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A variation-perturbation (VP) treatment of inelastic and rearrangement scattering processes is

presented. %e show that the first-order perturbation functions determine the scattering pa+meters
through third order and develop a variation principle for the approximate calculation of these

functions. It is seen how adjustable parameters in the zeroth-order potentials can be optimued

separately for each scattering event by the Hulthen variation condition, which yields a first-order

function that is normalizable in the exit channel. %e also propose that terms coupling diferent
channels be included in the initial approximation. A comparison of the Vp method with the usual

distorted-wave Born series reveals certain practical advantages of the former, despite the formal

similarity. Some of these advantages are illustrated in a sample calculation on a system characterized by

a model inelastic potential.

I. INTRODUCTION

Recent experimental advances in the study of
atomic and molecular collisions~ and, especially,
in electron-impact syeetroseopy have stimulated
a number of attempts to generate quantitative meth-
ods for the calculation of scattering parameters.
These include pseudoresonance variation methods, s

Green's-function techniques, semiclassical ap-
proaches, an exponential form of first-order per-
turbation theory, and others. %e have begun to
formulate a variation-perturbation (VP) treatment
of scattering problems so as to utilize some of the
promising new developments for bound states such
as pair-function expansionse and exchange pertur-
bation theories. '0 Our first paper~' dealt with po-
tential scattering. Here, we extend the formalism
to inelastic and rearrangement processes. In do-
ing so the most significant features of I are pre-
served, i.e. , (i.) there exists a variation condition
for the first-order perturbation function (4'~')
which, in turn, determines the scattering ampli-
tude through third order, and (ii) the unperturbed
potential may contain adjustable parameters to be
optimized by means of an appropriate Hulthen
condition. As a consequence of this condition the
first-order transition amplitude vanishes and 4"'
is normalizable in the corresponding exit channel.
One new feature in our treatment of inelastic pro-
cesses is the addition of terms to the zeroth-order
model which couple different channels in cases
where this coupling is important.

After a brief outline of the definitions and nota-
tions used in multichannel scattering theory, we

derive the variation-perturbation method in Sec.
III. Section IV-on optimization of the initial ap-
proximation by Hulthen's method-completes the
presentation of the VP formalism. In Sec.V the
relationship of our treatment to the conventional
distorted-wave Born series ~ (DWBS) is analyzed.
%e conclude with sample calculations for a model
inelastic system. The Vp reactance matrix ele-
ments, which appear to converge in each instance,
compare quite favorably with those obtained from
a conventional third-order 0%88. In fact, the
former are accurate to 5%%uo or less except in one
case where the initial approximation is clearly in-
appropriate.

II. DEFINITIONS AND NOTATION

The Hamiltonian for a system of two fragments
referred to a stationary over-all center of mass in
an arrangement channel e may be written, in
atomic units, as

H = H (r, r) + V, (r„r)
V'+h„(r)+ V (r, r),

2&e

where r is the vector connecting the two individual
centers of mass and r designates the entire set of
internal coordinates. Here —(lj2 p )V~ is the
relative kinetic energy of the fragments, V' is the
potential between these fragments, and A is the
Hamiltonian for internal motions. %'e shall as-
sume that r V tends to zero in the asymptotic
limit when z —~ and symbolize this by z V - 0.
The internal Hamiltonian is a sum of two terms,
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one for each of the isolated fragments. Its eigen-
functions are, therefore, simple products that
satisfy the Schrodinger relation

(h —e »)&»& »(r) = O,

in which i denotes the total internal state. In the
asymptotic limit

(«'e»I&»'a»), «I ~

The solution of the complete Schrodinger equa-
tion

(H E(0))@a

is subject to the boundary conditions (BC)~~

&I' —Z e'"&'"'»&5
g Cgg 't St

' f' (,) '" " 'q,„(), (4b)

where + (-) indicates that just outgoing (incoming)
radial waves are allowed and k~ is the relative
momentum vector In Eq. . (4b) the sum over m
includes only open channels for which

h&)m
= 2»»&)(z s&)m) «O ~

The quantity f~ »(rs) is the outward scattering
amplitude in the direction r~ for transitions from
the entrance channel ~i to the exit channel Pm.
And, finally, the corresyonding experimentally
observable differential cross section is

for 0&%.&1. There is, of course, a corresyonding
expansion

(»)

for the scattering amplitude. Substituting the ex-
pression (10) into the Schrodinger relation (8), and
equating like powers of A., me obtain the perturba-
tion equations

(H&0& Z(0))(I(t(0) O
O, i (12a)

(H(()) E(&)))@+(P)+y(1)@s(P-f& O (~ & O) (18b}

In a similar manner, the boundary conditions on
&I'&»~& are found using Eqs. (11) and (4b) to give

&h+(P)~ g e»k»&~' r&&
f& fgg )sl PO

(H'. +~V&)& —E&0&)e:,(&() =O,

mhere V '~' is defined as

y (1) y y(0)
Ot I Of

so that the desired wave function [cf. Eq. (4a)] is
obtained when X=1. If 4",0' is a sufficiently ac-
curate initial approximation, then the exact solu-
tion of Eq. (8) can be expanded in a convergent
power series:

e'.»(&() =Z &('e'."»
& (1O

~g...i&(g&=(-„")(~' ) &'s ..i&'s&l' (8) +r ( fe&») (r )ea»&&»&~r&)l &&&&s (r} .(18}
I

IH. VARIATION-PERTURBATION METHOD

%e shall nom derive expressions fox the scatter-
ing amplitudes through third order in terms of the
initial approximation and the first-order perturba-
tion functions. This initial appx'oximation satisf ies
the Schrodinger equation

(H &0) Z(o))&1&+&0)

=[-(I/8»». )V'. +h. + V'. -Z"']e:&0&=O, (va)

with the boundary conditions

@+(0)~Q ' e»»&)»&ef Sm eg

fa(0& (r s) s»&&&) r&) &&& (r) . (7b)
gm, ei

Fox' convenience in comparing mith the D%88, rp~
is taken to be an exact internal eigenfunetion of
h~. Homever, the treatment may be amended to
accommodate an approximate eigenfunction as
well. Note that the solution of Eqs. (7) yields the
zeroth-order scattering amplitudes f~~&o&„(r~).

As usual, me consider the Schrodinger equation

In order to determine the perturbation correc-
tions to the outward scattering amplitudes we in-
sist that

«-,.IH-z"'Ie:, }=o
to all orders. For inelastic scattering without re-
arrangement the proeeduxe is straightforward.
When there is rearrangement an ambiguity in the
definition or orders arises because 0 may be par-
titioned either as I' '+ V' ' or H~'+ V~ '. Exactly
the same type of ambiguity occurs in electron-ex-
change perturbation theories, 0 so me can take ad-
vantage of the lore that has been developed for the
latter problem. The particular approach that mill
be follomed here is that of the so-called dgstgpg-

guish(»hie electron method (DEN). First, let us
note that Eqs. (8)-(13) are applicable with &r re-
placed by P everywhere. Of course, there really
should be tmo independent ordering parameters-

and &&&)
—but these will be restricted to the val-

ues A. = A~= A.. The DEM partitioning convention is
then quite simple-as far as the matrix element
(@»)'~' I H- E' ' t4"p' ) is concerned the (t&+ &I)th-or-
der term will be (4~&~& [

H&0& —E [4&"o&f }&if&q&t&
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and {4~2'[ffoo' —E' '[4"("&otherwise. This con-
vention appears to be the only one'5 that allows
the second-order perturbation functions to be
eliminated from the formula for the third-order
scattering amplitude. Furthermore, the total
amplitude through third order (or first order) then
satisfies the reciprocity relation (see Appendix A)
required for the exact result. Despite this evi-
dence the ultimate test of our definition of orders
will be the success or failure of calculations car-
ried out on this basis for a sufficient number of
cases."

In first order the condition (14) becomes

{@-(0&
l
ff(0) @(0&

l
)I)+(1))+ {@-(0)

l

V&l)
l

@+(0)) O

(»}
The first term {q,- &0&

~

Ho&0& &&0&
I q, +(1&

& is easily
evaluated by means of Green's theorem using the
asymptotic forms (13}. Messiah)~ has discussed
such integrations in detail so we give only the re-
sult here, i.e. ,

(@ (0)
l
If(0) @&0)

l
)I(

(1) ) (2v/~ )f (1& (r )
(16)

Thus, the first-order outward-scattering ampli-
tude is

f'",' (- }=-( /2 ) &+ "'I V"&Iq"Io)&.

Completely analogous manipulations lead to the
higher-order amplitudes

f+(2) (r ) (~ /2 ) ({@-(1)
l
ff(0) @(0&ly+(I&)

+ {y-(1)
l

v(1&
l

@+(0» + {@-(0)
l

v(1)
l
@t(1) ))

and

= - ()1 /2 ) &@ "'I vu'I q'"'&

I "' (-. }=-(~/2. )(&~-"'l~."'-E"'l~,"&

+ (y-&2)
l

V(1)
l

@+(0)&+{@-&1)
l

ff(0) E(0)
l

q, +(2) )

+ ()I-'0'l v"'le'"')+ (q-")
l
v"'l y"&))

=-(uo/»} &q "'l v")l~ ("&. (Ivc}

In order to simplify these formulas as we have
done it is necessary to invoke Eq. (12b) with )0 = 1
so that

{@-(q)
l

H(0) E(0)
l

@+()&)+ {y-(q&
l

V(1)
l

y+(0) ) O

(13}

for q = 1 and 2. Furthermore, since the perturba-
tion functions contain no plane-wave component,

{@-(1&
l

Jf(0) E&0)
l
q +(2& ) {@+(2)

l
p(0& E(0)

l

y-(1»(c

(19a)

And, since V21' is assumed to be real, it also fol-
lows from Eq. (12b) (for the state Pm) that

&1) Qy )f+(1) (1' }e(oo~yo (P) (20b)

and fo(1), is calculated from the zeroth-order wave
functions. If

y+(1) y+ (1)+ gy+(1)
off ei + ak (21)

with 4'„', ' being the exact first-order function, then
the first-order change in Z ', ' due to &iq '( ' is

{&i@+(1)
l

(If(0& E(0&)@+(1)+V(1&@+(0))

+ {@+(0)V(1)+@+(1)(H(0) E(0&}
l

&i@+(1))

which vanishes by virtue of the same arguments
used in connection with Eqs. (19}. Therefore,
4'," is stationary with respect to small variations
about the exact value 4'& ', and this condition may
be used to optimize parameters in a variational
approximation to 0',~'. This is the continuum
analog of Hylleraas's familiar procedure for bound
states. There is, of course, a corresponding con-
dition for +~' '.

1V. OPTIMIZATION OF INITIAL APPROXIMATION

The selection of the initial scattering potentials
V~ is govel'(led by two cl'ltel'ia: (i) that exact
solutions of the resulting zeroth-order Schrodinger
equations are available; (ii) that V(0) approximates
V closely enough to give scattering amplitudes
through third order as accurately as desired. To
satisfy these conditions, we employ initial poten-
tials which depend upon a number of adjustable pa-
rameters and, in general, support multichannel
scattering. A variety of methods are available by
means of which optimum values of the parameters
may be chosen. Vfe prefer the Hulthen variation
condition~2 because the first-order perturbation
function is then normalizable in the exit channel
of interest. The derivation of this condition-given
here for the sake of completeness-is very similar
to the derivation at the end of Sec. III. This time,

&q-"'lH"'-z"'le'"'&+ {e-"'lv"'le'"'&=o
(Ieb}

Equations (IV} give the scattering amplitudes
through third order in terms of the first-order
pertuxbation functions. The latter, in turn, can
be approximated through a stationary variation con-
dition, as we now show. Consider the quantity
Z',"defined as

g+"'=- {q+,"&lff(0& —E(0' lq)'&'&)+ {@+&'&l v&'&l @+&0&)

{@+(0)lv(1)l @+(1&) (20a)

where 4 ',~) is an arbitrary function obeying the
boundary conditions
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the pertinent functional is

with

+el Off + ~+et & +pit +get+ ~+/st

(22)

(23)

Since the asymptotic plane-wave term in 4", (and

4~„) is exact, 6%', must satisfy the boundary con-
dition

s~ei i ~ rz sf&,~i (r&)e"m"vy (r) (all y),
n

in which (24a)

(24b)

With the aid of Eqs. (23) and (24) the first-order
variation in J~, is easily evaluated as

M~„ i = —(an/xiii)sf s„ i (r,), (as)

leading to the variation-condition

S~sm, ei =0 = Sf sm, ~i i

Jg )=0.
(26a)

(26b)

If the variation functions depend upon the set of ad-
justable parameters a„ then (26a) can be rewritten
in the more convenient form

V. COMPARISON WITH THE DISTORTED-WAVE
BORN SERIES

Formally, the terms in the DWBS for the scat-
tering amplitude are identical to those of the varia-

=0 (all kw1,
~a& & + E ~ay

(27)

where aq is chosen so that sj~, /Saqxo. Finally,
in order to carry out the perturbation treatment,
the wave functions 4', (4~ ) are restricted in form
to be eigenfunctions of some convenient zeroth-
order Hamiltonian K,'0' (K~ia'). Thus Eqs. (26b) and

(27), with

~s . i= (4'i
I
i""I+'i) (26)

provide a set of nonlinear algebraic relations for
determining the optimum g~. The resultant wave
functions and corresponding potentials constitute
the initial approximation. A comparison of Eqs.
(28) and (26b) with (17a) shows that, by making
this choice, the first-order perturbation correc-
tion to the transition amplitude vanishes. This
means that the first-order wave function is nor-
malizable in the corresponding exit channel. Of
course, a separate Hulthen calculation can be car-
ried out for each inelastic-scattering event or, for
simplicity, some potentials may be transferred
from one event to another.

tion-perturbation method. There is one exception
to this statement —namely, that we have resolved
the ambiguity in defining orders for rearrangement
processes. But the major differences lie in the
practical application of the two methods. Let us
begin by discussing the initial approximation which
yields the scattering amplitudes through first or-
der. In contrast to the VP treatment this is, nor-
mally, the terminal point of the DWBS. Further-
more, distorted-wave calculations typically' em-
ploy a zeroth-order potential that makes no dis-
tinction between elastic and inelastic scattering.
We propose instead to include terms that specifi-
cally couple the initial and final states. An illus-
tration will be given in Sec. VI.

The most significant advantages of the VP meth-
od, however, are connected with the variational
computation of the first-order perturbed wave func-
tions. Our approach will, hopefully, be much
ea,sier to carry out than the usual DWBS expansion.
In electron scattering, for example, we can employ
the same convenient decomposition into pair func-
tions which, together with the introduction of
interelectronic coordinates, has proved advanta-
geous~~ for ordinary bound-state problems. Fur-
thermore, the electron exchange may be simply
treated using one of the new exchange perturbation
theories such as the distinguishable electron
m good. Further details on these techniques will
be saved for future papers in the series. Let us
just observe here that, until now, the difficulties in
determining second- and higher-order terms in
the DWBS have been virtually prohibitive. And, as
we shall see, these terms can be quite important.

VI. AN EXAMPLE: HUCK-TYPE EXPONENTIAL POTENTIAL

In order to illustrate the VP method for an in-
elastic problem (without rearrangement) we have
undertaken calculations on a model system char-
acterized by the Hamiltonian

1 d 2 A

K= — 3+h-Ae (Po, +Pa),2p, dr (29)

where P,&
= ) y, )(yi [ and the notation of previous

sections remains unchanged (except for suppression
of the channel index, i.e. , r -r, h, - h). We
approximate the model potential in Eil. (29) by
Huck's inelastic spherical well

V ' = —D(PO~+ P,o) (r & ro)

=0 (r &ro) ~ (30)

Both V ' and V were chosen because the exact '
eigenfunctions are readily obtained. But the use-
fulness of V' ' as an initial approximation for more
complex problems such as atomic excitation by
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electron impact, the linear atom-harmonic oscil-
lator system, etc. , should also be obvious. Note
that the elastic-scattering potential is zero in both
cases.

It is convenient at this point to switch from tran-
sition amplitudes to the reactance, or R, matrix.
This involves no alteration of the method; it is ac-
complished merely by changing the arbitrary
asymptotic boundary condition (4b) which, in the
present instance, becomes

4«(«) Z-k„'~'(5«sinf«„r+ft «cosh «)4&„. (31)

The reason for this conversion is that recent evi-
denceas indicates that probability-conserving
formalisms are likely to give improved scattering
parameters. Using the new boundary conditions in
the derivation leading to E«I. (1V) we find

ft«)) 2@()l)«0&
~

I& «1&
~

g(0&)

ft««&& 2i«(@(0&
~

y(l) ~y()))

(32a)

(32b)

4«(«)=XO«(r)4&, +X)«(«)4&, (i=O, 1). (33)

Then, multiplication of the appropriate Schrodinger
(or Rayleigh-Schrodinger) relation on the left by
(4&0(, and by (4&, i, yields a pair of coupled second-
order differential equations. The latter are de-
rived and solved in Appendix B. Analytical solu-
tions are obtained for the perturbation functions
and numerical solutions for the model potential.

The R matrix elements reported in Table I were
calculated from E«ls. (32) for various values of 5
with)«=l, %0=1, k, = ~, andA=1. Optimum values
of the initial parameters D and ro were determined
by the Hulthen conditions on Zo„as given by E«ls.
(26b) and (2'I) with f replaced by R. The solution
of these nonlinear equations, which we found by
Newton-Raphson techniques, is not necessarily
unique. In fact, near and below b = 1 a second
solution appears. Since the original series for Roo
seems to diverge, i.e. , jR()0' l & lROO' t, we switch
to the new solution. This explains the sharp change
in D and ro at 5 = f Finally, the transition proba-
bility P is given by

S = f [(R'+I)-'(R'- I)]„].'+ 4 ( [(R'+I)-'R j„j'.
(34)

For simplicity, 2~ the same initial approximation
was used to obtain all three matrix elements (R,o
=R» by symmetry, as shown in Appendix A). It
turns out that the elastic elements Ro~ and Rgg are

ft«$) 2@ ()1«1&
(
y(l)

~

)1)«1& )

To determine the zeroth-, first-order, and exact
wave functions for i = 0 and 1, we begin with the
expansion
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APPENDIX A

Here we prove that the VP scattering amplitudes
through first and through third order satisfy the
reciprocity relation

(«d 'f~. «(rN) = (« -) 'f:«.~( »), -(A1)

as required for the exact result. In order to do so,
it is necessary to have the VP amplitude formulas
for the incoming waves. The latter are obtained
by starting with the condition

(e'., ia- z"&i+;.) =o (A2)

instead of (14) and following the derivation which
led to E«ls. (17) in the text. These manipulations
give

nearly as accurate as the inelastic element R» for
which the system was optimized.

The perturbation expansion of each matrix ele-
ment is convergent, in the sense that JR~~' f&)R&&'),
for all values of the range parameter b ~ —', . This
convergence, and the accuracy through third order
as well, are quite remarkable considering how poor
an initial approximation we have in the case of the
smaller b's. Except for R» at 5= 3 all the VP
matrix elements lie within 5% of the exact result.
In fact, the magnitude of the error appears to be
given approximately by

~

(R&3) )2fft &8&~ (»)
It is interesting to note that the transition probabil-
ity and each VP matrix element are algebraically
smaller than the exact result. This suggests that
a rigorous bounding principle may exist.

For comparison, we also evaluated the ordinary
Born series through third order. This is the
equivalent of a typical D%88 calculation since
there are no elastic terms in the model potential.
In every instance the values are worse than those
of the VP method, with the differences becoming
dramatic below b = 1, which is the onset of strong
inelastic coupling.

%e are encouraged by the results of these calcu-
lations. However, a model system is not the real
thing and, of course, the VP method has not been
tested for rearrangement processes as yet. As
indicated earlier, we plan to further develop the
treatment in applications to inelastic electron scat-
tering and to vibration-rotation-translation energy
transfer as well.
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TABLE I. Variation-perturbation calculation of the reactance matr6 for the model Hamiltonian of Eq. (29). The
matrix elements were obtained for various values of the range parameter b with /=1, ko=1, kg=g, and A=1, Our
zeroth-order potential V ', is taken to be Huck's inelastic spherical well as given by Eq. (30). For purposes of com-
parison the results of a third-order Born approximation (BA) in which V '= 0 have also been computed. The transition
probability P is determined from Eq. (34).

Roo

Roy

R«

Roo

Roy

R«

Roo

Roy

Roo

Roy

0.000 46
0.020 56
0.000 02

D=O. 01042;

0.008 34
0.081 96
0.001 30

D=0. 052 31;

0.056 67
0.216 46
0.008 05

D= 0.132 49;

0.430 50
0.624 81
0.042 57

D= 0.33110;

RO&

0.00028
0.000 00
0.000 21

ro= 1.87432

0.002 53
0.000 00
0.00160

ro = 1.683 22

0.005 80
0.000 00

—0.002 05
yo = 1.70762

0.147 52
0.000 00

—0.306 58
yo = 1.783 11

0.000 61
O. 000 02
0.000 36

0.002 44
0.000 32
0.001 47

0.005 07
0.001 42
0.002 98

0, 01720
—0.033 14
—0.027 77

R (3)

0.000 00
0.000 02
0.000 00

0.000 04
0.000 12
0.00002

0.00022
0.00021
O. 000 06

—0.001 09
—0.003 62

0.005 50

Rvp

0.001 35
0.020 60
0.000 59

P: 0.0017

0.013 36
0.082 41
0.004 39

P: 0.0268

0.067 76
0.218 08
0.009 04

P: 0.1726

0.594 13
0.588 05

—0.286 28
P: 0.5781

0.001 35
0.020 60
0.000 59
0.0017

0.013 38
0.082 41
0.00440
0.0268

0.067 80
0.218 11
0.009 06
0.1727

0.594 17
0.588 17

—0.285 82
0.5784

0.001 35
0.02060
0.000 59
0.0017

0.01320
0.082 40
0.004 34
0.0268

0.065 36
0.217 89
0.008 61
0.1724

0.571 36
0.588 06

-0.308 64
0.5797

Roo

Roy

R«

Roo

Roi

Roo

Roi

0.36405
0.34041

—0.995 82
D = 0.215 42;

0.407 71
O. 241 56

—1.1065
D=0.22663;

0.501 42
—0.021 14
—1.2941

D=0.25766;

0.36513
0.000 00
O. 288 95

y() = 3.74071

0.403 08
0.000 00
O. 28024

yo =3.854 94

0.451 02
0.000 00
0.247 72

o=4.00509

0.15035
0.085 28
0.06461

0.168 80
0.098 63
0.068 79

0.205 10
0.138 80
0.045 38

0.04414
0.056 33

—0.012 15

0.049 90
0.065 03

—0.01920

0.065 14
0.080 58

—0.009 61

P:

po

P:

0.923 68
0.482 02
0.654 41
0.2697

1.0295
0.405 23
0.776 66
0.1675

1.2227
0.19824
1.0106
0.0301

0.944 42
0.495 48

—0.625 70
0.2827

1.0486
0.418 87

—0.740 82
0.1797

1.2306
0.218 04

—0.960 04
0.0377

0.997 97
0.457 84

—0.782 18
0.2092

1.1580
0.342 30

—0.982 93
0.0916

1.4958
—0.001 91
—1.4352

0.0000

(A3a)

f.(",~(-..) =- () ./2~) &4~(0&
I
~("l~ (("&,

(A3b)

&@-(0&
I

~(0& E(0&
I

@+(0&) &g+(0&
I

~0 E(0&
I

y-(0&) e

=&~"'I7' l~'"') &+'"'I7' I+"')*
= (2&(/(((&)f('&(,' ((r(&)- (2((/(& )f~(, ,&(&*(r~) (A5)

f.",'*(- .)=-((./2 )&~"'I~'"IK'").
(A3c)

with T~ being the total kinetic-energy operator.
Substitution of (A5) into (A4) yields the desired
reciprocity through first order, i.e. ,

Taking advantage of the two alternate partitionings
of the total Hamiltonian, it is trivial to show that

—(2s/p, ,)f~,'.((r,) = &eg'
I V.'" I

e'.((")

&y
(0&

I
~0 ~0

I
y+(0&)

—(»/i& )f (",g*(-r ). (A4)

As before, we utilize Messiah's technique" to
evaluate the integral involving H z

' —H' ', which
reduces to

()((&) '[f&'&'" ((rN)+ f(&"' ((r,)]

=()&~) [f~~&,'&&* (- r~)+ f~&(,&(& ( —r )]. (A6)

—(2((l ((()[f'(",'~((r()+ f'g",'~((r()]

= &y
(»

I
y ("

I
@'(")+ &&1&

'"
I
F "

I
&)'('" )

(0&l~& &l~.(

+ &+sm I1 && (A7)

Fro&n E(ls. (17b) and (17c) the sum of the second-
and third-order outward- scattering amplitudes is
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where the two different partitionings have been
used, once again, to replace the V'" term. The
rhs of Eq. (A'7) may be simplified with the aid of
the first-order perturbation equations which, after
appropriate multiplications (on the left-hand side)
and integrations, yield

(e-"'ivy' S"'i+'"& (e-(0)
i
V'" ie'(') &=0

(A8a)

3
ft(P) Q ft(P)o

p=0 pm0

APPENDIX 8

(A10)

This appendix is devoted to solving the zeroth-
and first- order perturbation equations

(lk-( & irf (0) @(oli)k ())) (y-( &

i
y( )

ill),
(o) )

(A8b)

To obtain the relation (A8a) we have employed the
fact that H&

' —E ' is Hermitian with respect to the
first-order wave functions since the latter have no
plane-wave component. Finally, Eqs. (A7), (A8),
and (AS) lead to the reciprocity formula

()10) [fo ~ ((ro)+f0 . ((ro)1

=(j.)'lf«'(",0*(-r &+f '(",~(-r.H (»)
The symmetry of the R matrix in Sec. VI follows

as a special case of the reciprocity relations. In
order to convert from the scattering amplitudes to
the reactance matrix (without rearrangement) we

drop the channel index as well as the + or —and
replace f with R. Equations (A6) and (A9) then

give

(ff (0) E(0)))f)(P& (1 6 )y(1))F(P 1) 0 (P 0 1)

for the model problem of Sec. VI. The exact model
HaLmiltonian is given in the text as

1 d2 AH=- 0 +k-Ae (P()(+Pl())
2p dt'

with the inelastic scattering potential being ay-
yroximated, in zeroth order, by

Pa

V = D(PO)+ Pl()) (r r())

(B2}

=0 (r &r,&.

Obviously, F( ) =-Ae (Pol+P10)- V ' and

H =- —-- +&+Vo 1 d'
(0&

2p d

The boundary conditions on the perturbation func-
tions

e,(P&(r =0)= 0,

4",P)(r) =Xg'(r)y +X,'P('(r)y,

and multiply on the left by —2 p, (()o, i, as well as
—2(1((oo [, to obtain the coupled equations

SIP)- Qk '~(5&5„(sink r+ft (cosh r)(()„
$5

were also specified in the text but are repeated here
for completeness.

To solve Eq. (Bl) for the states f = 0 and 1 we use
the expansions

+k 2pD X ~ 0

l
2

RDD ).,3 )Dl2D(D A')0 —5+)e-

(B7)

for r(ro. Here E ' =so+ 0)(ko=e)+(lt24)kl with &0

and g, being the internal energies of the two states.
For r&ro, one merely sets D=O in Eq. (B7). A

solution of the p = 0 equations for slightly different
boundary conditions has been reported by Huck.
Following his approach we find

X(p'(r)= & &( B pP'sinP r (r-'ro&
m=001

=k( (5(j sink(r+RI) cosk(r) (Y &'Yo) q

(B8aj

woo=&0) =1, ylo (Po ko)/2(1D) F11 (Ylo)
2 1

(B8b)

PO+Pi ~0+ ~1 y POP1 ~0~12 2 2 2 2 2 2 2 2T4 (B8c)

Since the relations (B8c) are symmetric with re-
spect to interchange of p0 and p1, these parameters
may always be chosen so that p0&p1. Thus, p0 is
always positive for k0, 01&0 but p1 may be of either
sign. The coefficients B

&
and the reactance ma-

trix elements 8&&' are determined by the eight con-
tinuity conditions on the wave functions and their
first derivatives at w =t'0.

The first-order perturbation functions may be
obtained from Eq. (B7) by Laplace-transform tech-
niques which yield
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X,',"(r)= Z (p'„, p—') '(B,p [(k',. k—', y, , (2pD(S„.—S )(p'. —p') +2pA8-'
my1

x((b +p' -p„.)S ~ —2bC ~ +e ~'[(b +p ~ -p )S +2bC ]})
~2pDy &{4pA[S -2b 'C +e ~(S +2b 'C )](b +4p ) '-2pDp ~(S —rC )}]

+S [(k,.-P )K,&-2pDK;~]} (r ro)

=k, ~ RI&0' cosk,r —2pAk, ' e 80 [(b'+k, —k, .)( 6& sink, .r+R,'.&cosk, .r)
+2bk, , (6,., cosk, .r-RI'. ,'sink, .r)] (r &r, )

(B9)

in which i'+i=m'+m=1, S =p 'sinp x, C
=cosp r, 8, =(b +ko+kf)t' 4kokg and 8=80
+16' D . Note that R,'I' is determined by the ze-
roth-order functions through Eq. (32a). Finally,
the constants E,&

can be found from the four con-

tinuity conditions on the first-order wave functions.
The first derivatives will be continuous as well
since this restriction was built into their original
construction.
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