} \cdot \vec{r}_{\beta}} \delta_{\alpha \beta} \delta_{im} \delta_{p0} + r_{\beta}^{-1} f_{\beta m, \alpha i}^{\pm(p)} (\vec{r}_{\beta}) e^{\pm i k_{\beta m} r_{\beta}} \right] \varphi_{\beta m}(\vec{r}) . (13)$$

In order to determine the perturbation corrections to the outward scattering amplitudes we insist that

$$\left\langle \Psi_{\beta m}^{-} \right| H - E^{(0)} \left| \Psi_{\alpha i}^{+} \right\rangle = 0 \tag{14}$$

to all orders. For inelastic scattering without rearrangement the procedure is straightforward. When there is rearrangement an ambiguity in the definition or orders arises because H may be partitioned either as $H_{\alpha}^{(0)} + V_{\alpha}^{(1)}$ or $H_{\beta}^{(0)} + V_{\beta}^{(1)}$. Exactly the same type of ambiguity occurs in electron-exchange perturbation theories, ¹⁰ so we can take advantage of the lore that has been developed for the latter problem. The particular approach that will be followed here is that of the so-called distinguishable electron method (DEM).¹⁴ First, let us note that Eqs. (8)-(13) are applicable with α replaced by β everywhere. Of course, there really should be two independent ordering parameters- λ_{α} and λ_{β} —but these will be restricted to the values $\lambda_{\alpha} = \lambda_{\beta} = \lambda$. The DEM partitioning convention is then quite simple-as far as the matrix element $\begin{array}{l} \langle \Psi_{\beta m}^{-(p)} | H - E^{(0)} | \Psi_{\alpha i}^{+(q)} \rangle \text{ is concerned the } (p+q) \text{th-or-} \\ \text{der term will be } \langle \Psi_{\beta m}^{-(p)} | H_{\alpha}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(q)} \rangle \text{ if } q \leq p \end{array}$ and $\langle \Psi_{\beta m}^{-(p)} | H_{\beta}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(q)} \rangle$ otherwise. This convention appears to be the only one¹⁵ that allows the second-order perturbation functions to be eliminated from the formula for the third-order scattering amplitude. Furthermore, the total amplitude through third order (or first order) then satisfies the reciprocity relation (see Appendix A) required for the exact result. Despite this evidence the ultimate test of our definition of orders will be the success or failure of calculations carried out on this basis for a sufficient number of cases.¹⁶

In first order the condition (14) becomes

$$\left\langle \Psi_{\beta m}^{-(0)} \middle| H_{\beta}^{(0)} - E^{(0)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle + \left\langle \Psi_{\beta m}^{-(0)} \middle| V_{\alpha}^{(1)} \middle| \Psi_{\alpha i}^{+(0)} \right\rangle = 0 .$$
(15)

The first term $-\langle \Psi_{\beta m}^{(0)} | H_{\beta}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{(1)} \rangle$ —is easily evaluated by means of Green's theorem using the asymptotic forms (13). Messiah¹⁷ has discussed such integrations in detail so we give only the result here, i.e.,

$$\langle \Psi_{\beta m}^{-(0)} | H_{\beta}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(1)} \rangle = (2\pi/\mu_{\beta}) f_{\beta m, \alpha i}^{+(1)}(\mathbf{\bar{r}}_{\beta}) .$$
(16)

Thus, the first-order outward-scattering amplitude is

$$f_{\beta m, \alpha i}^{+(1)}(\mathbf{\bar{r}}_{\beta}) = -(\mu_{\beta}/2\pi) \langle \Psi_{\beta m}^{-(0)} | V_{\alpha}^{(1)} | \Psi_{\alpha i}^{+(0)} \rangle .$$
(17a)

Completely analogous manipulations lead to the higher-order amplitudes

$$f_{\beta m, \alpha i}^{+(2)}(\vec{\mathbf{r}}_{\beta}) = -(\mu_{\beta}/2\pi) \left(\left\langle \Psi_{\beta m}^{-(1)} \middle| H_{\alpha}^{(0)} - E^{(0)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle + \left\langle \Psi_{\beta m}^{-(1)} \middle| V_{\alpha}^{(1)} \middle| \Psi_{\alpha i}^{+(0)} \right\rangle + \left\langle \Psi_{\beta m}^{-(0)} \middle| V_{\beta}^{(1)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle \right)$$
$$= -(\mu_{\beta}/2\pi) \left\langle \Psi_{\beta m}^{-(0)} \middle| V_{\beta}^{(1)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle$$
(17b)

and

$$\begin{split} f_{\beta m, \alpha i}^{+(3)}(\mathbf{\tilde{r}}_{\beta}) &= -\left(\mu_{\beta} / 2\pi\right) \left(\langle \Psi_{\beta m}^{-(2)} \middle| H_{\alpha}^{(0)} - E^{(0)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle \\ &+ \left\langle \Psi_{\beta m}^{-(2)} \middle| V_{\alpha}^{(1)} \middle| \Psi_{\alpha i}^{+(0)} \right\rangle + \left\langle \Psi_{\beta m}^{-(1)} \middle| H_{\beta}^{(0)} - E^{(0)} \middle| \Psi_{\alpha i}^{+(2)} \right\rangle \\ &+ \left\langle \Psi_{\beta m}^{-(0)} \middle| V_{\beta}^{(1)} \middle| \Psi_{\alpha i}^{+(2)} \right\rangle + \left\langle \Psi_{\beta m}^{-(1)} \middle| V_{\alpha}^{(1)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle) \\ &= - \left(\mu_{\beta} / 2\pi\right) \left\langle \Psi_{\beta m}^{-(1)} \middle| V_{\alpha}^{(1)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle . \tag{17c}$$

In order to simplify these formulas as we have done it is necessary to invoke Eq. (12b) with p = 1so that

$$\langle \Psi_{\beta m}^{-(q)} | H_{\alpha}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(1)} \rangle + \langle \Psi_{\beta m}^{-(q)} | V_{\alpha}^{(1)} | \Psi_{\alpha i}^{+(0)} \rangle = 0$$
(18)

for q = 1 and 2. Furthermore, since the perturbation functions contain no plane-wave component,

$$\langle \Psi_{\beta m}^{-(1)} | H_{\beta}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(2)} \rangle = \langle \Psi_{\alpha i}^{+(2)} | H_{\beta}^{(0)} - E^{(0)} | \Psi_{\beta m}^{-(1)} \rangle^* .$$
(19a)

And, since $V_{\beta}^{(1)}$ is assumed to be real, it also follows from Eq. (12b) (for the state βm) that

$$\left\langle \Psi_{\beta m}^{-(1)} \right| H_{\beta}^{(0)} - E^{(0)} \left| \Psi_{\alpha i}^{+(2)} \right\rangle + \left\langle \Psi_{\beta m}^{-(0)} \right| V_{\beta}^{(1)} \left| \Psi_{\alpha i}^{+(2)} \right\rangle = 0 .$$
(19b)

Equations (17) give the scattering amplitudes through third order in terms of the first-order perturbation functions. The latter, in turn, can be approximated through a stationary variation condition, as we now show. Consider the quantity $\tilde{J}_{\alpha i}^{*(2)}$ defined as

$$\begin{split} \tilde{J}_{\alpha i}^{\,+(2)} &\equiv \langle \tilde{\Psi}_{\alpha i}^{\,+(1)} \, \big| \, H_{\alpha}^{(0)} - E^{(0)} \, \big| \tilde{\Psi}_{\alpha i}^{\,+(1)} \rangle + \langle \tilde{\Psi}_{\alpha i}^{\,+(1)} \, \big| \, V_{\alpha}^{(1)} \, \big| \, \Psi_{\alpha i}^{\,+(0)} \, \rangle \\ &+ \langle \Psi_{\alpha i}^{\,+(0)} \, \big| \, V_{\alpha}^{(1)} \, \big| \, \tilde{\Psi}_{\alpha i}^{\,+(1)} \, \rangle \,, \quad (20a) \end{split}$$

where $\tilde{\Psi}^{*(1)}_{\alpha i}$ is an arbitrary function obeying the boundary conditions

$$\tilde{\Psi}_{\alpha i}^{+(1)} \xrightarrow{}_{\beta} \sum_{m} \mathcal{F}_{\beta}^{-1} f_{\beta m, \alpha i}^{+(1)}(\mathbf{\bar{F}}_{\beta}) e^{i k_{\beta} m^{\mathbf{r}_{\beta}}} \varphi_{\beta m}(\mathbf{\bar{F}})$$
(20b)

and $f_{\beta m, \alpha i}^{*(1)}$ is calculated from the zeroth-order wave functions. If

$$\tilde{\Psi}_{\alpha i}^{+(1)} = \Psi_{\alpha i}^{+(1)} + \delta \Psi_{\alpha i}^{+(1)} , \qquad (21)$$

with $\Psi_{\alpha i}^{(1)}$ being the exact first-order function, then the first-order change in $\tilde{J}_{\alpha i}^{(2)}$ due to $\delta \Psi_{\alpha i}^{(1)}$ is

$$\begin{split} \left\langle \delta \Psi_{\alpha i}^{+(1)} \right| \left(H_{\alpha}^{(0)} - E^{(0)} \right) \Psi_{\alpha i}^{+(1)} + V_{\alpha}^{(1)} \Psi_{\alpha i}^{+(0)} \right\rangle \\ + \left\langle \Psi_{\alpha i}^{+(0)} V_{\alpha}^{(1)} + \Psi_{\alpha i}^{+(1)} (H_{\alpha}^{(0)} - E^{(0)}) \right| \delta \Psi_{\alpha i}^{+(1)} \right\rangle, \end{split}$$

which vanishes by virtue of the same arguments used in connection with Eqs. (19). Therefore, $\tilde{J}_{\alpha i}^{+(2)}$ is stationary with respect to small variations about the exact value $J_{\alpha i}^{+(2)}$, and this condition may be used to optimize parameters in a variational approximation to $\Psi_{\alpha i}^{+(1)}$. This is the continuum analog of Hylleraas's familiar procedure for bound states. There is, of course, a corresponding condition for $\Psi_{gm}^{-(1)}$.

IV. OPTIMIZATION OF INITIAL APPROXIMATION

The selection of the initial scattering potentials $V_{\alpha}^{(0)}$ is governed by two criteria: (i) that exact solutions of the resulting zeroth-order Schrödinger equations are available; (ii) that $V^{(0)}_{\alpha}$ approximates V_{α} closely enough to give scattering amplitudes through third order as accurately as desired. To satisfy these conditions, we employ initial potentials which depend upon a number of adjustable parameters and, in general, support multichannel scattering. A variety of methods are available by means of which optimum values of the parameters may be chosen. We prefer the Hulthèn variation $condition^{12}$ because the first-order perturbation function is then normalizable in the exit channel of interest. The derivation of this condition-given here for the sake of completeness-is very similar to the derivation at the end of Sec. III. This time,

(24a)

the pertinent functional is

$$\tilde{J}_{\beta m, \alpha i} = \langle \tilde{\Psi}_{\beta m}^{-} | H - E^{(0)} | \tilde{\Psi}_{\alpha i}^{+} \rangle , \qquad (22)$$

with

$$\tilde{\Psi}^{*}_{\alpha i} = \Psi^{*}_{\alpha i} + \delta \Psi^{*}_{\alpha i} , \quad \tilde{\Psi}^{-}_{\beta m} = \Psi^{-}_{\beta m} + \delta \Psi^{-}_{\beta m} .$$
⁽²³⁾

Since the asymptotic plane-wave term in $\tilde{\Psi}^*_{\alpha i}$ (and $\tilde{\Psi}^*_{\beta m}$) is exact, $\delta \Psi^*_{\alpha i}$ must satisfy the boundary condition

$$\delta \Psi_{\alpha i \gamma}^* \xrightarrow{\sum}_{n} r_{\gamma}^{-1} \delta f_{\gamma n, \alpha i}^* (\mathbf{\bar{r}}_{\gamma n}) e^{i k \gamma n^{\mathbf{r}} \gamma} \varphi_{\gamma n} (\mathbf{\bar{r}}) \quad (\text{all } \gamma) ,$$

in which

$$\delta f_{\gamma n, \alpha i}^{+}(\mathbf{\bar{r}}_{\gamma}) = \tilde{f}_{\gamma n, \alpha i}^{+}(\mathbf{\bar{r}}_{\gamma}) - f_{\gamma n, \alpha i}^{+}(\mathbf{\bar{r}}_{\gamma}) . \qquad (24b)$$

With the aid of Eqs. (23) and (24) the first-order variation in $\tilde{J}_{\theta m, \alpha i}$ is easily evaluated as

$$\delta \tilde{J}_{\beta m, \alpha i} = -\left(2\pi/\mu_{\beta}\right) \delta f^{+}_{\beta m, \alpha i}(\tilde{\mathbf{r}}_{\beta}), \qquad (25)$$

leading to the variation condition

$$\delta \bar{J}_{\beta m, \alpha i} = 0 = \delta f^{+}_{\beta m, \alpha i}; \qquad (26a)$$

$$\bar{J}_{\beta m, \alpha i} = 0 \quad . \tag{26b}$$

If the variation functions depend upon the set of adjustable parameters a_k , then (26a) can be rewritten in the more convenient form

$$\frac{\partial \tilde{J}_{\beta m,\alpha i}}{\partial a_{k}} - \frac{\partial \tilde{J}_{\beta m,\alpha i}}{\partial a_{1}} \left(\frac{\partial \tilde{f}_{\beta m,\alpha i}}{\partial a_{1}} \right)^{-1} \frac{\partial \tilde{f}_{\beta m,\alpha i}}{\partial a_{k}} = 0 \quad (\text{all } k \neq 1) ,$$
(27)

where a_1 is chosen so that $\partial \tilde{f}_{\beta m, \alpha i} / \partial a_1 \neq 0$. Finally, in order to carry out the perturbation treatment, the wave functions $\tilde{\Psi}^*_{\alpha i} (\tilde{\Psi}^*_{\beta m})$ are restricted in form to be eigenfunctions of some convenient zerothorder Hamiltonian $\tilde{H}^{(0)}_{\alpha} (\tilde{H}^{(0)}_{\beta})$. Thus Eqs. (26b) and (27), with

$$\tilde{J}_{\beta m, \alpha i} = \langle \tilde{\Psi}_{\beta m}^{-} | \tilde{V}_{\alpha}^{(1)} | \tilde{\Psi}_{\alpha i}^{+} \rangle , \qquad (28)$$

provide a set of nonlinear algebraic relations for determining the optimum a_k . The resultant wave functions and corresponding potentials constitute the initial approximation. A comparison of Eqs. (28) and (26b) with (17a) shows that, by making this choice, the first-order perturbation correction to the transition amplitude vanishes. This means that the first-order wave function is normalizable in the corresponding exit channel. Of course, a separate Hulthên calculation can be carried out for each inelastic-scattering event or, for simplicity, some potentials may be transferred from one event to another.

V. COMPARISON WITH THE DISTORTED-WAVE BORN SERIES

Formally, the terms in the DWBS for the scattering amplitude are identical to those of the variation-perturbation method. There is one exception to this statement—namely, that we have resolved the ambiguity in defining orders for rearrangement processes. But the major differences lie in the practical application of the two methods. Let us begin by discussing the initial approximation which yields the scattering amplitudes through first order. In contrast to the VP treatment this is, normally, the terminal point¹⁸ of the DWBS. Furthermore, distorted-wave calculations typically¹⁸ employ a zeroth-order potential that makes no distinction between elastic and inelastic scattering. We propose instead to include terms that specifically couple the initial and final states. An illustration will be given in Sec. VI.

The most significant advantages of the VP method, however, are connected with the variational computation of the first-order perturbed wave functions. Our approach will, hopefully, be much easier to carry out than the usual DWBS expansion. In electron scattering, for example, we can employ the same convenient decomposition into pair functions⁹ which, together with the introduction of interelectronic coordinates, has proved advantageous¹⁹ for ordinary bound-state problems. Furthermore, the electron exchange may be simply treated using one of the new exchange perturbation theories¹⁰ such as the *distinguishable electron* method.¹⁴ Further details on these techniques will be saved for future papers in the series. Let us just observe here that, until now, the difficulties in determining second- and higher-order terms in the DWBS have been virtually prohibitive. And, as we shall see, these terms can be quite important.

VI. AN EXAMPLE: HUCK-TYPE EXPONENTIAL POTENTIAL

In order to illustrate the VP method for an inelastic problem (without rearrangement) we have undertaken calculations on a model system characterized by the Hamiltonian

$$H = -\frac{1}{2\mu} \frac{d^2}{dr^2} + h - Ae^{-br} (\hat{P}_{01} + \hat{P}_{10}), \qquad (29)$$

where $\hat{P}_{ij} = |\varphi_i\rangle\langle\varphi_j|$ and the notation of previous sections remains unchanged (except for suppression of the channel index, i.e., $r_{\alpha} \rightarrow r$, $h_{\alpha} \rightarrow h$). We approximate the model potential in Eq. (29) by Huck's²⁰ inelastic spherical well

Both $V^{(0)}$ and V were chosen because the exact²¹ eigenfunctions are readily obtained. But the use-fulness of $V^{(0)}$ as an initial approximation for more complex problems such as atomic excitation by

electron impact, 22 the linear atom-harmonic oscillator system, 23 etc., should also be obvious. Note that the elastic-scattering potential is zero in both cases.

It is convenient at this point to switch from transition amplitudes to the reactance, or <u>R</u>, matrix. This involves no alteration of the method; it is accomplished merely by changing the arbitrary asymptotic boundary condition (4b) which, in the present instance, becomes²⁴

$$\Psi_i(r) \to \sum_m k_m^{-1/2} (\delta_{im} \sin k_m r + R_{mi} \cos k_m r) \varphi_m. \quad (31)$$

The reason for this conversion is that recent evidence²⁵ indicates that probability-conserving formalisms are likely to give improved scattering parameters. Using the new boundary conditions in the derivation leading to Eq. (17) we find

$$R_{mi}^{(1)} = -2\mu \left\langle \Psi_m^{(0)} \middle| V^{(1)} \middle| \Psi_i^{(0)} \right\rangle, \qquad (32a)$$

$$R_{mi}^{(2)} = -2\mu \left\langle \Psi_m^{(0)} \middle| V^{(1)} \middle| \Psi_i^{(1)} \right\rangle, \qquad (32b)$$

and

$$R_{mi}^{(3)} = -2\mu \langle \Psi_m^{(1)} | V^{(1)} | \Psi_i^{(1)} \rangle.$$
 (32c)

To determine the zeroth-, first-order, and exact wave functions for i = 0 and 1, we begin with the expansion

$$\Psi_{i}(r) = X_{0i}(r)\varphi_{0} + X_{1i}(r)\varphi_{1} \quad (i = 0, 1).$$
(33)

Then, multiplication of the appropriate Schrödinger (or Rayleigh-Schrödinger) relation on the left by $\langle \varphi_0 |$, and by $\langle \varphi_1 |$, yields a pair of coupled secondorder differential equations. The latter are derived and solved in Appendix B. Analytical solutions are obtained for the perturbation functions and numerical solutions for the model potential.

The <u>R</u> matrix elements reported in Table I were calculated²⁶ from Eqs. (32) for various values of b with $\mu = 1$, $k_0 = 1$, $k_1 = \frac{1}{2}$, and A = 1. Optimum values of the initial parameters D and r_0 were determined by the Hulthèn conditions on \tilde{J}_{01} , as given by Eqs. (26b) and (27) with f replaced by <u>R</u>. The solution of these nonlinear equations, which we found by Newton-Raphson techniques, is not necessarily unique. In fact, near and below b = 1 a second solution appears. Since the original series for R_{00} seems to diverge, ²⁷ i.e., $|R_{00}^{(3)}| > |R_{00}^{(2)}|$, we switch to the new solution. This explains the sharp change in D and r_0 at $b = \frac{4}{5}$. Finally, the transition probability P is given by²⁸

$$P = \left\{ \left[\left(\underline{\mathbf{R}}^{2} + \underline{1}\right)^{-1} \left(\underline{\mathbf{R}}^{2} - \underline{1}\right) \right]_{01} \right\}^{2} + 4 \left\{ \left[\left(\underline{\mathbf{R}}^{2} + \underline{1}\right)^{-1} \underline{\mathbf{R}} \right]_{01} \right\}^{2}.$$
(34)

For simplicity,²⁹ the same initial approximation was used to obtain all three matrix elements ($R_{10} = R_{01}$ by symmetry, as shown in Appendix A). It turns out that the elastic elements R_{00} and R_{11} are nearly as accurate as the inelastic element R_{01} for which the system was optimized.

The perturbation expansion of each matrix element is convergent, in the sense that $|R_{ij}^{(3)}| < |R_{ij}^{(2)}|$, for all values of the range parameter $b \ge \frac{2}{3}$. This convergence, and the accuracy through third order as well, are quite remarkable considering how poor an initial approximation we have in the case of the smaller b's. Except for R_{01} at $b = \frac{2}{3}$ all the VP matrix elements lie within 5% of the exact result. In fact, the magnitude of the error appears to be given approximately by

$$\Delta \sim \frac{1}{2} \left| \left(R_{i,i}^{(3)} \right)^2 / R_{i,i}^{(2)} \right| \,. \tag{35}$$

It is interesting to note that the transition probability and each VP matrix element are algebraically smaller than the exact result. This suggests that a rigorous bounding principle may exist.

For comparison, we also evaluated the ordinary Born series through third order. This is the equivalent of a typical DWBS calculation since there are no elastic terms in the model potential. In every instance the values are worse than those of the VP method, ³⁰ with the differences becoming dramatic below b = 1, which is the onset of strong inelastic coupling.

We are encouraged by the results of these calculations. However, a model system is not the real thing and, of course, the VP method has not been tested for rearrangement processes as yet. As indicated earlier, we plan to further develop the treatment in applications to inelastic electron scattering and to vibration-rotation-translation energy transfer as well.

ACKNOWLEDGMENT

S. K. K. thanks Professor Neil S. Snider for his generous encouragement and support of this research.

APPENDIX A

Here we prove that the VP scattering amplitudes through first and through third order satisfy the reciprocity relation

$$(\mu_{\beta})^{-1}f^{*}_{\beta m,\alpha i}(\mathbf{\dot{r}}_{\beta}) = (\mu_{\alpha})^{-1}f^{-}_{\alpha i,\beta m}(-\mathbf{\dot{r}}_{\alpha}), \qquad (A1)$$

as required for the exact result. In order to do so, it is necessary to have the VP amplitude formulas for the incoming waves. The latter are obtained by starting with the condition

$$\left\langle \Psi_{\alpha i}^{*} \middle| H - E^{(0)} \middle| \Psi_{\beta m}^{*} \right\rangle = 0 \tag{A2}$$

instead of (14) and following the derivation which led to Eqs. (17) in the text. These manipulations give

300

TABLE I. Variation-perturbation calculation of the reactance matrix for the model Hamiltonian of Eq. (29). The matrix elements were obtained for various values of the range parameter b with $\mu = 1$, $k_0 = 1$, $k_1 = \frac{1}{2}$, and A = 1. Our zeroth-order potential $V^{(0)}$, is taken to be Huck's inelastic spherical well as given by Eq. (30). For purposes of comparison the results of a third-order Born approximation (BA) in which $V^{(0)} = 0$ have also been computed. The transition probability P is determined from Eq. (34).

b		R ⁽⁰⁾	R ⁽¹⁾	R ⁽²⁾	R ⁽³⁾	$R_{\mathtt{VP}}$	R _{exact}	R _{BA}
	R ₀₀	0.00046	0,00028	0.00061	0.00000	0.00135	0.00135	0.001 35
5	R_{01}	0.02056	0.00000	0.00002	0.00002	0,02060	0.02060	0.02060
	<i>R</i> ₁₁	0.00002	0.00021	0.00036	0.00000	0.00059	0.00059	0.00059
		D=0.01042;	$r_0 = 1.87432$			P: 0.0017	0.0017	0.0017
	R_{00}	0.00834	0.00253	0.00244	0.00004	0.01336	0.01338	0.01320
3	R_{01}	0.08196	0.00000	0.00032	0,00012	0.082 41	0.082 41	0.08240
	R_{11}	0.00130	0.00160	0.001 47	0.00002	0.00439	0.00440	0.00434
		D=0.05231;	$r_0 = 1.68322$			P: 0.0268	0.0268	0.0268
	R_{00}	0.05667	0.00580	0.00507	0,00022	0.06776	0.06780	0.06536
2	R_{01}	0.21646	0.00000	0.001 42	0.00021	0.21808	0.21811	0.21789
	R_{11}	0.00805	-0.00205	0.00298	0.00006	0.00904	0.00906	0.00861
		D=0.13249;	$r_0 = 1.70762$			P: 0.1726	0.1727	0.1724
	R_{00}	0.43050	0.14752	0.01720	-0.00109	0.59413	0.59417	0.57136
1	R_{01}	0.62481	0.00000	-0.03314	-0.00362	0.58805	0.58817	0.588 06
	R_{11}	0.04257	-0.30658	-0.02777	0.00550	-0.28628	-0.28582	-0.30864
		D=0.33110;	$r_0 = 1.78311$			P: 0.5781	0.5784	0.5797
	R_{00}	0.36405	0.36513	0.15035	0.04414	0.92368	0.94442	0.99797
45	R_{01}	0.34041	0.00000	0.08528	0.05633	0.482 02	0.49548	0.45784
	R ₁₁	-0.99582	0.28895	0.06461	-0.01215	-0.65441	-0.62570	-0.78218
		D=0.21542;	$r_0 = 3.74071$			P: 0.2697	0.2827	0.2092
	R_{00}	0.40771	0.40308	0.16880	0.04990	1.0295	1.0486	1.1580
34	\boldsymbol{R}_{01}	0.24156	0.00000	0.09863	0.06503	0.40523	0.41887	0.34230
	R_{11}	-1.1065	0.28024	0.06879	-0.01920	-0.77666	-0.74082	- 0.98293
		D=0.22663;	$r_0 = 3.85494$			P: 0.1675	0.1797	0.0916
	\boldsymbol{R}_{00}	0.50142	0.45102	0.20510	0.06514	1.2227	1.2306	1.4958
203	R_{01}	-0.02114	0.00000	0.13880	0.08058	0.19824	0.21804	- 0.001 91
	R_{11}	-1.2941	0.24772	0.04538	-0.00961	-1.0106	-0.96004	-1.4352
		D=0.25766;	$r_0 = 4.00509$			P: 0.0301	0.0377	0.0000

$$\begin{split} f_{\alpha i,\beta m}^{-(1)*}(-\vec{\mathbf{r}}_{\alpha}) &= -\left(\mu_{\alpha}/2\pi\right) \left\langle \Psi_{\beta m}^{-(0)} \mid V_{\beta}^{(1)} \mid \Psi_{\alpha i}^{+(0)} \right\rangle, \\ (A3a) \\ f_{\alpha i,\beta m}^{-(2)*}(-\vec{\mathbf{r}}_{\alpha}) &= -\left(\mu_{\alpha}/2\pi\right) \left\langle \Psi_{\beta m}^{-(0)} \mid V_{\alpha}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \right\rangle, \\ (A3b) \end{split}$$

and

$$f_{\alpha i,\beta m}^{-(3)*}(-\vec{r}_{\alpha}) = - \left(\mu_{\alpha}/2\pi\right) \langle \Psi_{\beta m}^{-(0)} \mid V_{\beta}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \rangle.$$
(A3c)

Taking advantage of the two alternate partitionings of the total Hamiltonian, it is trivial to show that

$$- (2\pi/\mu_{\beta}) f^{\star(1)}_{\beta m, \alpha i}(\mathbf{\tilde{r}}_{\beta}) = \langle \Psi^{\star(0)}_{\beta m} | V^{(1)}_{\alpha} | \Psi^{\star(0)}_{\alpha i} \rangle$$
$$= \langle \Psi^{\star(0)}_{\beta m} | H^{0}_{\beta} - H^{0}_{\alpha} | \Psi^{\star(0)}_{\alpha i} \rangle$$
$$- (2\pi/\mu_{\alpha}) f^{\star(1)*}_{\alpha i, \beta m} (-\mathbf{\tilde{r}}_{\alpha}). \quad (A4)$$

As before, we utilize Messiah's technique¹⁷ to evaluate the integral involving $H_{\beta}^{(0)} - H_{\alpha}^{(0)}$, which reduces to

$$\begin{split} \left\langle \Psi_{\beta_{m}}^{-(0)} \left| H_{\beta}^{(0)} - E^{(0)} \left| \Psi_{\alpha_{i}}^{+(0)} \right\rangle - \left\langle \Psi_{\alpha_{i}}^{+(0)} \right| H_{\beta}^{0} - E^{(0)} \left| \Psi_{\beta_{m}}^{-(0)} \right\rangle * \\ &= \left\langle \Psi_{\beta_{m}}^{-(0)} \right| T_{op} \left| \Psi_{\alpha_{i}}^{+(0)} \right\rangle - \left\langle \Psi_{\alpha_{i}}^{+(0)} \right| T_{op} \left| \Psi_{\beta_{m}}^{-(0)} \right\rangle * \\ &= (2\pi/\mu_{\beta}) f_{\beta_{m,\alpha_{i}}}^{+(0)} (\hat{\mathbf{r}}_{\beta}) - (2\pi/\mu_{\alpha}) f_{\alpha_{i},\beta_{m}}^{-(0)*} (\hat{\mathbf{r}}_{\alpha}) \quad (A5) \end{split}$$

with T_{op} being the total kinetic-energy operator. Substitution of (A5) into (A4) yields the desired reciprocity through first order, i.e.,

$$\begin{aligned} (\mu_{\beta})^{-1} [f_{\beta m, \alpha i}^{*(0)}(\vec{r}_{\beta}) + f_{\beta m, \alpha i}^{*(1)}(\vec{r}_{\beta})] \\ = (\mu_{\alpha})^{-1} [f_{\alpha i, \beta m}^{-(0)*}(-\vec{r}_{\alpha}) + f_{\alpha i, \beta m}^{-(1)*}(-\vec{r}_{\alpha})]. \end{aligned}$$
(A6)

From Eqs. (17b) and (17c) the sum of the secondand third-order outward-scattering amplitudes is

$$- (2\pi/\mu_{\beta}) \left[f_{\beta m,\alpha i}^{+(2)}(\vec{\mathbf{r}}_{\beta}) + f_{\beta m,\alpha i}^{+(3)}(\vec{\mathbf{r}}_{\beta}) \right]$$

$$= \langle \Psi_{\beta m}^{-(0)} \mid V_{\beta}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \rangle + \langle \Psi_{\beta m}^{-(1)} \mid V_{\alpha}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \rangle$$

$$= \langle \Psi_{\beta m}^{-(0)} \mid V_{\beta}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \rangle + \langle \Psi_{\beta m}^{-(1)} \mid H_{\beta}^{0} - H_{\alpha}^{0} \mid \Psi_{\alpha i}^{+(1)} \rangle$$

$$+ \langle \Psi_{\beta m}^{-(1)} \mid V_{\beta}^{(1)} \mid \Psi_{\alpha i}^{+(1)} \rangle, \qquad (A7)$$

(A8a)

where the two different partitionings have been used, once again, to replace the $V_{\alpha}^{(1)}$ term. The rhs of Eq. (A7) may be simplified with the aid of the first-order perturbation equations which, after appropriate multiplications (on the left-hand side) and integrations, yield

 $\left\langle \Psi_{\beta m}^{-(1)} \middle| H_{\beta}^{(0)} - E^{(0)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle + \left\langle \Psi_{\beta m}^{-(0)} \middle| V_{\beta}^{(1)} \middle| \Psi_{\alpha i}^{+(1)} \right\rangle = 0$

and

$$\langle \Psi_{\beta m}^{-(1)} | H_{\alpha}^{(0)} - E^{(0)} | \Psi_{\alpha i}^{+(1)} \rangle + \langle \Psi_{\beta m}^{-(1)} | V_{\alpha}^{(1)} | \Psi_{\alpha i}^{+(0)} \rangle = 0.$$
(A8b)

To obtain the relation (A8a) we have employed the fact that $H_{\beta}^{(0)} - E^{(0)}$ is Hermitian with respect to the first-order wave functions since the latter have no plane-wave component. Finally, Eqs. (A7), (A8), and (A3) lead to the reciprocity formula

$$\begin{aligned} (\mu_{\beta})^{-1} [f_{\beta m, \alpha i}^{+(2)}(\vec{\mathbf{r}}_{\beta}) + f_{\beta m, \alpha i}^{+(3)}(\vec{\mathbf{r}}_{\beta})] \\ &= (\mu_{\alpha})^{-1} [f_{\alpha i, \beta m}^{-(2)*}(-\vec{\mathbf{r}}_{\alpha}) + f_{\alpha i, \beta m}^{-(3)*}(-\vec{\mathbf{r}}_{\alpha})]. \end{aligned}$$
(A9)

The symmetry of the <u>R</u> matrix in Sec. VI follows as a special case of the reciprocity relations. In order to convert from the scattering amplitudes to the reactance matrix (without rearrangement) we drop the channel index as well as the + or - and replace f with <u>R</u>. Equations (A6) and (A9) then give

$$\sum_{p=0}^{3} R_{m}^{(p)} = \sum_{p=0}^{3} R_{im}^{(p)*}.$$
(A10)

APPENDIX B

This appendix is devoted to solving the zerothand first-order perturbation equations

$$\begin{pmatrix} \frac{d^2}{d\gamma^2} + k_0^2 & 2\mu D \\ 2\mu D & \frac{d^2}{d\gamma^2} + k_1^2 \end{pmatrix} \begin{pmatrix} X_{0t}^{(p)} \\ X_{1t}^{(p)} \end{pmatrix} = \begin{pmatrix} 0 \\ 2\mu (D - Ae^{-br})(1 - \delta_{p0}) \end{pmatrix}$$

for $r \leq r_0$. Here $E^{(0)} = \epsilon_0 + \frac{1}{2}\mu k_0^2 = \epsilon_1 + (1/2\mu)k_1^2$ with ϵ_0 and ϵ_1 being the internal energies of the two states. For $r > r_0$, one merely sets D = 0 in Eq. (B7). A solution of the p = 0 equations for slightly different boundary conditions has been reported by Huck.²⁰ Following his approach we find

where

$$\gamma_{00} = \gamma_{01} = 1$$
, $\gamma_{10} = (p_0^2 - k_0^2)/2\mu D$, $\gamma_{11} = -(\gamma_{10})^{-1}$
(B8b)

$$(H^{(0)} - E^{(0)})\Psi_{i}^{(p)} + (1 - \delta_{p0})V^{(1)}\Psi_{i}^{(p-1)} = 0 \quad (p = 0, 1)$$
(B1)

for the model problem of Sec. VI. The exact model Hamiltonian is given in the text as

$$H = -\frac{1}{2\mu} \frac{d^2}{dr^2} + h - Ae^{-br}(\hat{P}_{01} + \hat{P}_{10})$$
(B2)

with the inelastic scattering potential being approximated, in zeroth order, by

$$V^{(0)} = -D(\vec{P}_{01} + \vec{P}_{10}) \quad (r \le r_0)$$

= 0 (r > r_0). (B3)

Obviously, $V^{(1)} = -Ae^{-br}(\hat{P}_{01} + \hat{P}_{10}) - V^{(0)}$ and

$$H^{0} = -\frac{1}{2\mu} \frac{d^{2}}{dr^{2}} + h + V^{(0)} .$$
 (B4)

The boundary conditions on the perturbation functions

$$\Psi_{i}^{(p)}(r=0) = 0, \qquad (B5)$$

$$\Psi_{i}^{(p)} \xrightarrow{r} \sum_{m} k_{m}^{-1/2} \left(\delta_{p0} \delta_{mi} \sin k_{m} r + R_{mi} \cos k_{m} r \right) \varphi_{m}$$

were also specified in the text but are repeated here for completeness.

To solve Eq. (B1) for the states i = 0 and 1 we use the expansions

$$\Psi_{i}^{(p)}(r) = X_{0i}^{(p)}(r)\varphi_{0} + X_{1i}^{(p)}(r)\varphi_{1}$$
(B6)

and multiply on the left by $-2\mu\langle\varphi_1|$, as well as $-2\mu\langle\varphi_0|$, to obtain the coupled equations

and

$$p_0^2 + p_1^2 = k_0^2 + k_1^2$$
, $p_0^2 p_1^2 = k_0^2 k_1^2 - 4\mu^2 D^2$. (B8c)

Since the relations (B8c) are symmetric with respect to interchange of p_0^2 and p_1^2 , these parameters may always be chosen so that $p_0^2 \ge p_1^2$. Thus, p_0^2 is always positive for k_0^2 , $k_1^2 \ge 0$ but p_1^2 may be of either sign. The coefficients B_{mj} and the reactance matrix elements $R_{1j}^{(0)}$ are determined by the eight continuity conditions on the wave functions and their first derivatives at $r = r_0$.

The first-order perturbation functions may be obtained from Eq. (B7) by Laplace-transform techniques which yield

in which i' + i = m' + m = 1, $S_m = p_m^{-1} \sin p_m r$, $C_m = \cos p_m r$, $\theta_0 = (b^2 + k_0^2 + k_1^2)^2 - 4k_0^2 k_1^2$, and $\theta = \theta_0 + 16\mu^2 D^2$. Note that $R_{ij}^{(1)}$ is determined by the zeroth-order functions through Eq. (32a). Finally, the constants K_{ij} can be found from the four con-

*Work supported in part by NSF Grant No. GP-23764 and in part by the National Research Council of Canada.

[†]Present address: Department of Chemistry, Florida Technological University, Box 25000, Orlando, Fla. 32816.

¹For a recent set of review articles see Advances in Chemical Physics, edited by J. Ross (Wiley, New York, 1966), Vol. X. ²See, for example, D. G. Truhlar, J. K. Rice, A.

Kupperman, S. Trajmar, and D. C. Cartwright, Phys. Rev. A 1, 778 (1970); A. Skerbele and E. N. Lassetre, J. Chem. Phys. 56, 845 (1972); C. E. Kuyatt, G. E. Chamberlain, and S. R. Mielczarek, Phys. Rev. A 2, 1905 (1970).

³F. E. Harris, Phys. Rev. Lett. 19, 173 (1967); H. H. Michels and F. E. Harris, Phys. Rev. Lett. 19, 885 (1967); F. E. Harris and H. H. Michels, Phys. Rev. Lett. 22, 1036 (1969); Methods Comput. Phys. 10, 143 (1971); H. H. Michels, F. E. Harris, and R. M. Scolsky, Phys. Lett. 28A, 467 (1969); R. K. Nesbet, Phys. Rev. 175, 134 (1969); Phys. Rev. 179, 60 (1969); R. K. Nesbet and R. S. Oberoi, Phys. Rev. A 6, 1855 (1972); H. J. Kolker, J. Chem. Phys. 53, 4697 (1970); H. J. Morawitz, J. Math. Phys. 11, 649 (1970). ⁴B. Schneider, H. S. Taylor, and R. Yaris, Phys. Rev. A

1, 855 (1970); G. Csanak, H. S. Taylor, and R. Yaris, Phys. Rev. A 3, 1322 (1971); G. Csanak and H. S. Taylor, Phys. Rev. A 6, 1843 (1972).

⁵W. H. Miller and T. F. George, J. Chem. Phys. 56, 5637 (1972); J. Chem. Phys. 56, 5668 (1972); J. Chem. Phys.

56, 5722 (1972), and references cited therein.

⁶R. D. Levine, Mol. Phys. 22, 497 (1971).

⁷See, for example, T. S. Murtaugh and W. P. Reinhardt, J. Chem. Phys. 57, 2129 (1972).

⁸Again, especially in electron scattering.

⁹The recent revival of interest in this approach to electron correlation was initiated by Sinanoglu's treatment in the early 1960's. The basic elements are contained in O. Sinanoğlu, Proc. R. Soc. A 260, 379 (1960); J. Chem. Phys. 122, 493 (1961).

¹⁰These are reviewed in detail by D. M. Chipman, Ph.D. thesis (University of Wisconsin, 1971) (unpublished). We have been particularly interested ourselves in the distinguishable electron method (cf. Ref. 14).

¹¹S. K. Knudson and B. Kirtman, Phys. Rev. A 3, 972 (1971), hereafter referred to as I. See also U. Landman [Phys. Rev. A 5, 1(1972)] for an alternate VP treatment based on the phase-amplitude method.

¹²See N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed. (Oxford U.P., London, 1965), Chap. XIII.

¹³See, for example, A. Messiah, Quantum Mechanics

tinuity conditions on the first-order wave functions. The first derivatives will be continuous as well since this restriction was built into their original construction.

(North-Holland, Amsterdam, 1962). We use "series" rather than "approximation" to indicate that terms beyond first order will be considered.

¹⁴B. Kirtman, Chem. Phys. Lett. 1, 631 (1968); B. Kirtman and R. L. Mowery, Chem. Phys. Lett. 55, 1447 (1971); B. Kirtman and U. Landman (unpublished).

¹⁵To justify the choice for q = p we point out that the opposite convention leads to the reciprocity relation [cf. Eq. (A5) in Appendix A] $(\mu_{\beta})^{-1} f^{+(0)}_{\beta m, ai}(\hat{r}_{\beta}) = (\mu_{a})^{-1} f^{-(0)}_{ai, \beta m} * (-\hat{r}_{a}),$ which may or may not be consistent with Eq. (12a).

¹⁶There is one extant confirming case [D. M. Chipman (private communication)]. In H₂ + the DEM partitioning, together with an isolated-atoms initial approximation, gives $E^{(3)} \ll E^{(2)}$ for all R down to 2 a.u. ¹⁷See Ref. 13, p. 836.

¹⁸See, for example, K. T. Takayanagi, Adv. At. Mol. Phys. 1, 149 (1965).

¹⁹For an extended discussion see O. Sinanoğlu and K. A. Brueckner, Three Approaches to Electron Correlation in Atoms (Yale U.P., New Haven, Conn., 1970). This general technique is, of course, not limited to atoms.

²⁰R. J. Huck, Proc. Phys. Soc. A 70, 369 (1957).

²¹That is to say, eigenfunctions of arbitrary accuracy for Vas well as the exact zeroth- and first-order perturbation functions for $V^{(0)}$.

²²Huck developed his potential as a model for excitation by electron impact from the 1s to 2s state in atomic hydrogen.

²³Cf. D. Secrest and B. R. Johnson, J. Chem. Phys. 45, 4556 (1966).

²⁴Note that the distinction (\pm) between incoming and outgoing waves is no longer appropriate. Since the matrix elements of R are formally unbounded, it may be necessary to use R^{-1} when the former become very large. Or else, one might calculate phase shifts, which are also real and conserve probability (cf. Ref. 25).

²⁵R. D. Levine and G. G. Balint-Kurti, Chem. Phys. Lett. 6, 101 (1970); P. Pechukas and J. C. Light, J. Chem. Phys. 44, 3897 (1966).

²⁶By 16-point Gauss-Legendre quadrature for $r \leq r_0$, and analytically for $r > r_0$.

²⁷Although the corresponding series for R_{01} and R_{11} converge.

²⁸N. F. Mott and H. S. W. Massey, Ref. 12, p. 371.

²⁹And to test the idea of using a single initial approimation. 30 Except where the Born curve for R_{01} happens to cross the exact curve near b = 1.