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Differential cross sections are derived from a multistate impact-parameter treatment of heavy-particle
collisions. Various approximations are suggested and their relationship with previous expressions are
discussed. The equivalence between the differential cross sections in the impact-parameter and wave
versions of the Born approximation is established for elastic and inelastic scattering and is illustrated
explicitly for the 1s, 2s, 2p, and 2p,, excitations of atomic hydrogen by proton and

hydrogen-atom impact.

1. INTRODUCTION

Application of the multistate impact-parameter
description of heavy-particle collisions has been
limited mainly to the evaluation of total inelastic-
scattering cross sections. Attention has only re-
cently been focused on the corresponding theoret-
ical differential cross sections. Wilets and Wal-
lace! expressed the scattering amplitude f(6) as a
Fraunhofer integral of the asymptotic transition
amplitudes over the impact parameter. Byron?
and Bransden and Coleman® independently derived
identical formulas for f(6) which differ somewhat
from the result of Wilets and Wallace. The rela-
tionship between the two formulas is not obvious.

Moreover, a conceptual difficulty arises in that
the exact quantum-mechanical expression for f(6)
involves the electrostatic interaction between the
colliding systems averaged over the exact station-
ary-state wave function satisfying the correct as-
ymptotic boundary condition and the final station-
ary-state wave function for the isolated atoms.
The impact-parameter approach, however, is nor-
mally derived from the Dirac method of variation
of constants,* which is a time-dependent formula-
tion.

In this paper, we will attempt to resolve this
conflict and use the multistate description to pre-
sent yet another expression for f(6), which, upon
successive approximation, reduces to the results
cited above.

Also, the equivalence relationship between the
impact-parameter and wave versions of Born’s
approximation for the fofal cross section has al-
ready been established by Crothers and Holt® and
by McCarroll and Salin.® The relationship between
the corresponding differential cross sections has
been clarified by Byron.? An important conse-
quence of the present theory is that both versions
of Born’s approximation for both elastic and inelas-
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tic collisions do yield identical expressions for the
differential cross section. This point will be illus-
trated by the consideration of specific transitions
in H*-H(1s) and H(1s)-H(1s) collisions.

II. THEORY

A. Scattering Amplitude and Impact-Parameter
Method for Stationary States

In the center-of-mass reference frame, the scat-
tering amplitude for a transition between an initial
state 7 and a final state f of the collision system is
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in which V(F, R) is the instantaneous electrostatic
interaction between the two structured collision
partners A and B of the system with reduced mass
M 45. The composite internal electronic coordi-
nates are denoted by T taken relative to the center
of mass O of the nuclei with relative separation R.
The angles 6 and ¢ are the spherical angles of the
A-B final relative momentum vector k, with polar
axis directed along the incident relative momen-
tum E,. Equation (1) can be derived either from

a time-dependent or a stationary-state treatment
of the collision process,” but in either description
¥, represents the final stationary state of the iso-
lated atoms and ¥} is the appropriate solution of
the time-independent Schrddinger equation
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subject to the asymptotic boundary condition
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The purely electronic functions ¢, form a com-
plete set of normalized eigenfunctions of the Hamil-
tonian H, describing the electronic motion of the
isolated atoms with internal energy &, and satisfy

Hc(Fal ’ -fb!)(pn(.fa{ ’ .fbj) = 8n§0n(¥¢l ’ -fb]) ’ (4)

where T,, and T,, denote the composite electronic
coordinates relative to each respective parent nu-
cleus. The total constant energy E, in (2) is the
sum of the kinetic energy of relative motion #2423/
2M 45 and the energy Ej, of the electrons relative
to O, the center of mass of the nuclei, i.e., Ej
=8, +(the translational kinetic energy of the elec-
trons relative to O). The vector ﬁa specifies the
center of mass of the M-electron atom B of mass
My relative to the center of mass of the N-elec-
tron atom A of mass M, and is given by

N "
= om . . m
R,=R T E T, +M_s § Ty (5)

where m is the electronic mass. The plane wave
¢'*n"RB in the boundary condition (3) therefore con-
tains ¢**n'R together with phase factors that ac-
count for the translational motions of the elec-
trons relative to O. As an aid to further clarity,
assume that the collision system contains only one
electron. The generalization of the subsequent for-
mulas for excitation of many-electron systems is
trivial. Let

¥,(F, R) =e'F1 Ry (F, R) )

such that (2) is rewritten as
2
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For heavy-particle collisions, assume (a) that
the chief dependence of ¥, on R is contained in
e'*4°R guch that V3y can be neglected, (b) that the
relative motion is directed mainly along #, a unit
vector along the Z axis, such that

Voe'ki Rk, netfi R
and (c) that
V3 =V:, + (m/MA)-V.R * -V.,az V?,, ’ (8)

such that H (¥) =H,(¥,). With these approximations,
(7) becomes

[He(-fA) + V(-fc’ ﬁ) - E:] XG(‘fu ﬁ)
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where v, is the incident speed and where® the pres-
ence of z,=F,- # in (9) results in correct acknowl-
edgment of the electron’s translational motion.
Further reduction is obtained by the substitution

XI(-fu §)= lpl(.fa ’ ﬁ)'e' §12/hvy €xp [im(MAB/MA)U;Za/h—]

(10)
and, since
E$=8,;+3mM 45/M v},
¥, therefore satisfies
[H,(F,) + V(E,, BTy (F,, B) =i, 2. (11)

We note, on writing Z =v,¢, that Eq. (11), which
has been derived from a stationary-state descrip-
tion of the scattering, is formally identical to the
time-dependent Schrddinger equation obtained by
considering the motion of the electrons above in a
“time-dependent” potential field V(¥,, R(¢)) gener-
ated by the motion of the nuclei. This procedure
would be analogous to the Born-Oppenheimer ap-
proximation for the separation of electronic and
nuclear motions. For direct excitation, the sta-
tionary-state function y,(¥,, R) can be expanded in
terms of the isolated atomic functions ¢, in (4) as

(E B = § 0, B)g,(F)et 60/ (12)

which, on insertion into (11) and with the aid of
(4), followed by projection on direct-excitation
channel m, yields the following coupled differen-
tial equations:

9a,(R) i
—_m = - ot EmnZ/ Nyyg
o @ (onl Viodi,e ,
" (13)
which when solved subject to the asymptotic condi-
tion a,(p, Z - -») =5,, provides ¥; as a function of
¥, and R. Thus, the initial wave function ¥} devel-

ops in R as

\I/:’('f’ ﬁ) =e‘-1:i R exp[zm (KA&)E&]
M,)H

X ew‘z/no,w‘(-fa, ﬁ) (14)

and, as Z- -, reduces to the correct stationary-
state incident wave e‘ii“‘ﬂfp,(‘f,). The final-state
wave function ¥, in (1) is the solution of (2) with

v =0, and is therefore

¥ (F, R) =e'*r Rexp [im (%‘A‘) %z—“] ps(Eo).
(15)

Hence, with the assumption that the relative
speed in the above phase factors is unaffected, i.e.,
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vy =1y, the substitution of (14) and (15) in (1) yields

12M iR R
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X eié‘;,,Z/hv‘> dﬁ , (16)
where §,,=8, -8, and K is the momentum change

k -k s+ The electrostatic interactions averaged
over the electronic motions can be written as®

<¢f| VI o= Vf"(R, G)e“"‘ "-mfw’ @

where m, is the magnetic quantum number of elec-
tronic state f and R =(R,©,®). Thus, (13) is

a—“;fl= ﬁ’v Sa(Z,P,<I>)V,,,,,(R )

Xetm,,,,,@ecsmz/n':;, (18)

with m, ,=m, -m,, R=(z,p,®) in a cylindrical
coordinate frame, and with a,(-«, p, &) =5,, as the
boundary condition. Introduction of the phase-inde-
pendent amplitudes C,(=a,e'™n %) produces

8C,(p, 2) _

"l Sc (0, 2) Vo, 20w/ M4,

19)

a set of phase-independent equations capable of
numerical solution as functions of p and Z. Hence,
with the aid of (19) and (186),

fi7(6,0) =~ %J’ A KR mig Dg16452/00; 2C1 (0, Z2) a(;’ 2) dR,

(20)

which is the basic formula for the scattering am-
plitude as determined from the present approach.
This formula is essentially identical with that de-
rived by Byron® [see Eq. (17b) of his paper]. The
generalization of the above equation to excitation
in many-electron atomic systems is simple when
exchange and transfer of electrons between the two
nuclei is neglected.

We note that the above formula is also repro-
duced when we arbitrarily insert the following
fully time-dependent initial and final wave func-
tions:
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Wi (& ;7 R0, 0 = ( S an(t)%(;a)e-:xn./n)

Xeti,-.ﬁ-inn?t/ﬂu,w (21)
and
¥, (K 5 7, R(2), 0 =[o,(F e Ert /7]
Xeii,-i-nn}c/zu“ (22)

into the scattering amplitude (1) and use the con-
servation of energy together with the substitution
Z =,

B. Approximations to Scattering Amplitude

Approximation I. The first approximation is
based on the fact that for heavy-particle collisions,
the Z component of the momentum change can be
expanded as

Kz =K-fi=k; - by +2k, sin’30

8y, 8
~ b=y = <1+_f_HMAB o). (@)

Hence, the scattering amplitude (20) becomes

'k o’.-
f15(6, ) =—22—”‘fe"< Pletm1r2Cy(p, =) - 5,41dB,
(24)

where
K?=K* - K% =K* - 82, /1%

approximates the square of the momentum change
perpendicular to the incident direction, such that
K’'-p=K'pcos(p - &). Therefore both the & and
the Z integrations can be performed analytically
to yield

f,,(9,<p)=-ik,iAe’Mf J AK'p)
(V]

X[Cf(Pa o) —G{j]P dp, (25)

where J, are Bessel functions of integral order
A=m,,, the change in magnetic quantum number.
The total cross section o, follows dlrectly from
(24) when we write

K2=kf+kf—2k‘kfcos0=K’2 +K2% (26)
to yield

(e + e P21V 2 - .
ok = (k,/k)f|f,f(9 (p)|2d(cose)d¢—47r—2f ] elP=p" K" G fk‘”cf(p,w)—ﬁ‘f]dp

¢=0

Xf [e7 4% Cpo’, o) = 5,1 dp @7)
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in which dK’ =K'’ dK’ d' is an element lying en-
tirely in the XY plane. The upper limit to K’ in
(29) is effectively infinite for heavy particles and
hence

olf(kl)=2ﬂ fofcf(Pa”)—@flzpdp (28)
p=

in harmony with the prediction from (10) and (12)
that |C,(p, »)|? is the probability for excitation at
impact parameter p, and with Byron.? The cor-
responding probability for elastic collisions is,
however, |C;|?+(1 —2ReC,) and is not |C,[?,
except of course when ReC, =3, for all p, which
is an impossibility.

Equation (24) above may be compared to that
obtained by Byron® [see his Eq. (19)] who used the
actual momentum change &, siné perpendicular to
the incident direction, rather than the XY-compo-
nent K’ used here. For heavy-particle collisions,
there is, however, little difference.

Approximation II. This approximation follows
from the neglect of §,; in (20) to give

f‘,(e,cp)=—32%‘fe*‘f‘ﬁmuﬁa—ciai—g’z)dﬁ. (29)

For heavy-particle impacts at high energy, K is
almost perpendicular to # such that

K-R=K-p=Kpcos(6-¢), (30)

where K above is taken as the fofal momentum
change. Substitution of (30) in (29) yields the ex-
pression

fi,(6,0)= -%‘;i“e‘”

<[ Tk [0, ) =0, o, (3D

which is similar to (25) but with K replacing K’.
We note that approximations I and II are identical
only for elastic collisions. The differences be-
tween them will be fully explored for specific in-
elastic transitions in Sec. I C when we examine
the Born wave approximation.

The approximation II, Eq. (31) has also been de-
rived by Bransden and Coleman.® However, it is
worth pointing out that f(6) given by Bransden
et al.*® for the excitation of state n by electron
impact is valid only then for transitions involving
no change in magnetic quantum number (although,
for hydrogenic states, 37, .|¥,,,.|? is, to be sure,
spherically symmetric).

Approximation III. On recognizing that K is not
quite perpendicular to E,, we insert the scalar
product

nlm,

K-R=Kpcosifcos(p —&)+KZ sinkg
~ Kpcos36cos(p — ) (32)

into (29) and (31) is reproduced except that the
argument of the Bessel functions is K pcos36 in-
stead of Kp as in approximation II. With K~ 2k,
xsin} g since k,~ k,, then the argument is k, p siné.
Approximation IV, That the Z and ¢ integra-
tions in (9) can be achieved in the last two approxi-
mations is a direct consequence of the neglect
in (32) of sinjf. A more natural approach, how-
ever, is to rotate our initial coordinate frame by
19 about the X axis such that the new Z’ axis di-
rected along the vector

a' =k, +k,)/ |k, +k, |, (33)

which bisects the initial and final directions and
which always ensures that K -7 =0 for a given
scattering angle . Thus, the components of R
are, in the new (primed) system, given as

p’ cosd’ 1 0 0 pcosd
psind’ |[={0 cosié sini6 || psind
z’ 0 -sin}f cosig z
(34)
such that (29) reduces exactly,

_ Qf k-5 0a,Z,p,9)
N6, 9)==57 )¢ ez

xpl dp’ az' dél’ (35)

with a;, maintained as functions in the old (un-
primed) coordinate system.
To first order, (34) becomes

Z'=Z cos36, p'=pcosis,
cosg’ =cosg/cos3h, (36)
and, by substituting dZ’=dZ cos3#6 in (35), and by
proceeding as above, we find

f17(6, @) = =ik, cos®;6(i coszget?)®

X JU‘QJA(KPCOS%G)[C"(D, w) =8, Jpdp.
(37

If, instead of (36), Z’=2Z, then a factor cos;6
disappears from (37). If, in addition, ¢’'~ ¢,
the (i cos36e'?)? factor also disappears and the
final result is then identical to that of Wilets and
Wallace' (when K ~ 2k, sinj6).

C. Born Version of Scattering Amplitude

By setting C, = 5,, in the right-hand side of (19),
the impact-parameter version of Born’s approxi-
mation is obtained from (20) to yield
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A ¢)=__4172_1Wh:243 fe‘K.RVfi(ﬁ)dﬁ: (38)
the Fourier transform of the coupling interaction,
a result identical with the wave version of Born’s
approximation.

The main advantage of (20) is, of course, its
use in a multistate-state treatment, in which the
set of coupled differential equations is solved
numerically for C,(p,Z). Thus approximation I,
Eq. (24), is essential as a first step and involves
only the replacement of K, by &,,/kv;, which is
almost exact for heavy-particle collisions. The
Born version of (24), approximation I, is

2M, = -
f‘?(g, (P) = _%_ﬁ%&fei(l( p+m‘f6)dp

xf Vo, 2)e 5%/ vi gz (39)

which when expressed in spherical-polar instead
of cylindrical coordinates is equivalent to (38)
with K®=K'? + 82, /i*0}.

As confirmation of this equivalence in approxi-
mation I, consider the following collision pro-
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cesses:
H* + H(1s)~ H* +H(1s, 2s,2p, ) - (40)

The appropriate interaction potentials are* (in
a.u.),

Vis1s(R) = (1 +1/R)e™R, R*=p?+2* (41a)

Vasis (R)= =% V2(2 +3R)e™**/ (41p)
and

Vapo1sR) = E/R)V, (R,

Vzp* 113(§) = (p/\/fR)Vz, ls(R) , (41c)
with

2\°r1 1 3 9 27 -
Vap1sR)=4V2 <§> [;3— '(E? +ﬁ *st6a R)e 3R/2] .
(419)

The inner integral of (39) for these transitions
can be expressed in terms of integral Bessel
functions K, of the third kind,'*''? as

J
[ Visd®) @z = 20,0 + 0K, 0], v=2 (422)
f Vas1o(R) COSPZ dZ = - 2/ 2(a’/A%)p°K,(Ap), a=3, A%=d’+f (42b)
f Vap 1s(R)(Z /R) sinfZ dZ = 4§83 V2B{2K ,(Bp) - [2K,(Ap) +§(p/A)K,(Ap) +§(ap’/ADK,(AD)]}, (42¢)
f_ Vap1s(R)(0/R) cospZ dZ =38 {6K, (Bp) - [AK,(Ap) +3pK,(Ap) +§iB(0*/AIK,(AD)]} , (42d)
with 8=3/8v, a.u.
The & integration in (39) is performed to give
= 2_A£ue_2,A ine [ K’ ® R)eil Bri 43
S8, 0) == 72 v € A JAK'p)p dp _”Vn( Je'®riZ dz , (43)
while the p integration in the above can be acheived by using the integral formula'?
© m 2n+mKl~mAn(n +m)!
'[; p”+ Kn(AP)Jm(K’P)de= (K;z +A2)n+m+l (44)
r
After some algebraic simplification, the follow- where
ts f i -
ing re?ul s for the scattering amplitudes are ob . oM .. ¢? VT
tained: Sis 25(6, 0) = - _—ALh—z K&+ o) (45d)
£5..6,0)= 2M pe* K2+8 (45a) T
tere w with K* =K'* + 82,/v? and cosb=Kia =K ,/K=8,/v,.
B (6,0)= _ZM”,e2 4% _3 45b) All of these results agree exactly with those ob-
15285 ¢ nt (Ke+ar)p’ 27 ( tained from the Born wave formula (38) which can
B _¢B either be evaluated directly using (41) expressed
fis 2’0(9’ @) =f1s25(6, ¢) cOBS, (45¢) in spherical polar coordinates or alternatively

flf 2, 1(0’ (P) =f13 3’(9, (p) 8ind N

from
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2M 4pe® bir = Fis(K
1846, )= - 2Mage” 0 = L&) (46)

where FU(I’E) is the form factor

@i (F)]e' " el gy (F,) ‘
for atomic hydrogen, determined with the atomic
axis of quantization taken along 7, the direction
of incidence. The equivalence between the two
versions of Born’s approximation is achieved
for approximation I via the fact that K'? +A?
=K'*+K% + a*=K? +a® in the denominator of (44).

The difference between approximations I and II
arises essentially from the neglect of §,,/v; in
(20) with the result that K’ in (39) is replaced by
K. Thus, approximation II yields the Born-wave
results only for elastic scattering when K =K',
and increases K* in (45b) and (45d) by &%,/v}.

In the limit of high-impact velocities, approxi-
mations I and II should therefore agree for in-
elastic collisions.

Approximations III and IV also neglect &,,/v,
in (20) and attempt thereafter to take fuller ac-
count of the direction of K (rather than assuming
as in approximation II that K lies entirely in the
XY plane). This procedure leads to K in (45a)-
(45d) being replaced by K cos3 6 for both cases and,
for IV in addition, to the appearance of an extra
multiplicative factor cos®; ¢ for (45a) and (45b)
and cos’}6 for (45a). Approximations III and IV
therefore result in an incorrect angular depen-
dence, becoming worse for the larger scattering
angles. Moreover, the resulting errors would
be strongly amplified for the case of electron
impact.

The basic reason why approximations III and IV
are not as good as approximations I and II arises
from the fact that, while approximation II essen-
tially neglects K, and is thereafter consistent
with this neglect, approximations III and IV neglect
K, initially in (20) and then seek to account for
K, later by assuming that K indeed possesses a
Z component.

The following neutral-neutral processes,

H(ls) +H(1s)~ H(1s) +H(1s, 2s, 2p,,2p,,), (47)

have also been explored in both Born versions.
The appropriate interaction potentials have al-
ready been given.®'!? For the elastic case,

S 10140 2= 20K, (20) + K, (20) ~ 307K, 20)

-5p°K,(2p)], (48)

and the integrals for the inelastic case are also
known.'? The subsequent p integrations can also

|

be performed analytically, and approximation I
then yielded precisely the Born-wave values de-
duced from the customary formula,

f‘B}W(g, (P) =2M’;2362 [1 ‘Fuu(K)I]{[zaif -FU(K)] ,

(49)
for H-H impacts.

Finally, as another example, assume that some
reaction is assumed to proceed (with unit prob-
ability) only for collisions with impact parameter
p <R,, a reaction radius. Then the resulting in-
tegrations in (25) can be performed analytically
in terms of Bessel and Lommel functions. For
the case with A =0, the scattering amplitude is
simply (with a,=0, a,=1 for p<R,, and a,=1,

a;; =0 otherwise)

fu(gy (P) = _ik{RdJl(KRO)/K
=_f“(91¢)" -%kiR(Z) (50)

for small K ~2k, sin}¢. Both the elastic and in-
elastic differential cross sections are therefore
peaked at small scattering angles 4, with magni-
tude %2R, and have angular spread (k,R,)”".
Hence, little error is introduced by setting

™
0y =2m fo [f iy |? d(cos 6)

=208 [ 1,0 ROF G
(4

=TR%=0,, (61)

as predicted elsewhere®® for collisions with a
total absorbing sphere in the limit of large inci-
dent momentum %,. The total cross section for
both elastic and inelastic scattering is therefore

0=0y +0,=27R;
=(47T/k‘)hnfu(9=0) (52)

in harmony with the optical theorem.

In conclusion, a basic expression (20) for the
scattering amplitude f(6) has been simply derived.
The Born version of (20) is identical to the Born-
wave result of f2%6). When a multistate descrip-
tion is used, several approximations are explored
and are presented in decreasing order of effective-
ness [as determined by the comparison of the
corresponding Born versions with f/3%(6)]. The
Born version of the “best” approximation I agrees
with f®¥¢) in the heavy-particle limit, i.e., when
K,=8,,/v,. The possible elaboration of this ap-
proximation to electron-atom collisions is of
interest. The relationship of these approximations
with those previously derived'™® is probed.
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