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Excitation of helium atoms by electron impact is studied for intermediate- and high-energy electrons.

Calculations of the difFerential cross sections for the 1S-2 S transition are made by use of a
one-dimensional integral representation of the scattering amplitude obtained in the Glauber

approximation. Comparisons with the Born approximation and with measurements between 22 and 600
eV are presented. Several sets of ground-state and excited-state wave functions are used. The results are

a distinct improvement over the Born approximation at all energies considered and are in good

agreement with the measurements above ~ 90 eV. At lower energies the Glauber predictions reproduce

the qualitative features of the data. The results also show that the more-general one~ensional integral

expression for charged-particle-atom scattering amplitudes, derived earlier, can be used to perform

calculations with relative ease.

I. INTRODUCTION

It is often assumed that at large impact energies
the electron-excitation cross sections for atoms
are given accurately by the first Born approxirna-
tion. Such assumptions are often encouraged by
comparisons of calculations with measurements
of integrated cross sections. %e have pointed
out' that such comparisons may be quite deceiving
since the integrated cross section is only a single
number and does not reveal as much detailed in-
formation about the reaction mechanisms as do
differential cross sections. Furthermore, ex-
amples have been presented" in which two the-
ories yield virtually identical integrated cross
sections over a large energy range but predict
strikingly different angular distributions. It is
clear that tests and comparisons of scattering
theories should be made with differential cross
sections in preference to integrated cross sections
whenever possible.

Although there have been many measurements
of inelastic electron-helium integrated (i.e. ,
total) cross sections, until recently there has
been little work on absolute differential-cross-
section measurements of e-He elastic and inelas-
tic scattering. However, within the past few
years rather detailed measurements of differential
cross sections for e-He elastic scattering have
been made, for example, by Vriens, Kuyatt, and
Mielczarek, 4 by Chamberlain, Mielczarek, and
Kuyatt, ' and by Bromberg. Extensive measure-
ments of the differential cross sections for the
18-2'8 transition in e-He collisions at 500 eV
were made by Lassettre, Krasnow, and Silver-
man, ' by Silverman and Lassettre, ' and by Skerbele
and Lassettre. ' These have recently been supple-
mented by the corresponding measurements of
Vriens, Simpson, and Mielczareko for electrons

between 100 and 400 eV, of Chamberlain, Miel-
czarek, and Kuyatt' for electrons between 50 and
400 eV, of Rice, Truhlar, Carbvright, and
Trajmar'0 fox electrons between 26 and 82 eV,
of Opal and Beaty" at 82 and 200 eV, and of
Crooks and Rudd" at 50 and 100 eV.

This recent flurry of experimental activity has
been accompanied by no less an effort on the
theory of the calculations for electron-helium
collisions. For inelastic scattering the most
widely used theory at high impact energies has
been the first Born approximation. The extensive
and highly accurate calculations of Kim and Ino-
kuti'3 and of Bell, Kennedy, and Kingston" on
the osciliator strengths of the helium atom de-
serve mention for their great use in testing the
Born approximation. Lassettre'4 has observed
that in the range 300-500 eV the Born approxi-
mation does not hold when term symbols are the
same in the initial and final states, as is the case
with the 18-2'8 transtion of helium. Consequently,
reliance upon the Born approximation for such
transitions, even at high impact energies, is
unjustif ied.

Some time ago we applied the Glauber approxi-
mation" to scattering of charged particles by
hydrogen atoms, ' and we predicted the angular
distributions for elastic scattering of electrons
between 100 eV and 5 keV. These predictions
were confirmed by subsequent measurements. "
Since that time there have been numerous applica-
tions of the method to elastic and inelastic scat-
tering of electrons and protons by hydrogen at-
oms. '"" All the above calculations contain no
gdjustcble Pd~ameters. These analyses yield
results which are, for the most part, in rather
good agreement with the existing data. They also
point out that the first Born approximation is
unreliable below -500 eV for electrons and below
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-500 keV for protons when such quantities as
angular distributions are required.

Recently the theory has been extended to scat-
tering of charged particles by helium atoms. '
In that work explicit applications to elastic scat-
tering of electrons were also made, and com-
parisons with the Born approximation and with
data between 100 and 500 eV were presented.
Both the magnitudes and the shapes of the scat-
tering intensities obtained in the Born approxi-
mation were in rather gross disagreement with
the measurements. On the other hand, the Glauber
approximation yielded angular distributions whose
shapes were in excellent agreement with the mea-
surements and whose magnitudes were within
-20% of the data at the higher energies and -35$
of the data at the lower energies. The only free-
dom in the calculations was the choice of the he-
lium ground-state wave function. A simple wave
function with modest accuracy was used. A more
accurate wave functiqm wouM not have changed
the qualitative conclusions, although the quanti-
tative results. may have been altered somewhat
(perhaps for the better}.

In Ref. I the scattering amplitude was reduced
from an eight-dimensional integral to a three-
dimensional integral. Although such a reduction
is substantial, numerical evaluation of the three-
dimensional integral requires significant time.
Recently a calculation of the IS-2'S transition in
helium was published by Yates and Tenney" who

showed that the three-dimensional integral can be
reduced further to a two-dimensional integral.
However, an even greater reduction had been
previously made by the author, "a reduction which
applies not only to helium atoms but to more com-
plex atoms as well. We showed that if the product
of the initial state (i) and final state (f) wave func-
tions can be expressed as

N S
gpss, =g (c, 11 [r, ce er". - .

k=Q

xr(e„e,)r, .(e„y,H), .,„,

where r&, 8&, Pz are the spherical coordinates of
the jth electron and F, are normalized spherical
harmonics, then the scattering amplitude F&& can
be expressed as a one-dimensional integral. In
the present work we demonstrate the utility and

ease of application of this one-dimensional inte-
gral by using it to calculate the IS-2'S transition
in helium. The analysis is applied in detail to
electrons with incident energies between 22 and
600 eV and the results are compared with the
data.

The present work differs in spirit from that
of Ref. 20 in that it is a detailed application of
a very general method for describing collisions
of charged particles with arbitrary atoms to the
particular case of IS-2'S transitions of helium.
It should dispel any impressions to the effect
that the general method is cumbersome and im-
practical, and should answer any doubts re-
garding the numerical tractibility of the method.
In addition, we have considered in this work all
the available data in the comparisons of theory
with experiment. We have included the high-q data
at 100 and 200 eV where the calculations and mea-
surements go out to squared momentum transfers
of q'= 50 for the first time. These cases clearly
show the superiority of the Glauber theory and
are also important because similar experiments
at and above 200 eV are now being carried out.

The numerical results appear to be quite con-
sistent with those of Ref. 20, although exact
comparisions cannot be made since different sets
of wave functions have been used. The present
method has the advantage over that of Ref. 20 in
that it requires evaluation of only a one-dimen-
sional integral rather than of a two-dimensional
integral, and is applicable to arbitrary atoms.

In Sec. II we apply the more general expression
for the scattering amplitude derived in Ref. 21 to
the 1$-2'S transition in helium. In Sec.IIIwe very
briefly discuss the first Born approximation. In
Sec. IV we present the results of our calculations
and compare them with measurements.

II. REDUCTION OF SCATTERING AMPLITUDE

FOR 1S-2 STRANSmON IN HELIUM

Let Fz, (q) be the amplitude for collisions in
which helium undergoes a transition from an
initial state i with wave function p& to a final state
f with wave function yz, and in which the incident
particle imparts a momentum Sq to the target.
If the product rpPp, is of the form given by Eq.
(1.1}, then the scattering amplitude is given by
Eq. (24) of Ref. 21. For an incident momentum
8%e we have"

«„(qa=- ee'"«"")f eee„rewe Pc, ill. x,
a f

x g &,&(q)5""~.~ " if(M, ~) y=~ ~al2 ' (2.1)
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f(M„y) =2~'" Q G„[y~'" '~ 'E,(q),E,(M, +s(-iq;4e-2P-iq, M~+I; y')

+y~ '"E,(q),E,(M, +2p+1; 2+M~+2p 4u-+iq, 2p+2-e(+iq; y')].
In Eq. (2.2}, E, G„, E„and E, are given by

E(q) = - e 2'+"~1(I+zq)/I (I —iq),
G =4iq[(Mg+p)) (-p) ]'(-I} /[Mg)(My+I) ~i],
E,(q) = I'(M&+4(( —iq)I'(2p+1-s(+iq)/[(M&+2p)(M&(],

E,(q}= I'(s( - 2P - 1- iq)/F(2 +M&+ 2P -w +iq),

(2.2)

(2.2)

(2.4)

(2.5)

(2.6)

where the symbol (a)„ is Pochhammer's symbol
defined by (e)„=I'(e+ s)/I'(a). Also q = Z'e*/gu,
where Z'e is the charge of the incident particle
and e is its initial speed in the laboratory system.

Equation (2.1) may look discouragingly com-
plicated. However, for particular transitions
simylifications generally occur. For example, if
yPq, is spherically symmetric (as it is for the
1$-2'S transition we are considering}, then

E,(q) =I'(- qi)F(1 i+q)

E,(q) = I'(-1- iq)/I'(2+iq) .
In Eq. (2.8) we have used the identity

x&g(- iq; iq, 1;y-') =0&x(1; y*)

= f.(2y),

(2 &)

(2.10)

Ao = 1/4n, Go = 4'iq,

Equation (2.1) then reduces to a much simpler-
looking form given by

Ez, ( i(=-i(ji/i(q 4()bI (tc
0

where I0 is the modified Bessel function.
To obtain an exylicit expression for the inte-

grand in Eq. (2.V} we need explicit forms for
pity, . For the helium ground-state wave function
we take

((((,(r» r,) = (N', /e)(e e~"~+ ce e2"~)

x (e &'&+ce e2~2),

For the 2~8 state wave function, we take

x Ij[ 4
(-4)"'~E(q)b*'"'&

1+ny
x '

f(O, y)8p l'= A, j

where

f(O, y)= q2 '" [y " E(q)
x fa(2y) +En(q)

x, E,(1; 2+iq, 2+iq; y')],

(2.V)

(2.8)

y~(r„r,) = (Ng /s)

x [e-aran(e-s~rn err e-egr3)

+e '~(e ~'x-c'r, e 4'i)] . (2.12)

AD lengths are expressed in atomic units (i.e.,
in units of co=5'/m, e').

If we take advantage of the symmetry with re-
spect to interchange of coordinates in the inte-
grand of the original expression for E&&(q), given
by Eq. (2) of Ref. 21, the amplitude for 1$-2'S
transitions siHlyllf les to

0 e

(2.18)

If we define

(2.14)

Table I lists the values of the parameters ap-
pearing in Eq. (2.13) in terms of parameters in
the wave functions y, and ((((I given by Eqs. (2.11)
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and (2.12).
To reduce Eq. (2.13}to final form requires a bit of straightforward algebra. The result we obtain is

4 8

Eiiiqli=-2ilNiN'I (ga, b'Jlqs)34 ', a, , ,b-q)+~, , ,b, q)db-
& g a i bV (qb)

0 0
k=g k=5

x~;a, ,-r, , ,)s(~.,r, ,)ii),
where

X(y, q) = F (1 +iq)y ~ " ~[yI,(2y) - (1 + iq}IO(2y}]

—y, F,(2; 3+iq, 3+iq; y')l[(1+fq)(2+fq)]'

(2.»)

(2.16)

9(y, q) = I'~(1+iq)y " 4[(1+iq)(3+iq)IO(2y) —(3+4iq)yI|(2y)+2y I~(2y)]

4y', F, 3; 4+iq, 4+iq; y'
,F,(2; 3+iq, 3+iq; y')+ ' ' ' . ~' ' [(2 i+q)(2 f+q)]' . (2.17)

IF (q)l (2.18)

where Sk' is the momentum of the scattered elec-
tron and is determined from energy conservation.

III. BORN APPROXIMATION

Our numerical results will be compared with the
Born approximation and the data. The Born am-
plitude for the iS —2'S transition may be written
in the form

We note that the only function that depends on

q is J,(qb) and the only functions that depend on
the incident energy (other than trivial algebraic
functions) are 1'(1+|iq},,F,(2; 3+Iq, 3+iq; y'),
and, F,(3; 4+iq, 4+iq; y'). Consequently numeri-
cal calculations of Eq. (2.15) may be done for a
wide range of angles (i.e., of q) and of energies
(i.e., of q) without having to recompute the Bessel,
y, and hypergeometric functions very often.

The differential cross section for excitation
from state i to state f is given by

differs from the Born amplitude in that it ex-
plicitly treats the interaction of the incident elec-
tron with the target protons. ' Furthermore, the
first term in the expansion of E&&, as given by
Eq. (2.1), in powers of q yields the first Born
approximation.

A straightforward calculation of Eqs. (3.1) and
(3.2) with the wave functions of Eqs. (2.11) and
(2.12) yields the Born amplitude

IV. RESULTS AND DISCUSSION

In this section are presented the results of our
computations which are compared with the cor-
responding measurements between 22 and 600 eV.
At each energy considered we show the results
of the present calculations and of the Born approx-
imation for each of three pairs of initial- and final-
state wave functions.

The initial-state wave functions have the form
given by Eq. (2.11). The final-state wave functions
have the form given by Eq. (2.12). For each set
of initial- and final-state wave functions, p& and

y& are orthonormal and contain eight parameters
2m &" sinew

Fgg(q) = —g, &gg(~)r' dr,
0

where

(3 1) TABLE I. Values of parameters appearing in expres-
sions for the scattering amplitude E&&, given in terms
of parameters of the wave functions y &

and y&.

x qiP (r„r,)qi, (r„r,) dr, dr, . (3.2)

We note that the orthogonality of the initial- and
final-state wave functions results in zero con-
tribution to V« from the interaction between the
incident electron and the target protons. The
expression for E«derived in Sec. II therefore

C

C2

—CC
—CC

—C C2 I

2 +Zf
2 +Zg
2 +Z2
2 +Z2
2 +Zg
2 +Zg
2 +Z2
2 +Z2

Zg +Z3
Z2 +Z3
Z$ +Z3
Z2+Z3
Zg +Z4
Z2 +Z4
Zg +Z4
Z2 +Z4
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N2&, Z» Z2, c, N&, Z3, Z4, and c', not all of which
are independent. The values used for these pa-
rameters are listed in Table II for each of the
three pairs of wave functions. In no case is the
overlap integral greater than 4 x 10 in magnitude.

The first pair of wave functions, the parameters
of which are given in the first row of Table II,
were obtained by using for y& the variational wave
function calculated by Lowdin. " This wave func-
tion is a fairly good analytical fit to the Hartree
self-consistent-field function for the helium
ground state. For y& we used a slightly modified
version of the 2'S-state wave function of Marriott
and Seaton, "namely, one in which the value of
c' was chosen to ensure that this state be orthog-
onal to the ground state. This set of wave func-
tions and results obtained with them will be de-
noted by LMS.

The second pair of wave functions, the param-
eters of which are given in the second row of
of Table II, were obtained by using for y& a simple
but very accurate fit (found by Byron and Joachain24)
to the Hartree-Fock wave function of Roothaan
et al." For y& we used a slightly modified version
(obtained by Van den Bos") of the 2'S-state wave
function of Marriott and Seaton. The modification
made by Van den Bos ensured the orthogonality
of y& and y&. This set of wave functions and the
results obtained with them will be denoted by BJB.

The third pair of wave functions, the parameters
of which are given in the third row of Table II,
were obtained by using for y& the wave function of
Byron and Joachain. '4 For y& we used the fit
(obtained by Flannery") to the unrestricted Har-
tree-Pock function of Cohen and McEachran. "
This fit was made with the condition that the 2'S
wave function be orthogonal to the 18 wave function
of Ref. 24. The above set of wave functions (y,
from Ref. 24 and yz from Ref. 27) and the results
obtained with them will be denoted by BJF.

We have compared our Born results with the
accurate results of Kim and Inokuti" and of Bell
et ag." All three pairs of wave functions are
in good qualitative agreement in the range 10 '
&(a',q') &10'. In this range the generalized

oscillator strength varies by more than five orders
of magnitude. In this range the largest deviations
from the accurate results occur with the BJF
wave functions (-20-85%). The smallest devia-
tions occur with the LMS wave functions (-0-5%).
These wave functions are of sufficient accuracy
for the purposes of this investigation.

In Fig. 1 we present the calculations for the
differential cross section of 604-eV electrons,
as a function of the squared momentum transfer
(in atomic units), and compare them with the iwo
data points that exist at this energy. ' We see that

TABLE II. Parameters in the 1S and 2 ~S helium wave
functions Eqs. (2.11) and (2.12). Atomic units are used
throughout.

Wave
functions N f Z1 Z2 c N&~ Z3 Z4

LMS 2.203 1,455 799 2Z1 0.600 0.637 1.136 0.464 0.283 263
BJB 1.697 1.41 2.61 0.799 0.644 1.136 0.464 0.280 624
BJF 1.697 1.41 2.61 0.799 0.706 1.1946 0.4733 0.268 32

the present calculations (the lower three curves)
are in good agreement with the data, whereas
the Born calculations (the upper three curves)
do poorly. Since the Born approximation appears
to fail at this rather high energy, it would seem
unlikely that it will be reliable at lower energies.
However, the uncertainties in the data were not
given in Ref. I and the range of (a,q)' over which
the measurements were made (0.788-1.002) is
quite small. More extensive tests are needed to
conclusively distinguish between the two calcula-
tions.

In Fig. 2 are presented the calculations for the
differential cross sections of $00-eV electrons
which are compared with the data" at or near
this energy. The data in this energy region cover
a range of q' values between -2 x10 ' and -2.5
(in atomic units). The qualitative features of our
calculations bear a striking resemblance to those
we obtained for e-He elastic scattering at 500 eV.'
In particular, at the larger momentum transfers

p p3 +I ++I+ I I

N 0
CO

0.02

0.01

0.008

0.5 1.0

(a q)2

2.0

FIG. 1. Differential cross sections for e-He 1S-2~S
transitions at 604 eV as a function of squared momentum
transfer (in atomic units). The two measurements, re-
presented by the solid circles, were made by Lassettre
et al. (Ref. 7). The curves in the Born-approximation
calculations and in the present calculations each employ
three different pairs of ground-state and excited-state
wave functions. In each calculation the uppermost of
the three curves uses the BJF wave functions (see text
and Table I for a fuller description of the wave func-
tions), the middle curve uses the BJBwave functions,
and the lower curve uses the LMS wave functions.
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FIG. 2. Differential
cross sections for e-He
1S-2 S transitions at 500
eV as a function of squared
momentum transfer. The
measurements, represent-
ed by the circles, squares,
and triangles, were made,
respectively, by Skerbele
et al. (Ref. 8), Lassettre
et al. (Ref. 7), and Silver-
man et al. (Ref. 7). The
curves are as in Fig. 1.
The measurements of Las-
settre et al. (Ref. 7) were
made at 511 eV.

0.01 0.1
(a,q)2

1.0

shown the Born-approximation cross', sections ex-
ceed the present Glauber calculations. At very
small momentum transfers, the calculated in-
tensities exceed the Born intensities since the
differential cross sections continue to increase
with decreasing q, whereas the Born cross sec-
tions approach constants as q is formally allowed
to decrease toward zero. It is interesting to note
that for e-He elastic scattering, the differential
cross sections for the Born and Glauber approxi-
mations intersect near (a~q)' = 1, whereas for the
1S-2'S transition they intersect near (e,q)' = 0.03.
Consequently there will be a much larger angular

»~~ ~~ o I I I I IIII I I I I I IIIt I I I I»

-2
10 =

region over which the 1$-2'S angular distribution
in the Born approximation exceeds that in the
Glauber approximation than was the case for
elastic scattering.

The three different sets of wave functions pro-

0.05—

I

J

-3
10 =

0.04- !

0.03—
e

~ io'=
b4

0.02—
400 eV

Pres
eel

-5
10 =

0.015—
I

0.$
I I

0.2 0.4
(a,q)2

FIG. 3. Differential cross sections for e-He 1S-2 S
transitions at or near 400 eV as a function of squared
momentum transfer. The circles represent measure-
ments by Chamberlain et al. (Ref. 5) and Vriens et al.
(Ref. 9) at 400 eV. The squares represent measurements
by Lassettre et al. (Ref. 7) at 417 eV. The curves are as
in Fig. 1.

I I I I I IIII I I I I I IIII I r I I I

1 10
10

0.1
(a.q )'

FIG. 4. Differential cross sections for e-He 1S-2~S
transitions at 200 eV as a function of squared momentum
transfer. The circles represent measurements by
Chamberlain et al. (Ref. 5) and Vriens et al. (Ref. 9).
The triangles represent measurements by Opal and
Beaty (Ref. 11). The curves are as in Fig. 1.
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duce no qualitative difference in the results. This
is not unexpected since the general forms of the
different wave functions used were identical. In
Fig. 2 and in subsequent figures the experimental
uncertainties are shown whenever such informa-
tion has explicity been published or provided to
us by the experimenters.

The Born and Glauber calculations at 500 eV
are both in qualitative agreement with the data.
The two sets of data at the larger angles [(a,q)'
R 0.2] do not, themselves, appear to be in agree-
ment with each other to within better than -20%.
It is perhaps significant that of the six calcula-
tions shown, the BJF results of the Glauber ap-
proximation agree best with the data in both the
small and large momentum transfer regions.

In Fig. 3 we see the calculations for the dif-
ferential cross sections of 400-eV electrons and
compare them with the data" at 400 eV and the
data7 at 41'7 eV. The data do not appear to be
consistent near (a,q)'= 0.5. With the exception
of the 417-eV data point near (a,q)'= 0.5, we note
that the present calculations are superior to the

Born results, and the BJF Glauber results are in
excellent agreement with the measurements.

In Fig. 4 we compare the calculations and data
at 200 eV. The present calculations are in good
agreement with the data" at the smaller mo-
mentum transfers, (aoq)' s 1. Also included in
this figure are the data of Opal and Beaty" which
extend out to very large momentum transfers,
(a,q)' = 50. These data were normalized" to other
measurements. The magnitudes of the uncer-
tainties in the absolute normalizations are not
known well. The absolute value of the cross sec-
tion near (aoq)' = 50 may be in error by a factor
of 2." (The ratio of the 1$-2'S to the 1$-2'P
measured cross sections is probably accurate to
15%.) The agreement of the present calculation
with the data at large q is surprisingly good,
whereas the Born-approximation result is orders
of magnitude too small. The shoulder which seems
to appear in the data near (a,q)'= 10 is reproduced
in our calculations. These data and calculations
are evidence of structure in ckr/dD at the relatively
high energy of 200 eV and large value of q.

~ ~ ~ ~ I I I I II
~i . I I I I I I&

10— -2
10 =

-3
10 =

cv 0

-3
10 =

N 0
EO

b 0
'D, M 410—

tO

b C1

10 =

10 = 10 =

-6
10 =

I I I I IIIII

0.1
I I I I I IIII I IIIII I

1 10

(a.j)

FIG. 5. Differential cross sections for e-He 1S-2~S
transitions at 100 eV as a function of squared momentum
transfer. The circles represent measurements by
Chamberlain et al. (Ref. 5) and Vriens et al. (Ref. 9).
The triangles represent measure. ements by Crooks and
Rudd (Ref. 12). The curves are as in Fig. 1.

FIG. 6. Differential cross sections for e-He 1$-2 ~S
transitions at 81.63 eV as a function of squared momen-
tum transfer. The circles represent measurements by
Rice et al. {Ref. 10) at 81.63 eV. The triangles repre-
sent measurements by Opal e~d Beaty (Ref. 11) at 82 eV.
The square represents a measurement by Chamberlain
et al. {Ref. 5) at 75 eV. The curves correspond to 81.63-
eV electrons and are as described for Fig. l.
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In Fig. 5 the data' '" and calculations for 100-
eV electrons are shown. These data include the
high-momentum-transfer measurements of Ref. 12
(aoq &25}. The present calculations are in agree-
ment with the data in the region 0.1 & (a,q)' & 2. In
this region the Born approximation is typically
too high by a factor of ™2.For aoq'a4 the pres-
ent calculations are in qualitative agreement with
the data, exhibiting a much slower decrease of
d'o/dO with q' similar to that shown by the data.
Quantitatively the present calculations are too low
by a factor of -3 in this region. At the highest
momentum transfer (a',q' =25) the Born approxi-
mation, on the other hand, is too low by a factor
of -300.

In Fig. 6 the calculations and data" '" for 82-
eV electrons are compared. The data include the
high-momentum-transfer measurements of Refs.
10 and 11 and contain interesting structure. The
qualitative difference between the 100-eV data
shown in Fig. 9 and the 82-eV data in this figure
is rather marked. The present calculations
are in good agreement with the data in the region
(a,q)' &4. Near (a,q)' =4, the measured value
of do/dg attains a minimum. The present cal-

f I I I I I III

50 eV

10

~ io'
b4

10

0.5 1.0
(a.q)

5.0 10.0

FIG. 7. Differential cross sections for e-He IS-2 S
transitions at 50 eV as a function of squared momentum
transfer. The circles represent measurements by
Crooks and Rudd (Ref. 12) and the square represents a
measurement by Chamberlain et al. (Ref. 5). The curves
are as in Fig. 1.

culations cannot reproduce this minimum and
the subsequent maximum. The theory does, how-
ever, give rise to a rather pronounced shoulder
which results in a cross section that is too low

by "only" a factor of -2.5 in the region 7 s(a,q)'
& 20. On the other hand, at (a,q)' = 20 the Born
approximation is too low by a factor of -80 and
appears to be getting even worse. Thus the
Glauber theory apparently contains the ingredients
for reproducing the observed structure, but it
does not yield quite enough of it.

In Fig. 7 we again see structure in the data"
which are for 50-eV electrons. The theory does
well in the region (a,q}'s 2. It fails, however,
to reproduce the rather sharp minimum of the
data. Nevertheless it is apparent that in the region
where the measured cross section increases with
increasing q, the theoretical predictions yield a
minimum in the cross section, albeit a very
shallow one. The mechanism responsible for the
increase in the measured values of do/dA are
presumably being taken into account to some ex-
tent by the theory.

The appearance of the minimum in the cross
section is suggestive of the minima that appear
in cross sections for scattering of hadrons by
light nuclei. There the minima and maxima can
be interpreted in terms of multiple-scattering
phenomena. " Although one might at first think
that nothing is to be gained by referring to nuclear
physics, where the basic interactions are rather
different from those in electron-atom collisions,
a little thought will reveal quite a close qualitative
similarity between the atomic and nuclear cases
when dealing with comPosite systems. For ex-
ample, scattering of high-energy hadrons by light
nuclei characteristically reveals minima and
maxima. These are explained by the Glauber
theory in terms of multiple scattering. As a sim-
ple example, consider hadron-deuteron collisions.
In Glauber theory the scattering amplitude con-
sists of an amplitude for single scattering plus
one for double scattering. The single-scattering
amplitude corresponds to single scattering by
the constituent nucleons. It contains the hadron-
nucleon amplitude as a factor, is rather large in
the forward direction, and decreases quite rapidly
with increasing momentum transfer q. The double-
scattering amplitude is rather small in the for-
ward direction but decreases quite slowly with
increasing q and eventually dominates the single-
scattering amplitude. In the region where the two
amplitudes are comparable, there is significant
interference between them and a minimum or
shoulder appears in the differential cross section.

Precisely the same kind of analysis is applicable
in the Glauber theory of electron-atom collisions.
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There it is convenient to take the amplitude for
scattering by the neutral hydrogen atom to be the
basic amplitude (rather than the amplitude be-
tween the electron and a single charged particle).
One can then express the e-He scattering ampli-
tude as a single-scattering amplitude plus adouble-
scattering amplitude. The single-scattering am-
plitude corresponds to scattering of the incident
electron by neutral systems consisting of a single
electron bound to a massive positive singly
charged core (T.he helium atom will be thought
of as two such systems bound together. ) This
single-scattering amplitude can be calculated
analytically and has the requisite feature that it
is large near the forward direction and decreases
quite rapidly with increasing q. The remaining
double-scattering amplitude is smaller near the
forward direction, but may decrease less rapidly
with increasing q and may eventually dominate
over the single-scattering amplitude. In the re-
gion where the two amplitudes are comparable,
there is significant interference between them
and a minimum or shoulder may appear in the
differential cross section. Furthermore, in the
region where double scattering dominates, the

cross sections would possess the characteristics
of the double-scattering amplitude such as a very
slow decrease or a, shoulder.

The qualitative features of the single- and double-
scattering amplitudes just described do in fact
appear in e-He scattering at energies where the
theoretical cross sections reveal minima. For
example, for 50-eV electrons, calculations we have

performed show that the single-scattering term dom-
inates for q' & 3. At q' =3 the double-scattering
term becomes dominant. Reference to Fig. 7
shows that q' =3 is indeed the region of the mini-
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transitions at 34 eV as a function of squared momentum
transfer. The measurements are by Rice et al. (Ref.
10). The curves are as in Fig. 1.
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transitions at 22 eV as a function of squared momentum
transfer. The unnormalized measurements, by Andrick
et al, . (Ref. 30), have been arbitrarily normalized to the
theory at (aoq)2 ~ 1.2. The curves are as in Fig. 1.
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FIG. 10. Differential cross sections for e-He 18-2 8 transitions for various fixed values of q2, as a function of the
incident kinetic energy. The values of q2 are given by q2 =8"~4, sphere g is an integer ranging from -7 to 6. Each curve
is Labeled by its value of n.

mum in the differential cross section. Further-
more, it is a shallow minimum because for 3 ~ q'
& 6 the dominant double-scattering term is prac-
tically constant.

Although the Qlauber approximation is regarded
as a high-energy approximation, it is not clear
what the lower lixnit to the energy must be for
validity of the theory. Studies of e-H scattering
indicate that the theory may be useful at energies
considerably below 50 eV. Furthermore, in nu-
clear physics it has been found that Qlauber theory
works at rather low energies, even near reso-
nances. For these reasons we present compar-
isons of the theory with some of the data below
50 eV.

As the incident energy is decreased, the theo-
retical minimum becomes deeper and sharper.
Thjs js exhjbjted jn Fjgs, 8 and 9 where the data 0'

at 34 and 22 eV are compared with the calcula-
tions.

In Fig. 8 (34 ev) it is interesting to note that the
theory predicts the correct value for the minimum,
and the prediction of its position (q' =2.3) is quite
close to the measured value (q' =2.0).

In Fig. 9 the data of Ref. 30 are compared with
the calculations. Since the data given were un-

normalized, we have arbitrarily normalized them
to the the theory at q' =I.2. Our predicted mini-
mum occurs near q' =l.5 and the measured value
occurs near q' =1.35. The measurements also
show a sharp maximum near q' =2 which the
theory does not reproduce.

It should be pointed out that the calculations
neglect exchange effects, as have all previous
Qlauber -approximation calculations. These effects
should be non-negligible at the lowest energies.
It is possible that the quantitative discrepancies
between the data and the calculations below 50
eV arise not from the basic Glauber approxima-
tion but from the neglect of exchange effects
(which are very difficult to calculate in the Glauber
approximation).

%'e have compared calculations similar to those
we have shown, with the data at 300, 225, 175,
i50, 55.5, 44, and 26.5 eV. The results are
qualitatively the same as those shomn in Figs. 1-9.

In Fig. 10 we show the scattered intensity as a
function of incident energy for various fixed
values of q'. This figure shows the qualitative
results of our calculations at a glance. Minima
and maxima in angular distributions occur when-
ever crossovers appear in the curves. Inflection
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points can also be determined from this figure
by measuring the vertical distance between succes-
sive curves.

We have seen that the general methods of Ref.
21 may be applied without difficulty to the 18-2'8
transition in helium. The application has included
a rather wide range of incident energies, from
22 to 600 eV, and a rather wide range of momen-
tum transfers, from q =0.02 to q =50. In addi-
tion to. exhibiting the utility of the methods of
Bef. 21, our numerical results have extended
beyond those of Bef. 20 in regard to incident
energy and momentum transfer. In some eases,
such as the 200-eV case, the new results have
shown that our methods yield relatively good re-
sults even at rather large momentum transfers.
This is in contrast, for example, to a recent
high-energy approximation" where the discrep-

ancy between theory and experiment is a factor
of approximately 4. The methods of Ref. 21 may
be used in calculating other transitions in helium
and elastic and inelastic scattering by other atoms.
The demonstrated utility of these methods will
enable more extensive tests of the application
of the Glauber approximation to atomic physics.
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