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Mferential and total cross sections are calculated for elastic scattering and also for rotational and
vibrational excitation when an atom and a diatomic molecule collide at keV energies. Explicit
calculations for vibrational excitation are here limited to the first vibration state only, although the
method can easily be extended to higher vibrational states. The results are valid for small-angle

scattering at keV energies, for which the motion of the nuclei can be treated in the Born approximation,
while the electronic motion is treated in the adiabatic approximation. The cross sections are obtained as
analytic expressions, the exact solutions which follow from a realistic potential form with several

adjustable parameters. These parameters can be adjusted to fit the proposed potential form to the
potential appropriate to the desired collision reactants. The potential form includes the long-range R
van der %aals interaction as well as the steep repulsive potential at short ranges and is a function

also of the orientation angle between the molecular axis and the incident direction.
Hydrogen-atom-hydrogen-molecule scattering is presented as an example. The potential for three
hydrogen atoms is obtained by adjusting the parameters in the analytical expression for the potential to
the ab initio calculation of the H3 energy surface of Shavitt et al. , and numerical values for the
diA'erential and total cross sections are obtained. In the case of other collision reactants, for which no
ab initio energy-surface calculations are available, the results of the present work conversely permit the
parameters (and, therefore, the energy surface) to be determined by experimental cross-section
measurements at keV energies.

I. INTRODUCTION

Any attempt to make progress toward an ab initio
understanding of chemical processes first requires
a knowledge of the so-called "energy surface. "
This shorthand term stands for the energy of in-
teraction of all the systems involved as functions
of their relevant spacings and orientation angles.
When only two atoms are involved (i.e., the di-
atomic molecule), the energy ot interaction is
a function of only a single variable, the inter-
nuclear separation. Even in this simple case, the
energy "surface" is by no means easy to obtain.
Nevertheless, considerable progress has been
made, both theoretically and experimenta. lly, for
many interacting pairs of atoms. However, when
passing on to systems containing three or more
a.toms, the energy surfaces are almost completely
uncharted, except for small regions around the
respective equilibrium configurations. Qn the
one hand, theoretical calculations are prohibitive
and, on the other hand, low-energy-collision ex-
periments to explore the energy surface are all
but impossible.

Qne of the purposes of this work is to call atten-
tion to the fact that for systems consisting of three
atoms, a considerably wider portion of the energy
surface can be experimentally determined by

atom-molecule collisions in the much more acces-
sible keV energy range. The projectile atom beam
can easily be produced by accelerating ions to the
desired energy and then neutralizing them in a
charge-exchange chamber. Techniques both for
forming and detecting beams in this energy range
are by now standard. The upper .limit of useful
energies for studying the energy surface would
be about 2-3 keV. Above these energies the col-
lision time becomes so short that the electronic
state is unable to adiabatically adjust to the
changing internuclear separations. The breakdown
of adiabatic electronic behavior above the cutoff
is evidenced by the onset of electronic excitation
produced by the collisions. It should be pointed
out that for a study of the energy surface, only
the electronic state need adjust adiabatically to
the changing internuclear separations. At the
keV collision energies in the envisaged experi-
ments, the collisions could not be completely
adiabatic; both rotational and vibrational excita-
tion would occur. (These latter excitations are
not eliminated until the collision energy is re-
duced below 1 or 2 eV.) However, far from
making the experiments ambiguous, the occur-
rence of rotational and vibrational excitation (if
these cross sections are measured) actually pro-
vides more detailed information on the energy
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surface.
The motivation for this phase of the present

work grew out of an earlier study" of dissocia-
tion induced by polarization forces when molecu-
lar ions collide on neutral-atom targets. The
collisions studied involved small-angle (i.e.,
large-impact-parameter) scattering of H, ' and
HeH+ on noble gases at 10 keV. It had originally
been reasoned that for large-impact-parameter
scattering, the details of the shape of the poten-
tial at small internuclear separations should not
have much effect, as long as the potential was
devoid of unphysical singularities. The results
of the theoretical study, however, proved to be
surprisingly sensitive to the form of the cutoff
used to make the polarization potential nonsingu-
lax at small internuclear separations. As a con-
sequence, it became evident that such collisions
could be used as a probe to study the energy sur-
face over the entire range of internuclear separa-
tions of interest to chemical processes. In es-
sence, an accurate and complete differential scat-
tering experiment at a single incident energy would
in principle provide a Fourier transform of the
energy surface.

However, although this can be conceived in
principle, it cannot be realistically accomplished
in practice. Therefore, this paper takes a prac-
tical approach. A realistic functional form of the
energy surface is assumed with several adjustable
parameters. (Proper adjustment of these param-
eters can, for example, quite adequately fit what
is known of the H, energy surface. ) With this
functional form, simple analytic expressions for
the differential cross sections both for elastic
scattering and for scattering with rotational-
vibrational excitation are obtained in terms of the
adjustable parameters in the potential form. Thus,
an experimental measurement of the various dif-
ferential cross sections can be used to detexmine
the adjustable parameters in the potential function.

A second purpose of the present work is the
calculation of several cross sections for collisions
of H on H~. In particular, the differential and
total cross sections for elastic scattering and
for excitation from the ground state to any per-
mitted rotational level of the ground and first
vibrational states of the molecule are calculated
for H on H, . Only certain final rotational states
axe a1.lowed in the collision by the potential form
chosen. The calculation of these cross sections
for the case of H on H~ has been accomplished by
fitting the parameters of the potential form as-
sumed in this work to existing calculations of the
H, potential, which has been determined in suf-
ficient detail to yield meaningful cross sections.

The calculation of the potential-energy surface

for H, has had a long and a controversial history.
It wouM disrupt the continuity to outline that
history at this point, since it is not the purpose
of this work either to calculate the potential-en-
ergy surface of H, or to present an optimum para-
metrization of that energy surface. Rather, a
parametrization is presented which is both ade-
quate to describe the potential and from which
elastic and rotational-vibrational excitation cross
sections can be calculated analytically, so that
adjustable parameters might be meaningfully
fitted from experimental data.

It should be borne in mind that, although there
have been many calculations pertaining to the
energy of interaction of three hydrogen atoms,
not all the published results are useful. The po-
tential form required to yield rotational and vibra-
tional excitation must contain dependences on all
three variables relevant to the three-body poten-
tial surface. In this work they axe y~, the inter-
nuclear separation of the two protons in the H,
molecule; 8, the distance between the third atom
and the center of mass of the molecule; and 8,
the angle between R and r~. Each of the potential
surfaces from the literature was examined to
determine its usefulness in obtaining the potential
as a function of these three quantities. Most cal-
culations were unfortunately made for the linear
arrangement, and thus the dependence of the po-
tential on the angle 8 could not be deduced from
them. Such calculations included those by Ellison,
Huff, and Patel, ' Hayes and Parr, ~ Pedersen and
Porter, ' Michels and Harris, ' Schwartz and
Schaad, ' Edmiston and Krauss, ' Salomon, 9 and
Cheung and Wilson xo Margenau" and Conx'oy an
Bruner" presented results for the linear config-
uration and one additional orientation. Calcula-
tions by Eyring and Polanyi xs Takayanagi x4

Dalgarno, Henry, and Roberts, "and Tang" con-
tain no information about the r~ dependence; the
equilibrium separation of the molecule was as-
sumed in their work. Tang and Karplus" con-
sidered the equilibrium case and one slightly
larger separation. Since it is absolutely neces-
sary to know the dependence of the potential on
ra in order to calculate the vibrational excitation
of the molecule resulting from the collision, these
potentials were also unsatisfactory. Porter and
Karplus" give contour maps of the potential-en-
ergy surface for four different orientations of the
system, thus inc1uding both internuclear separa-
tion and angular dependence. The paper by Shavitt,
Stevens, Minn, and Karplus" (SSMK) was con-
sidered to be the most useful. It contains tables
of energy values for three orientations of the sys-
tem and for various internuclear separations of
all three atoms.
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Expressions for the differential and total cro88
sections are obtained in Sec. II using a hybrid'
approximation for atom-diatomic-molecule col-
lisions. The analytical form of the interaction
potential which appears in the matrix elements
is discussed in Sec. III. Evaluation of the matrix
elements required for the differential cross sec-
tions is carried out in Sec. IV, and the numerical
procedure to compute total cross sections is
described in Sec. V. Section VI contains results
obtained for hydrogen-atom-hydrogen-molecule
scattering.

II. FORMALISM

For the intermediate range of incident energies,
i.e., a fern hundred eV up to a few keV, the elec-
tronic motion is nearly adiabatic, despite the fact
that the incident energy is far above the thresh-
old value of approximately 15 eV for electronic
excitation. However, it must be understood that
electronic excitation is indeed taking place, albeit
with small probability relative to such other pro-
cesses as elastic scattering and vibrational-rota-
tional excitation. As a matter of fact, the upper
limit of the range is determined by the increasing
probability of electronic excitation. In view of
the existence of nonadiabatic electronic behavior
which cannot be entirely neglected, there is some
question as to mhether cross-section measure-
ments in this energy range can yield meaningful
information about the adiabatic energy surface
which is desired.

The experimenter is now easily able, by energy
analysis of the collision, to distinguish between
those processes in which eleetronie excitation
did and did not take place. Indeed, in several
laboratories, the state of the art has been devel-
oped almost to the point where individual vibra-
tional excitations can be resolved, and it is antic-
ipated that this capability will be achieved in the
near future. It mould be expected, on intuitive
grounds, that if the experimenter measures those
cross sections which do not involve electronic
excitation, then these data should yield information
concerning the adiabatic energy surface. How-
ever, this intuitive insight must be placed on a
firm theoretical foundation before the results thus
obtained can be trusted.

The formalism in this section, which follows
that of Ref. 1, was developed to describe a col-
lision in this intermediate energy range in which
the electronic motion is essentially able to follow
adiabatically the changing internuclear separation
mhile the vibrational-rotational motion is unable
to do so and is treated in the Born approximation.
As a consequence, this method has been termed
the "hybrid" approximation. It is, however, a

complete and rigorous approximation and also
yields the cross sections for electronic excita-
tion which result as a departure from completely
adiabatic motion. These latter erose sections,
which can be discriminated against by present
experimental techniques, mill not be pursued here,
but mill be taken uy in a future paper. The intent
of this mork is to stress what can be learned about
the adiabatic energy surface by scattering experi-
ments in the intermediate energy range.

The coordinates used to describe the system
are shown in Fig. 1. The nuclei of the diatomic
molecule are separated by a distance r~, and the
atom is located at a distance R from the center
of mass of the molecule. The positions of the
electrons are specified by r„, r„, . . ., and r»,
r», . . ., which give the location of each electron
with respect to the center of mass of the system
to which it belongs. The angle 8 describes the
relative orientation of R and r~. The electron
masses are neglected with respect to the proton
masses.

The Hamiltonian for the entire system may be
written in the form

where T„ is the translational kinetic-energy oper-
ator of relative motion of the two systems, H„
is the internal Hamiltonian operator for system
A, which is taken to be the atom, H~ is similarly
the operator for system J3, the molecule, and
V~ is the interaction potential between A and B.

In the adiabatic approximation the Hamiltonian
is decomposed into a nuclear term h and an elec-
tronic term $C such that

'ai

SYSTEM 8

FIG. 1. Scattering system consisting of an atom and a
homonuclear diatomic molecule at a separation R. The
distance between the nuclei in the molecule is rand
the positions of the electrons are given by ref r, 2, ... ,
rO(. %2s ~ ~ ~
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where Q is the sum of the kinetic-energy opera-
tors for each electron plus the potential energy
between each electron and either a proton or
another electron, and h. is the sum of the kinetic-
energy operators for each proton plus the poten-
tial energy between the protons. The eigenstates
and eigenenergies for the electrons are obtained
for fixed interproton separations by

3 0» 'L~NI& rN2& ~ ~ ~
& ryI& r»2& ~ ~ ~,' R& r&&)

= ~ n (R& r»)Vn FaI& re» r»I& r»s& ~ '&R& rs) ~

e-'«"'", where

gg~ is the reduced mass of the entire system and
e„(A) and e, „(B)are the internal energies of the
two isolated systems.

The basis functions given above form a complete
orthonormal set, so that any function may be ex-
panded in terms of them:

+(r»I& r&2& ~ & ru&& res»' ' ' "& rs)

= Z &I»nw (~ )&}&»N»~

g„(R, rs) is next used as the electron contribution
to the internuclear potential energy in solving for
the eigenstates and eigenenergies of the nuclei:

[h + 8„(R,rs)] g„(R, rs) =E„ y„(R, rs),
where n refers to electronic quantum numbers
and m refers to protonic quantum numbers. The
wave function for the complete system is then the
product of y„ for the electrons and y for the
nuclei.

In the hybrid approximation, the electxons are
treated in the adiabatic approximation, but the
nuclei in the Born approximation. Thus the adia-
batic electronic eigenstates y, are not multiplied
by the protonic wave functions described above,
but instead by a wave function calculated on the
basic of no interaction between systems A and B.
The complete orthonormal basis set which defines
the hybrid approximation is thus

~ M
»gatv(ro&& r~& ~ & r»I& r»2& ~ ~ » ra)

T%=8 Xp(z's)(P„(F I, r~, . . . , rg& r&2 . . . ,'R, rs) .
(5)

The relative motion of A and B is described by the
plane wave e'" ' ", just as in the usual Born ap-
proximation. The eigenfunction g„(rs) for the
molecule is the vibrational-rotational state for
a diatomic mulecule, where v stands for all quan-
tum numbers describing the vibrational-rotational
state of the molecule. This wave function is cal-
culated for an isolated molecule, when the atom
and molecule are at infinite separation. The pro-
tons are too slow in the intermediate energy range
to be able to adjust in the short collision time.
The eigenfunctions can be seen to be truly hybrid:
The first two factors, which describe the nuclear
motion, are from the Born approximation; the
last factor, which describes the electronic motion,
is from the adiabatic approximation.

Time dependence is included by multiplying the
eigenfunctions above by the time-dependent factor

&g u» c» &»

The term H„ in the Hamiltonian is the internal-
energy operator for the atom, and thus is purely
electronic in nature, consisting of the kinetic-
energy operator for the electron plus the poten-
tial between it and its nucleus. The internal-en-
ergy operator for the molecule, H~, may be broken
up into an electrIonic part XB and a nuclear part

The interaction potential V~ is the sum of
three potential terms: V, „ the sum of the poten-
tials between those pairs of electrons having one
of the pair in the atom and the other in the mole-
cule; V, ~, the sum of the interaction potentials
between each electron of either the atom or mole-
cule and each proton of the other; and V~ ~, the
sum of the interaction potentials between those
pairs of protons having one of the pair in the atom
and the other in the molecule. Then the Hamil-
tonian may be written

H =T~+H~+ Q~+k3+ V~ ~ + V, p + Vp p

= T~+++'0'

where 3C is the electronic component,

X -H~+3C~+ V~, + V, p,

and & is the term involving just the nuclei,

=kg+ Vp p . (12)

Schr5dinger's equation for the system is

H% =iS 8+

Following the usual procedure, the expansion for
4 is substituted into the SchrMinger equation
and inner products with each basis element taken,
resulting in the first-order equations
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Then the action of the Hamiltonian on gr„„may be
written

KBI4„„= ~
~ 8„(R, r )+'U) 0 „„

g„(~,rs) =e„(A)+e„(B).
Also, for the molecule,

[hs + e„(B)]X„=e„„(B)X„.

(14)

e*"'"X.[»& &~~.+~s~.]. Using Eqs. (6), (14), and (15), Eq. $13) may be
written

The second term on the right-hand side of Eq.
(13) represents cross terms due to the action of
T„on y„, which is also a function of R. This
term is responsible for electronic excitation. If
electronic excitation is found to be negligible in
the energy range considered, this term must also
be negligible.

The electronic energy of the total system when
the two atoms of the molecule are at a separation
r~ and the third atom is located at a distance R
from the center of mass of the molecule is
8„(R,rs). When the atom and molecule are infi-
nitely separated the total electronic energy is

Hgr [Er -+8 (R rs) $~(~~x~)+ V~ ~]gr„„

(16)
In obtaining this result, the Born-Oppenheimer
approximation has been used for the molecule
so that the operator h~ applied to the total wave
function gr„„acts only on the molecular vibra-
tional-rotational eigenfunction g„and not on the
electronic wave function y„.

After substitution, Eq (9) f.or the coefficients
becomes

,'(Pr..IS.(R, rs) 8„(~-,r, )+ V, ,~~„„,„,}

2
yg wa ~K )M

dQ 2~ (19)

The first matrix element in the expression above
refers to the vibrational-rotational excitation.
The interaction potential between the atom and the
diatomic molecule; otherwise termed the "energy
surface, " is

V(R, rs, 8) =S„(R,rs) -S„(~,rs)+Vp p. (16)

Its form will be discussed below. The second
matrix element describes the electronic excitation
(that is, departure from adiabatic behavior) and
is not investigated further in this work. The re-
sults for electronic excitation for collisions which
occur at relatively large impact parameters can
be shown to be identical to the corresponding Born
cross sections for the systems involved. '

The differential cross section is obtained using
time-dependent perturbation theory'0 to derive
the transition rates which are then converted into
differential cross sections. The differential cross
section is

tween the atom and the molecule: It is the energy
surface and contains no terms involving the elec-
tronic coordinates. Since the adiabatic electronic
wave functions y„are orthonormal for fixed R
and r~, integration over all electronic coordi-
nates yields the Kronecker 6„„,, so that

Mar = d'R e'"'" cPy~ X„r~ *

where

xV(R, rs, 8)X„.(rs)5„„., (21}

K =Kg-K (22}

«~ro (23)

Assuming that [ M» )* is azimuthally symmetric,
as will be the case after averaging over all initial
and summing over all final orientations, then the
total cross section becomes

The total cross section is obtained by integrating
the differential:

where the matrix element M~I is given by

M„=(q.„„iV(B,~„8)i ~,„.„,) . (20) &w=
2 s 2v [Msr~ sin8d8

I 0
(24)

This matrix element involves the potential
V(R, r~, 8), which describes the interaction be-
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O~s — MzI (25)

The result which has been achieved is, as might
have been expected on intuitive grounds, just the
golden-rule approximation to the cross sections
for elastic scattering and scattering with vibra-
tional-rotational excitation using the adiabatic
energy surface V(R, rs, 8) as the perturbation
Hamiltonian. What has been demonstrated is not,
however, trivial. In fact, it is not even precisely
true. This approximation is valid despite the
occurrence of electronic excitation and other
nonadiabatic effects, only because the nonadiabatic
electronic effects, which are contained in the
second matrix element in Eq. (1V), are small.
However, they do in principle contribute to cross
sections which do not involve electronic excitation.
Indeed, it is these terms which determine the
upper limit of the energy range in which the adia-
batic energy surface may be extracted from ex-
perimental scattering data.

The terms in the nonadiabatie component of
Eg. (17) which contribute to scattering without
electronic excitation are those in the second ma-
trix element on the right-hand side fox which the
final electronic state y„, is the same as the initial
electronic state y„. There are two such terms.
One of them is of the form (y, iK &„y)/%~; the
other is a (y, V„my)/2'~ term The in.ner products
are here indicated over electronic coordinates
only, yielding the nonadiabatie corrections to the
scattering potential V(R, rs, 8). Now K P~,
=(2%~E. )'~', while &s&p is of the order of &„y
and is thus of the order of P«= (2m ( E ()«'~ . Here
m stands for the electronic mass, E. , the incident
beam energy, and E,&

the electronic contribution
to the scattering potential V. The reduced mass
K~ can be taken to be approximately the proton
mass j/t. Thus, the two nonadiabatic corrections
to the matrix element for scattering without elec-
tronic excitation are of the order (mE. ,/M (E«()'~'
E„and P'/2M= (m/M)E„. The former is a velocity-
dependent contribution to the scattering potential.
In order that it be comparable with the adiabatic
contribution to the scattering potential, the in-
cident energy would have to be roughly equal to
(M/m)E« Taking the. electronic energy to be of
the order of a rydberg, the incident energy would
have to be 2000 Ry for velocity-dependent forces
to be comparable with the adiabatic contribution
to the potential. It was for this reason that the
upper limit of incident beam energy was placed
in the vicinity of a few keV for the experimental
probe of the adiabatic energy surface for H, . The
second term, (m/N)E«, is always negligible,
unless very high accuracy is desired.

III. POTENTIAL

The interaction potential is expanded in a
Legendre polynomial series:

V(R, r„8)=g f„(R,r, )P„(cos8). (26

Only even Legendre polynomials appear in the
expansion because the diatomic molecule is as-
sumed to be homonuclear. Terms higher than
second order are neglected. The functions f, and

f, are approximated by the expressions

fo(R, rs) =a,e ' -[a,/(R +a',)] (2'f)

f,(R, rs) = a,e-'8" —[a,/(R' + a',)j, (28)

where the odd-numbered coefficients a& are func-
tions of y~:

nfl + A(2(rB +0) +@$3(+8 ro)

i=1, 3, 5, V. (29)

The equilibrium separation of the diatomic mole-
cule 1s go.

The potential may be considered as a short-range
part plus a Long-range part. The short-range part
describes the nuclear repulsion and depends on
B exponentially as e~ '"&. The long-xange part
is the van der Waals potential, proportional to

The denominators of the van der Waals terms
are chosen to be of the form A6+a6 so that these
terms would approach a finite limit when R ap-
proaches zero. The value of the constant a in
the denominator gives the range of the exchange
effect for the electrons. When 8 is greater than
a the probability that the electrons in the two sys-
tems may be exchanged is very small and there-
fore they may be treated as distinct; when' is
less than a, the electron exchange probability is
significant. However, polarization forces are
still important in the regions &a, for, although
the electrons are distinguishable for the two sys-
tems, they are not isolated, and they do interact
with each other.

The four coefficients a& which are functions of
r~ reflect the dependence of the potential on the
internuclear separation in the molecule. In this
work the molecule is approximated by a harmonic
oscillator and therefore terms up to (rs r,)~ were-
included.

The even-numbered coefficients were assumed to
be constant in r~. The two in the exponents, a,
and a, , give the strength of the internuclear repul-
sion between the atom and the molecule. The two
in the denominatox s of the van der %'aals terms,
a, and a„give the range of the electron-exchange
region between the atom and the molecule as
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described above. The potential is well behaved
at large and smally.

The unspecified parameters a& in the expressions
for the potential have been included to facilitate
comparison with experiment. They will be carried
through the calculations to appear in the final
forms for the collision cross sections. Compari-
son of these expressions with experimental eo1,-
lision data would allow numerical determination
of these coefficients to obtain a speeifie potential
for each atomic-diatomic system studied. In
addition, the larger number of parameters allows
better agreement with a previously determined
potential surface; this procedure was used in the
example of hydrogen-atom-hydrogen-molecule
scattering.

Since the many coefficients of this form of the
Hs potential were adjusted to give a close fit to
the SSMK potential, a comparison of this poten-
tial with various semiempirical potential sur-
faces would parallel a similar comparison of the
surface of SSMK to the semiempirical surfaces.
Such a discussion may be found in Sec. IV of the
SSMK payer, in which their potential surface is
compared to the semiempirical surfaces of Eyring
and Polanyi, ' Sato, m' and Porter and Karplus. 18

(Z F,"(&r, & ) f &&'d(&f~(R, rr)+ 0

dp, e' "" dy„r~ 8„,y„+. 33
1 0

The integration over cp+ gives no contribution
whenMwo and is 2m whenM=O, so that I~ is

&r, &rP =(ror& )f &&'&&)fr(Rrr),
0

d~ efEBPy
-1

Now Pz (p) is a polynomial in p, , so I~ will con-
tain terms of the form

I +1
J~(rs) = R'dRfr(It&rs) dye'"""p,

0 -1

which may also be written as
ec)

Z (r,)= R*dRf, (R,r,)„„,. }„0 d~ss Ig~ jg

+1
d~ ~fESp

1

The integration for the matrix element of Eq.
(21) re(luires evaluation of integrals over both
d'B and d'~&. The integration over R is carried
out first. A coordinate system is chosen which
has the momentum-transfer vector K along the
z axis. The orientation of R in this system is
specified by the angles 8~ and y„. The orienta-
tion of rg is similarly given by 8g and yg.

The interaction potential has been expanded in
a Legendre-polynomial series so that the inte-
grals over d'B necessary for the cross section
are of the form

Ii = d R fi(R& rf&)e '"Pf,(R'rf&),

The integration over p, can now be carried out,
resulting in

2 de 1
& (r,)= —.

d
„— dR f,(R,r, )R'- inZR.

(SV)

The expansion of the interaction potential con-
tained only the first two even Legendre polynomi-
als, so that m is either zero or two. The two
integrals to be evaluated are then

I,(rs}=2vP, (cos8s)I,(rs)

dR fo(R, rs}R sinKR4w

where the f~(R, rf&) are given by E(ls. (2V) and (28),
andB. x~ =cosa, where 8 is the angle between'
and f'g. Now

K R =~ cosg+

=KRYO,

, (21)

so that

I2(rs) = 2wP*(cos 8s) [ @2(~a) —a Jo(rs) j

d~ 6 sinKR
=vP~(cos8s) d~ —— dR f,(R, rs)

I, = d'a ~,r e" (32)
~I

dRf, (R,r, )R sinIQt .
0

Legendre polynomials involving cos8 may be
expanded in terms of spherical harmonics in-
volving 8„, y» 8» and y~ by using the addition
theorem so that

Using standard integral tables and contour inte-
gration, these become



V IBRA TIONA L -ROTA TIONA L EXC ITA TION IN. . . 2905

4w 2a,aJC wa, w, &, Ka,M w w,,(rs) K ( 4 Kwp +6 4 2e 4 cos
2 +3 e (40)

and

Sa,a4 12a,a4 12a, , K 2a, w w+ ~(e Ka,v 3 w w,IQ(rs}=wP, (cosgs) (+ '~), +~(+' ~)—,' tan '—+3
' 2e cos

2 +3 —e

e 8 cos +e 8 —,, 2e 8 cos +e '8-3a' 2 3, Z'aes- 2

(41)

These expressions axe well behaved when K
approaches zero. With the integration over cd
performed, the matrix element is now given by

Mr& = d'rs X„(rs}[I (r }+I,(r ))

final angular momentum and averaged over all
initial projections. The required quantity is

1 g g I & F, (rs) Y~(rs) I I,+I, )

&F, (rs) Yf'(rs},)('.
xX. (rs) (42) (44)

For the integration over cPr& the vibrational-
rotational wave functions must be explicitly writ-
ten out. They may be expressed in separated
form as

X„(rs)=F„(rs)Yf(rs) (43}

where Ys(rs) is a spherical harmonic. In the func-
tion F„(rs) the quantum number 6 refers to the
vibrational state of the molecule.

The absolute value squared of the matrix ele-
ment must be summed over all projections of the

The integration over the angles 8~ and y~ will
be carried out first. Writing I~(rs) in the form

Ii (rs) = %~(rs)P~(cos&s), (45)

%4(rs) and%, 4(rs) are real quantities which de-
pend only on r and not on e~ or y~. Equation
(45) may be substituted into Eq. (44) and the re-
sult expanded to give (after using the orthonor-
mality property of the spherical harmonics and
the fact that P, = 1)

Ilci ec e 2 2 II=Q I'& e +IQIIQ le e, f Ps(i ) P (case )Y" (rs Idd d(cose)'
+ g gJ

+IQ IIQ less es„.f Ps (i,)P,(core, )P,"(i,) deed(co',se),
+IQ, I'f Ys(e ) P(cases)Y "~ (r )de d(case )I' (46)

Q = F„rq rg F rg gdr~,
0

(47)

Q, and Q, are the radial integrals which are func-
tions only of K:

TABLE I. Numerical values in atomic units for the
coefficients in the analytical expansion of the potential
for Hs. These values were obtained by a least-squares
fit to the SSMK surface.

C)

Q = F„(r )*%s,,(rs )F„(r )rssdr. s
0

(46)

When the first term is summed over M and M',
all but one term (when M =M') vanish, as indicated
by the 5 function. The second and third terms
(the cross terms) vanish after summation over
M and M' and use of the addition theorem and the
orthogonality of the Legendre polynomials. Sim-
ilarly, using the addition theorem and the ortho-
normality of the spherical harmonics, the last
term can be simplified so that ( Mr& )' becomes

Coef.

Qi2

Qis

Qsi

Qs2

Qss

Q4

Value

0.169199

0.052 106

-0.189 842

0.595 382

306.871

-444.553

-172.712

5.290 97

Coef.

Qsi

Qs2

Qss

Q6

Q7i

Qps

Value

0.002 578

-0.018 677

0.101318

0.101367

29.1367

409.222

1955.31

5.348 79
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TABLE II. Comparison of potentials for various R,
rz, and 8 values. Interaction-potential-energy values
from SSMK are in the column VssMz and corresponding
energies computed from the analytical form of the po-
tential are those under V.

(49)

Z~, = k(rs -r,)' (50)

The initial state of the molecule is most prob-
ably the ground vibrational state (v=0). For
heuristic purposes we will also take it to be in
the lowest rotational state (L =0). In practical
applications, the distribution of rotational states
will have to be folded in. The molecule may be
excited into any of the higher vibrational states
by the collision; the calculation only requires that
the correct molecular vibrational states be sub-
stituted into the radial integrals Q, and Q, . How-
ever, only the even-numbered excited rotational
states are allowed when the initial state is the
ground state. This is a result of the presence of
the integral of three Legendre polynomials in Eq.
(49). The restriction to even-numbered rotational
states is a consequence of the fact that the di-
atomic molecule is taken to be homonuclear and
therefore only even terms appear in the Legendre-
polynomial expansion of the potential. The second
term in the potential leads to the Legendre poly-
nomial of order 2 in the integral of Eq. (49). This
integral is nonzero only for even values of L',
i.e., only even-numbered excited rotational states.

Cross sections will be calculated in this work for
four different final states of the molecule: the
ground state (elastic scattering), the first allowed
excited rotational state in the ground vibrational
state, the ground rotational state in the first ex-
cited vibrational state, and the first rotational
state allowed by the collision in the first excited
vibrational state. Cross sections for higher-order
states may be calculated in a similar manner.

In order to calculate the radial integrals Q, and

Q, in the square of the matrix element, it is nec-
essary to know the form of the vibrational wave
functions F„(rs) for the target molecule. There
are several approximations for the diatomic mole-
cule which may be used to obtain these eigenfunc-
tions. For example, the molecule may be repre-
sented by a Morse oscillator" or a harmonic
oscillator. " In the interest of having the vibra-
tional wave functions as simple as possible, the
harmonic-oscillator approximation was used in
this work. If the separation of the two atoms is
r~, then the potential energy of such an oscillator
is given by

R
(a.u.)

2.6475
2.7195
2.7650
2.8245
2.8960
2.9775
3.0695
3.1750

3.3065
3.4405
3.5785
3.7190
3.9205
4.1295
4.3555
4.5855

4.8595
5.0370
2.5849
2.6804
2.7979
2.9138
3.0650
3.2068

3.3400
3.5016
3.6488
4.1475
4.6378
5.1306
5.6432
3.1001

2.3931
2.4771
2.5910
2.7074
2.8448
2,9953
3.1424
3.2650

3.4268
3.8848
4.3590
4.8578
5.4164
2.8844
5.3842

(a.u. )

1.765
1.679
1.640
1.609
1.582
1.559
1.539
1.522

1.507
1.493
1.481
1.470
1.457
1.445
1.435
1.427

1.419
1.412
1.777
1.667
1.605
1.571
1.542
1.518

1.503
1.489
1.476
1.443
1.423
1.412
1.407
1.560

1.809
1.716
1.650
1.609
1.578
1.549
1.525
1.514

1.496
1.457
1.434
1.419
1.408
1.600
1.400

(deg)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000

20.104
21.056
21.755
22.254
22.775
23.204

23.541
23.898
24.196
25.010
25.601
26.055
26.426
22.773

40.892
42.543
43.991
45.086
46.100
47.058
47.868
48.415

49.102
50.652
51.808
52.731
53.535
46.100
53.533

VSSMK
(hartree)

0.017517
0.017230
0.016 798
0.016231
0.015491
0.014 584
0.013 495
0.012 268

0.010 792
0.009 304
0.007 876
0.006 554
0.004 954
0.003 609
0.002 505
0.001 680

0.001 010
Q.QQQ 791
0.020 122
0.019464
0.018 093
0.016578
0.014 556
0.012 544

0.010838
0.008 937
0.007 369
0.003 510
0.001 520
0.000 582
0.000 169
0.014630

0.029 043
0.028 279
0.026 230
0.023 796
0.020 964
0.017 785
0.014 882
0.012 888

0.010374
0.005 290
0.002 464
0.001 012
Q.000 326
0.021 050
0.000 340

V
(hartree)

0.016880
0.017804
0.017368
0.016 763
0.015 864
0.014 761
0.013 505
0.012 098

0.010 439
0.008 913
0.007 502
0.006 238
0.004 710
0.003 466
0.002 465
0.001 770

0.001 290
0.001 155
0.019901
0.020 061
0.018 524
0.016707
0.014380
0.012 364

0.010624
0.008 735
0.007 226
0.003 496
0.001 602
0.000 917
0.000 862
0.013 763

0.029 272
0.028 382
0.026 048
0.023 515
0.020 683
0.017 769
0.015 151
0.013259

0.010919
0.005 775
0.002 576
0.000 920
0.000 319
0.020 226
0,000 237
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and the eigenfunctions are given by

I"„(r ) ~Ã„H„[a(rs-t,)]8

where N„ is the normalization factor, the
H„[o.'(we -r, )] are Hermite polynomials of order
5q

(56)

E„=(e+g)bv, (57)

The quantized vibrational energy leve1s of the
harmonic oscillator are~

~ = (2u &/&')'~',

and the reduced mass of the molecule is

p, =m/2,

(52) where v is the frequency of oscillation given by

1 (Ra)'i'

where m is the mass of one atom.
The radial wave functions for the diatomic mole-

cule are thus given by Eq. (51) with normalization
factors

The zero-point energy of the oscillator is ~he.
The rotational energy levels for the molecule

rotating about its center of mass are

E~ = L(1,+ l)K'/28, (59)

-1/2
x [1—erf(- ar, )]

x[1 —erf (-nr, )j)

(54)

(55)

where 8 is the moment of inertia for the molecule.
In elastic scattering there is no transfer of en-

ergy to the interna1 states of the molecu1e, and
both the initial and final vibrational and rotational
states of the molecule are the ground state. The
quantum numbers do not change during the col-
lision, so L' = L =0 and g' = g =0. Then the dif-
ferential cross section is given by

ooeoo AB

Hz POTENTlALvs. R, e=~/4

O. 01—

0
1.6

~G. 2. Potential for the H& system as a function of B, the distance between the atom and the center of mass of the
molecule, for e =&~x rad and t'&= xo. Curve 1 is the best fit to the SSMK calculation. Curves 2 and 3 result when e2 is
increased and decreased, respectively, by 10% from the best-fit value.
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0.003—

iQ 0.002
L

I
O

~ O.OOI

F&G. 3. Potential for the
H3 system as a function of
8 for r =so. Curve 1 for
R =4.5 a.u. ; curve 2 for
R =5.5 a.u. ; curve 3 for
A=6.0 a.u. ; and curve 4
for A=6.5 a.u.
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~here ~p(re} may be written

and

(61) Op(r&)=c, +c, (~e ~p)+cp(+B p'p)

where the c, are given by

(63)

(62)

4g 2a,aug a,r 2 z, 1,, «4 3 w

-Eo g

61fa|g ap 23 apg 2 rp ip Xaplf8 v

-e~'4, i =1, 2, 3. (64)

l6— H ON Hp ELASTIC DIFFERENTIAL CROSS SECTIONS

v=O, L&0 ~v'&0, L'~O

p

'e

-8
O

FIG. 4. 8 on H& elastic
differential cross sections
as a function of 8. Curve
1 for an incident energy of
1 keV; curve 2 for 2 keV;
curve 3 for 5 keV; and
curve 4 for 10 keV.
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The radial integration may be carried out using integration by parts so that Q2 becomes

-c2t'

q, N, c=,
' , ~ , (2a'r', + 1)[ 1 —erf( - ar, )] + c, + ' , [1 —erf( -.ar, )])2 4~$ 0 2Q 2Q

~CX2t' +, (a'ro +1.5)[1—erf (-(]y,)]
re "'0 Wm

(65)

Inelastic scattering was considered when the
final state of the molecule was the first excited
rotational state allowed by the collision in the
ground vibrational state. (The initial state is here
always assumed to be the ground state. In appli-
cations where this is not the case, the only change
occurs in the integral of three Legendre poly-
nomials. These are tabulated so that only a small
amount of additional work is required once the
distribution of rotational states is known. ) The
quantum numbers are v'=v=0, L' =2, L=O; and
the differential cross section is given by

02.0O AB
Q

2

where

and

Q2= F,(rJ2) *%,(r J2)F,(rs)re dr22

Here the c, are given by

%., = c, +c,(rs -r,) + c,(rs -r,)' .

(66)

(6V)

(68}

Kav3 w

so that

2g-~'8~' cos ' —— +e-~'8 — " 2e '8~' cos + e '8-3 i =1 2 3
2a w Kav3 w 2a n Z -W3

Z'as 2 3 K'a 2 j

(69)

CK2t' N2r 2

ff, N; c, ', =+, (2a'r +1)[1—erf( ar, )] ~ c, -, ~ ', [1—err(-ar, )])
re- 'o Wv

4 2+2 4n' 2' 2Q

-a2r
+c8 '4, +4, (a'r', + 1.5}[1—erf(-ar, )]

re "0 vs ('l0}

Inelastic scattering was also considered when
the final state was the ground rotational state in
the first excited vibrational state. The quantum
numbers are then v' =1, v=O, L' =L=O; the dif-
ferential cross section is

dQ 2mS2 Ki

where now

Qg= F (r22)+&&(ve)F, (re)rJ2 &s .

The c, are the same as those given in Eq. (64)
for elastic scattering. Integrating by parts re-
sults in

C, F

Q, =2aNN, c, ~ ', [1-erf(-ar)] +c, ' +, (a'r, '+1 5)[1—erf (-ar)])2Q 2Q 0 2 4~+ 4~5
2

~, , + ', [1—erf(- r,)]) (V3)

The third case of inelastic scattering treated was
for the final molecular state to be the first ex-
cited rotational state allowed by the collision in
the first excited vibrational state. The quantum
numbers are correspondingly v' =1, v=0, L' =2,

L=0; the differential cross section is

X2.OO AB ~ Q
2 (V4)
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H ON Hg INELASTIC DIFFERENTIAL CROSS SECTIONS
v=O, L=O = v =0, L'=2

-5

-I5b

O

-20—

I

2
3

HG. 5. H on H2 inelastic
differential cross sections
as a function of 8. The
final state of the H2 mole-
cule is the first excited
rotational state allowed by
the collision in the ground
vibrational state. Curve 1
for an incident energy of
1 keV; curve 2 for 2 keV;
curve 3 for 5 keV; and
curve 4 for 10 keV.
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where now

Q2 = For» r» Fg f'»»dr» (75)

Again integrating by parts to obtain Q2,

IX2F 0

x[1—err(-er, )])
e a "~ Sr,Wm

+ c, , + ', [1-erf (-~,}]a' 4n'

Here, the c& are those given in E]l. (69).

V. TOTAL CROSS SECTIONS

(76}

The total cross sections for the collision of an
atom with a homonuclear diatomic molecule are
given by E]ls. (24) and (25). The integration over
the angle 8 is from 0 to m rad; the integration over
the momentum K is from the minimum value to
the maximum value. These momenta minima and
maxima will be numerically different for each of
the collision cases. In all cases, however, as
K increases the integrand becomes vanishingly
small when K is much less than the maximum
value.

For elastic scattering, the minimum momentum
transferred is obviously zero for the collision

(77)

The maximum momentum transferred for each
inelastic case again occurs for backscattering.
The incident atom recoils back along the original
path but with a momentum less than the incident
momentum by the amount corresponding to the
energy which was used to excite the target mole-
cule. Thus the final momentum is

Kp =Kg -Km~ y

so that for inelastic scattering

(78)

K =2K' -Km~ .

Total cross sections may then be calculated by
numerical integration of E]i. (24) or (25).

in which the incoming particle is forward scat-
tered and undeviated from its original path. The
maximum momentum is transferred for backscat-
tering: After the collision the incident particle
travels back in the opposite direction along its
original trajectory with equal and opposite mo-
mentum. The maximum momentum transferred
is thus twice the incident momentum KI .

For each inelastic case, the minimum momen-
tum transferred is that which corresponds to the
energy used to raise the target molecule into that
particular excited state. Energies above the
ground state of the molecule are given by Eqs.
(57) and (59). The minimum values for Z can
be obtained from these energies since
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H ON H~ INELASTIC DIFFERENTIAL CROSS SECTIONS

v=O, L=O ~ v'=I, L'=0

-5

C4 .
Q
c -IO-

"I5b

0
Qi
O

-20 3
4

FIG. 6. H on H& inelastic
differential cross sections
as a function of e. The
final state of the H& mole-
cule is the ground rota-
tional state in the first ex-
cited vibrational state.
Curve 1 for an incident en-
ergy of 1 keV; curve 2 for
2 keV; curve 3 for 5 keV;
and curve 4 for 10 keV.
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VI. APPLICATION TO HYDROGEN

For hydrogen-atom-hydrogen-molecule scat-
tering, the interaction potential for three hydro-
gen atoms is needed. The calculation of such a
potential energy surface has a long history as it
is the simplest atom-molecule system which may
be studied. ' ' The potential form required here
to calculate vibrational and rotational excitation
has dependences on r&, the internuclear separa-

tion in the molecule; R, the distance between the
atom and the center of mass of the molecule; and

8, the angle between R and r&. The paper by
SSMK" was found to be the most useful in ob-
taining numerical values for the coefficients a,
in the analytical form of the potential. " A non-
linear least-squares fitting program" was used
on a PDP-10 time-sharing computer to obtain
the coefficients. The equilibrium separation of
the hydrogen molecule is that given by SSMK, i.e.,

H ON H~ INELASTIC DIFFERENTIAL CROSS SECTIONS

v=O, L=O ~v'& I, L =2

C4.
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FIG. 7. H on H& inelastic
differential cross sections
as a function of 0. The
final state of the H~ mole-
cule is the first excited
rotational state allowed by
the collision in the first
excited vibrational state.
Curve 1 for an incident en-
ergy of 1 keV; curve 2 for
2 keV; curve 3 for 5 keV;
and curve 4 for 10 keV.
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z, = 1.4018 a.u. The numerical values of the coef-
ficients which reproduce the SSMK surface the
most accurately are given in Table I.

Values of the interaction energy computed from
the analytical expression for the potential are
compared with the data of SSMK in Table II for
various 8, r~, and 8 values. This table contains
the data points from Tables VIII and IX of the
SSMK paper. (The variables of SSMK are not
the same as those used in this paper; however,
the entries in Table II are the same points as in
SBMK Tables VIII and IX, expressed in the present
notation. ) The values given in the column labeled
V»«were obtained from the totaj. -energy data
given in SSMK by subtracting the rest energy of
the H atom and the energy of the H, molecule for
that particular internuclear separation, leaving
only the interaction energy of the system. The
interaction energies in the column labeled V were
computed from the Legendre polynomial expansion
of the potential for the given 8, r~, and 8 values.

The H3 potential as a function of the distance
between the atom and the center of mass of the
molecule which best fits the SSMK values is given
as curve 1 in Fig. 2, with the H, interatomic
separation at the equilibrium value ro, and the
angle between' and x& fixed at ~ m rad. The van
der Vials minimum occurs when R is 5.500 a.u.
and the well depth is about 0.0024 hartree. It
rises slightly after this minimum and then ap-
proaches zero as the distance between the atom
and molecule increases. The energy in this region
represents an extrapolation from the SSMK values,

which are themselves unreliable at 5 a.u. There-
fore no particular significance should be attached
to the particular behavior shown. Indeed, the
minimum would be expected to have a negative
value, corresponding to attractive polarization
forces. Curves 2 and 3 in Fig. 2 show the poten-
tials which result when a, is, increased and de-

, creased, respectively, by 1~ from the values
which best fit the SSMK calculations. This illus-
trates that the analytic potential form given by
Eqs. (26)-(28) is adequate to represent the true
potential. It also illustrates how experimental
scattering data good enough to fix a~ to within1 could provide an experimental test for cal-
culated energy surfaces.

Figures 2 and 3 show only the interaction-po-
tential energy. The total energy of the system
is, of course, equal to the sum of this energy
plus the energies of an isolated hydrogen atom
and an isolated hydrogen molecule at equilibrium
separation. Figure 3 shows the potential as a
function of the angle when r~ is held at the equi-
librium separation ro. The four curves on this
graph were plotted with four different values of
the separations near the van der Waals minimum.
Curve 2 has the minimum energy, and the van
der Naals minimum occurs for this value of 8,
as shown in Fig. 2. It may also be seen from
Fig. 3 that the minimum energy configuration with
rz at the equilibrium separation is the arrange-
ment when the atom is on the peryendicular bi-
sector of the molecule, i.e., when 8=-,'m rad.

It should be noted that these figures have been

40— H ON Hz SCATTERlNS- TOTAL CROSS SKCTlONS

04.
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CO

L=O~v = 0, L'& 0
FIG. 8. H on H2 total

cross sections as a function
of the inverse of the energy
of the incident particle.
Curve 1 for elastic scat-
tering and curve 2 for in-
elastic scattering, where
the final state of the H2
molecule is the first ex-
cited rotational state al-
lowed by the collision in
the ground vibrational state.

0
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plotted using the analytical form of the potential
computed with the coefficients of Table I. These
coefficients were obtained by a least-squares fit
to the data of SSMK. These data were somewhat
limited in scope, and a more accurate represen-
tation of the potential could be obtained if, for
example, interaction-potential energies were
known for more internuclear separations of the
three atoms and more orientations of the system.
A possibly important source of error here, how-
ever, arises from the fit of the analytical form
of the potential to the SSMK data. Increasing
round-off error limited the accuracy such that
the potential was fitted to within 10% accuracy
for most, but not all, points (see Table II). In-
creased accuracy might be obtained by using
additional Legendre polynomials in the expansion
or with a completely different analytical form.
The potential form chosen here is a relatively
simple one which makes the integrals tractable
in order to test the scattering calculation. As
long as these limitations are kept in mind as well
as those of the SSMK calculation itself, then this
is a reasonable description of the H, interaction
potential.

Elastic- and inelastic-scattering differential
cross sections for hydrogen-atom-hydrogen-mole-
cule scattering were computed. In order to obtain
numerical values in the differential cross-section
calculation, it is necessary to know the various
parameters in the expressions for the c;. The
coefficients in the expression for the interaction

potential of the system, the a&, are given in Table
I. The parameter e may be calculated using Eqs.
(52) and (58). The vibration frequency of a hydro-
gen molecule was obtained from H, spectra by
Stoicheff, "and n was computed to be 2.8670 a.u. -'
using his results. The equilibrium separation of
the atoms in the H, molecule is that given by
SSMK. For these values of a and r„ the expo-
nential terms in the expressions for the differen-
tial cross sections are approximately zero, and
the error functions are very close to -1. The
elastic and inelastic differential cross sections
may be computed from the corresponding equa-
tions. The results for hydrogen are shown in
Figs. 4-7. Each figure contains curves for in-
cident energies of 1, 2, 5, and 10 keV. The log
of the elastic differential cross sectioq drops off
more rapidly as a function of angle than the logs
of the inelastic differential cross sections, espe-
cially for the case where the molecule is both
vibrationally and rotationally excited. The prod-
ucts of an elastic collision are scattered primarily
in the forward direction, while those which are
vibrationally and rotationally excited, though
fewer in number, show a greater proportion at
larger angles.

The minimum values of the momentum transfer
K used in calculating the inelastic total cross
sections were obtained from the vibrational and
rotational energy levels for a hydrogen molecule.
Several calculations and measurements have been
made of the energies of these vibrational and

25— H ON HR SCATTERING TOTAL CROSS SECTIONS
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FIG. 9. H on H2 total
cross sections as a function
of the inverse of the energy
of the incident particle.
Curve 1 for inelastic scat-
tering where the final state
of the H2 molecule is the
ground rotational state in
the first excited vibrational
state, and curve 2 when the
final state of the molecule
is the first excited rota-
tional state allowed by the
collision in the first ex-
cited vibrational state.
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rotational states and are reported in the litera-
ture. 2' " Evaluation of both forms of the expres-
sion for the total cross section, i.e., integration
over 8 as mell as K, mas carried out numerically
on a PDP-10 computer; identical results were
obtained. A Gaussian integration program~9 with

up to 96 points of quadrature was used. Figure
8 shows the total cross section versus the inverse
of the energy of the incident particle for elastic
scattering and inelastic scattering, where the
final state of the molecule is the first rotational
state allowed by the collision in the ground vibra-
tional state. Inelastic scattering when the final

state of the molecule is the ground or the first
excited rotational state in the first excited vibra-
tional state is shown in Fig. 9. In both figures
the graphs are straight lines, indicating that the
total cross section is a function of the inverse
of the incident energy, a result similar to that
obtained by the Born approximation.
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