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A calculation of higher-order relativistic contributions to the Zeeman effect in the 2'P, 2'S, 3'P,
4 P, and 5'P states of helium is given. The contributions to the g factors gs, g~, and g~, have

been calculated to order a' and mlM where m is the electron mass and M is the helium mass.

Relativistic contributions are obtained from the matrix elements of a reduced Breit HamHtonian with a
series of numerical wave functions using a Hylleraas basis. The comparison of the theoretical values

with the experhnental determinations of the g factors is given for the 2'P and 2'S states. The value

of gs calculated for 2 P helium is within two standard deviations of the experimental error of the

measurement of Lewis et al. A recent precise measurement of the g factor in 2'8, helium by
Brossel et aL is three standard deviations of the experimental error from the value calculated here and

from the result of Perl and Hughes. These higher-order contributions are necessary for the

determination of the 2'P fine-structure intervals from the Zeeman effect, and hence to test the theory

of fine structure for helium and to d~ aine precisely the fine-structure constant a from the helium

fine structure. The relativistic contribuuusss to gs have been calculated for the helium isoelectronic

series from Li ii through Ne ix for the 2 'P „3'P „4'P „and 5 'P, states.

I. INTRODUCTION

Higher-order relativistic contributions to the
theory of atomic magnetism for two-electron
atoms are of intrinsic interest. Also, higher-
order contributions to the Zeeman effect in helium
are needed for the precise determination of the
2'P fine-structure intervals and for a determina-
tion of the fine-structure constant n from the mea-
surement of the energy levels of the 2'P state in
a magnetic field." In this paper the contributions
to the Zeeman effect are calculated to order
n'p Jf and (m/M) p ~H, where rn is the electron
mass and M is the helium atom mass, for the
2'P, 2'S, 3'P, O'P, and 5'P states of 'He. ' '
The relativistic contributions to gs for the 2 P, ,
3'P, , O'P, , and 5'P, states of the helium iso-
eleetronic series from Li II through Ne 1X are
given.

The Hamiltonian for the Zeeman effect includes
terms to order n' and m/M for helium and con-
tains both relativistic and virtual radiative con-
tributions to atomic magnetism. ' ' The way anom-
alous moments and relativistic contributions to
the g factors combine in a composite system' is
of interest. Discrepancies are present between
the theoretically and experimentally determined

g factors for some many-electron atoms. '0

The comparison of theoretical and experimental
uesi, a.ii.is of the fine structure intervals and

the Zeeman effect in the 2 'P state of helium is a
significant test of the theory of two-electron
atoms. It is of particular interest to test the two-
body wave equation in states of nonzero orbital
angular momentum since many terms in the Hamil-

tonian that vanish for S states are nonhero in P
states.

The Zeeman Hamiltonian, accurate to order
e', was developed from a modified Breit equa-
tion" by Perl and Hughes, ' Abragam and, Van
Vleek, "and Kambe and Van Vleck." Many simi-
lar operators appear in the fine-structure Hamil-
tonian and hence the fine-structure interval may
be calculated by methods used here. '6

A precise evaluation of the matrix elements of
the Zeeman Hamiltonian requires an adequate
atomic wave function. A series of numerical wave
functions in a Hylleraas basis is calculated. '6

The extrapolated value of the energy from the
calculation of the wave function is accurate to
better than one part in 10'. Ten wave functions
for the 2'P state with 1, 2, 4, 10, 20, 35, 56,
84, 120, and 165 terms are each used to obtain
matrix elements of the Zeeman Hamiltonian.

A discrepancy of three standard deviations of
the experimental error exists between a new
higher-precision experimental g~ value for 2'S,
helium by Brossel et al. i7 and the previous eal-
eulation and experiment. " In an attempt to verify
and improve the calculation by Perl and Hugheso
of the g~ factor in the 2'S, state of helium, we
have recalculated the Zeeman effect in that state.

In Sec. II the Zeeman Hamiltonian X~ and its
reduction are presented. A discussion of numeri-
cal wave functions for 2'P and 2'S helium is given
in Sec. III. In Sec. IV the results and discussion
of the relativistic contributions to the Zeeman
effect in triplet states in helium and heliumlike
ions are presented. The Appendix gives an ex-
pansion of the interelectron distance in terms of
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hypergeometric functions and Legendre yolynomi-
als. Brief reports of this research have been
presented. " (2 7)

II. ZEEMAN HAMII. TONIAN
X,' = -(I/M) p. sH [ L + Q (r, x p, )] . (2.9)

The Zeeman Hamiltonian for helium can be
developed from the Breit equation. " The theo-
retical development of the reduced Hamiltonian
was due to Perl and Hughes, ' Abragam and Van
Vleck, "and Kambe and Van Vleck." Innes and
Ufford'0 re-expressed the Zeeman Hamiltonian
in spherical-tensor notation. " The use of spheri-
cal tensors greatly facilitates the calculation of
the g factors. 'o

A. The Breit Equation

In order to apply the theory to more general
cases than two-electron atoms, we write the Breit
equation" as

The vector potential X(r,) has been set equal to
~Hx r, . Xo is the lowest-order Zeeman effect.
Here L=g, l, is the total orbital angular momen-
tum and S =Q,. s,. is the total spin. X, is analogous
to the relativistic increase of mass and T, is the
kinetic energy of the ith electron. The reduction
of the Breit equation (2.1)yields X„X„X„and
3C„which include terms analogous to spin-orbit,
spin-other -orbit, and orbit-orbit interactions. "'"
The last term in the Zeeman Hamiltonian X,' in-
cludes a correction for the motion of the center
of mass, "where M is the atomic mass.

Radiative corrections are included by using the
gyromagnetic ratio of the free electron'4 g~:

Xs =Q ( cg( ' p( +P(lw —Z8 /Y~} —,'(g, —2) = a/2w —0.329 Cs(a/v)'

+ (1.29 +0.06)(n/n')'. (2.9)

(2.1)

where for helium the sum is over two electrons.
In XB, r, is the position of theith electron, p,. is
the momentum, a,. and P,. are the Dirac matrices,
m is the electron mass, e is the electron charge,
and I = e = 1. In the presence of an external mag-
netic field, p, is replaced by p, +e X(r,.).

The Breit Hamiltonian is reduced to large com-
ponents by standard techniques"'" to order (Zn)'
Hy. The magnetic-field-dependent terms have
been retained to order (Zc.)'p ~ by Perl' and
Abragam and Van Vleck." The latter paper in-
cluded the external magnetic field after the re-
duction to large components. However, the Ham-
iltonian is the same in both treatments.

The total Zeeman Hamiltonian, 3C~ contains seven
terms:

This is equivalent to the use of a Pauli Hamil-
tonian" that includes radiative effects.

B. Spherical- Tensor Notation

Innes and Ufford'0 recoupled the operators X,.
into spherical-tensor notation. " We define a
tensor C,'~' that transforms as a spherical har-
monic:

(2.10)

X0 = AH ~ (g~ L +g~ 8). (2.11)

This is the qth component of a tensor of rank k.
We take the first term of X,': -(m/M) psH L,

define g~ =1 —m/M, and rewrite X0 as

X' =psH ~ (L+g, S),

X, =-o.'p, sH Q(T,. +2s,.)T, ,

(2 2)

(2.3)

(2.4}

With the notation

C„.=1, y, &yq

Oy

the Zeeman Hamiltonian, in spherical-tensor
notation, then becomes

Xo = &aH ' 4xL+SsS}~ (2.12)
X, =-,'Zo. 'y. ~H g [s,x W', (r, ')]x r„ (2.5)

X, = -o.'psH. Q (1,. +2s, ) T, , (2.13)

X, +X = -n'p, ,H Q [(s, +2s, ) x«v. ( ~,, )]x r;,
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X, +36, =2&&&'psH Q (s, +2s, )g (-1)' (2k+1)"'

(2.15)

l y(y+ y bl »2
Ig( ) g( ) g(o & k Ig( ) g( )y( )k+1 —

X + I k+1 L i j j k+1 k+1 L j j

1 k(k —1}(2k—3} '
c&gr& ( &k ~) &~)j&~&

2k —1

1(k+1)(k+2)(2k+5)Eg&yr(&km)o&
2&3 2k+3

[(2k+1)' (C'"'(C'"'1 j&&&j"& —(2k+5)" (C&)&+ &(C&)'+" 1 }'&)+ &»j «]&j

2y+y
(2k /1)& ~(C&&k&(C &)&& 1 }&&)+&&j&&&

2k+3
1/2

(C&&)+&&(C &k& 1 j&&)+» j&»
k+2 -i

k+2' k+1
+ ~k+3~ "' j-u "'] k+2 k+1 2~+ 3

x((k(k 1)(kk+())"'(C"'C"')"'—((k ~ k)(k ~ kl(kk ~ 5))'"&Ct'"'C""')t")I

(2.16)

3C, =-2(m/M) AH g [2(r;/r, .)(C!"(C"'l,j"'j"'—)t2 r, rS, ( C"' C"'j"'] (2.17)

The subscripts on the spherical tensors and spin
operators in these equations refer to the electron
and not to the component of the tensor.

The calculation of the Zeeman effect requires
the use of a specific wave function. In Sec. III
the approximations used for the helium wave func-
tion are discussed.

leraas-like solutions are sufficiently accurate for
the calculation of the Zeeman effect.

A. Numerical Wave Functions for 2 P Helium

The wave function 4, , which is the solution of
H,4o =E,40, is to be approximated. H, is the
Schrodinger Hamiltonian for helium in atomic
units:

III. HELIUM WAVE FUNCTIONS
H, = =', V,' ——,

'
V,' —2/r, —2/r, + 1/r». (3.1}

The Schrodinger equation for helium has not
been solved exactly, but both analytic and numeri-
cal approximations for the helium wave function
have been used. Series expansions in a Hylleraas
basis"'" have been used to approximate the helium
eigenvalues and eigenfunctions. Bartlett" and
Qronwall ' demonstrated that these expansions do
not solve the Schrddinger equation for helium even
in the limit of an infinite number of terms. How-
ever, such series do give excellent approxima-
tions to the eigenvalue if a sufficient number of
terms is used. Pock~ developed a series solution
for helium using logarithmic terms. The Hyl-

The spatial part of the 2'P~ wave function is
antisymmetric with respect to the interchange of
electron coordinates. Our standard Hylleraas
basis is taken as"

47Tg2

e- (Kok)r1 e- (K/2)r (3.2}

Pj 2 is an operator that interchanges coordinates
r1 and r2. The screening parameters ~ and 0 are
determined by a variational calculation. The
integers l, m, n are non-negative l&0, m&0,
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n ~ 0. The wave function is a series in U,

f+m+n~v

C, U, „(1 2),
f, m, 7f=o

where the coefficients C, „and the energy are
determined from the variational principle:

6(@oiHo —E)40) = 0.

(3.3)

(3.4)

lowest-order approximation.
We have calculated wave functions for the index

&u in Eq. (3.3) from one through eight. The total
number of terms in a wave function for a given
M is

h'= —,
' ((v+1)((v+2)((v+3).

The interelectron distance is

ri2 =
I rz r2l

(3.6)= (r~ +r2 —2r~ r2 cos 8~2)

where 8» is the angle between r, and r, .
The basis U, „has the symmetry of a (sP) con-

figuration:

4' = (1/vY) [P„(r,)%'»(r, }-4'„(r,)p»(r, }] (3.6}

TABLE I. Ordering of terms in Hylleraas basis.

when correlation is neglected. The single-particle
wave functions are taken as hydrogenic in the

x = 4.619999 945 16372,

0 = 0.289 999 999 105 930.

(S.V)

(3.6)

These values may be compared to the results in
an early calculation by Eckart" and reported in
a different form:

Thus wave functions with 4, 10, 20, 35, 56, 84,
120, and 165 terms were computed. In addition,
a single-term and a two-term wave function were
calculated. Table I presents the ordering of the
variables L, m, and n for ~~4.

We have used the screening parameters ~ and
o given by Schwartz":

z~ = 3.98,

v~ = 0.2V.

(3.9}

(3.10)

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

B. Integrals

Many integrals" are needed to calculate the
matrix elements of 3C, with 40 in Eq. (3.3). The

major ones are

g(L, M~)=
4w 4I'

y y&-2~X-2yL-2
1 2 12 7 (3.11}

TABLE II. 2 ~P energy eigenvalues.

Energy (a.u. )

1
2
4

10
20
35
56
84

120
165

Extrapolated

-2.072 137 762
-2.123 103 128
-2.129471 788
-2.132 678 402
-2.133085 039
-2.133140 222
—2.133157 595
-2.133162 287
-2.133163 594
-2.133163 981

-2.1331642

The energy eigenvalue of 2 'P helium obtained
from our variational calculation is presented in
Table II. The extrapolated energy is in excellent
agreement with Schwartz's best result" of
-2.133164 1908 a.u. These wave functions were
calculated in double. precision on an IBM 360/67
machine.
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B(I, M N}= ' ' e-"~e-"~

X ~N-2 ~N-2 yL-2 COS g (3.12)

There are two types of A. and 8 integrals.
A, (L, M, N} and B,(L, M, N) are the direct integrals
with a = «o, b = «. A, (I,M, N) and B,(I,, M, N) are
the exchange integrals with cc =b =-,'«(1+g). The
computer calculates these integrals by the use
of recursion relations:

A(I, , M, N) = A(L -2, M+2, N)+A(I, -2, M, N+2)

—2B(I —2, M+1,N+1) (s.is)

B{I„M,N}= [B(L—2, M+2, N)

+B(I, —2, M, N+2)

-2A(L -2, M+1, N+1)].
(3.14)

These relations may be obtained with

y '= ln ' ' + ~ ~
(r +r}

2rxra Iran
- rml

(3.24)

is needed in the A and 8 integrals when I =0.
Thus

A, (O, M, N) = ,'[F,.(M-, N) +F„(N,M)),

A, (0, M, N) = ~ [F&,(M& N) + F&~(N& M)];

{3.25}

(3.26}

B~(0,M, N) = ~ [E„(M+1,N —1)+E„(M—1,N+1)

+Fc~(V+1,M-1}+E~(V -1,M+1)]
—~ [E(M, N; «o, «) +E(N, M, «, «o)],

The recursion relations above are valid for A,

integrals with I &1, M&1, N&1, and for 8 inte-
grals with 1.~1, M~2, @~2.

In the Appendix the general expansion of r,"2

in terms of Legendre polynomials as given by
Sacks' is discussed.

The lowest-order term in the expansion

+12 +I +2 +j. 2 12
2 — 2 2

~L+2
x (cos 8„)

1 2

(3.16)

(3.16}

(3.27}

B,(0, M, N) =- [E„(M+1,N —1)+E„(M—1,N+1)

+E„(N+1,M-1}+E„{N—1,M+1)]

--.'[F(M, N; b, 6}+F(N,M; 6, b)),

(3.28)

where 6 =-,'«(1+v). The E, integrals are

E(M, N; a, P)= f dre ""r" 'J "dse s's» ',
(3.17}

then we may show

Woo g +y'
ds e 's» iln, (3.29)

r

MINI
A(2& M& N)»+ j»+c

Q

B(2, M, N) =0,

(3.18)

(3.19)

F,.(M, N) =F, (M, N; «o, «),

Fcq(M&N) =E, (M, N; «& «g)&

E„{M,N) =E, (M, N; 6, b).

(3.30)

B(1,M, N) =—', [F(M+2,N-l; a, b)

+E(N+ 2, M - 1; b, a)] . (3.21)

The E integrals are calculated using

A(l, M, N) =F(M+1, N; s, b)+E(N+1, M; b, cc),

(3.20)

The E, integrals may be written as sums of prod-
ucts of various functions. "

For the A and 8 integrals with M=O, N~1 or
M&1, N=0 when L&1, we need E(M, N; a, p) for
N=O and N=-1:

E(M& N& a&P) =
( )»

1 (M —1)!F{M,i; a, P)=—

(M+N-2)!
F(M&N& a, p)=

p( p)»+» ~

+ F(M, N-l; a, P}.

(3.22}.

(3.23}

——F(M, -N+i; a, P). (3.31)P

Eciuation (3.31) can be obtained by partial integra-
tion. The value of E(M, O; a, P) was not calculated
with a forward recursion method because of loss
of accuracy by subtraction. Rather, a backward
recursion relation is used:
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E(M-1, 0; a, P}= 1

(M —2)!
;,„;..s(M, O. ..()).

(3.32)

F is approximated for a large value of M, and
then Eq. (3.32) is used.

IV. RESULTS AND DISCUSSION

A. Hydrogenic Approximation for 2 P Helium

We approximate the helium wave function with
a product of 1s and 2p hydrogenic wave functions
and calculate the Zeeman effect."

The wave function is taken as an (sp) configura-
tion

C. Numerical Wave Function for 2 S, Helium

4 ' = (1/W2) [R„(r,)R»(r, )

-R„(r,)R„(r,)]!to, (4.1)
A Hylleraas-like numerical wave function has

been evaluated for the 2'S, state of helium. The
form of the wave function' '" is

where X includes spin variables, 0 includes the
angular variables,

1-P„
&((2 + ('(((( I(((((,

L, AE, N
(3.33)

R„(r()=R„(r,)
Z%2 e-Z1r,

where P» exchanges operator subscripts, the

DL» are coefficients to be evaluated, and

u~„„(1,2) = (1 —2 Z~ r2) e

» (S~/2)r2 N N L
1 2 12

For a preliminary 35-term wave function we ob-
tained E =-2.175 212 a.u. , which is in adequate
agreement with the result of Pekeris" of
E =-2.175229 a.u. with 715 terms.

The best result for the convergence of the energy
eigenvalue was obtained with the screening factors
Z, =4.25 and Z, =1.66. These factors differ from
the results of Traub and Foley, "who obtained
Z, =4.12 and Z, =1.20.

and

R„(r,) =R„(r,)
= (Zs"/2~6) r, e- (s2(»"(.

(4 2)

The values of the screening constants are
Z, =1.99, Z2=1.09." Z1 and Z, are related to K

and cr in Eq. (3.2):

a =2Z, =3.98,

o=Z, /2Z, =0.27.
(4.3}

Matrix elements of the Zeeman Hamiltonian X~
in Eqs. (2.12)-(2.17) using the Russell-Saunders
eigenstate l'P~mz) are calculated. The result
('P~m~ l36el'P~ m~) is given in terms of radial
integrals R,. and various n j symbols:

(l3Col)=v6 PaH( 1)( &(2 J+-1)"~(2J'+1}' 2 [(-1)~'~ g~+gs],
1 J' J1J'

/

J 1 J' J 1 J'
(lX, l)=-v6 a l(eH(-1)' ~(2J+1)' (2J'+1)' [R, +[1+(-1) '~ ]Ra),

J J

(4.4}

(4.5}

JI
(lX, l) = v 6 a'(j(~(-1)' ~(2 J+1)'"(2J'+1)"'

-mJ 0 mJ

(1 J1J(x —
) (R, pR, ) ~( 1)&

(lX, +K4l) = v'6 a'psH(-1) z(2 J +1)' '(2 J'+1)"' J 1 J'
-mJ 0 mJ

1 12 1 10
xl 1 1 1 (-,'R, +2R, ——,'R, )+ 1 1 1

J J' 1 J J' 1

(4.6)

(4.7)

J 1 J'
(lX,l)=v6 a p~(-1) ' " &(2 J+1)' (2J'+1)'

-mJ 0 mJ

X
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((29,1)=49 9 H( /94)(-1) ' (29 ~ ))' (29' ~ )) ( (*R ~
—

~ R ~ ~ ~ R.) (4 9)

The radial integrals are defined as either direct
D or exchange E integrals. A direct integral is
of the form

fR„(r,)R~(r~) Xs R„(r,)R»(r, )d7',

and an exchange integral is of the form

fR„(r,)R»(r, )36r R „(r~)R ~(r, )dr.

The subscript sp indicates r, =rI and r, =r„ps
is the reverse. The radial integrals in the matrix
elements of the Zeeman Hamiltonian are

(r, ~r2) = -0.0177,

(r, ~r, ) = -0.0133,

R, =((T() =1.99, R, =((1', () =0.149, R (
'
) =1 99,

1
R4 = — = 0.273, R, = (r, &r,}= 0.0046,r I D&

r
1 r1

R, = — (r, ~r2) =0.267, R,=, (r, ~r, ) =0 0079.,
l &I g &2 gps

r r' '

RR = ', (r, ~r2}=0.025, RR =
4 (r, ~rR) =0.0043,

sP

R„= ', ' (r, r~, ) =0.003, R„=

r38 r38r

R« = ((r2'[)() =0.758, R» = ([r2'[)~ =25.25, R„=()r2 SrJ )z =0.020,

2 8

These radial integrals differ slightly from the previous calculation. ""
The g factors are defined by the following grouping of the matrix elements of the Zeeman Hamiltonian:

J/
(J'mz ~Kz~ Zm~) = (-1}2 &(2J+1)2 R(2 J'+1)2 2

W6
-m~ 0 m~

1 1 2

[g~+(-1) ' g~]+ 1 1 1 (-1)~gx l2sH,
J J/ 1

(4.10)

where

gJ. =gg, + ( RR RRR+ 29 RT —RRR+ 29 R
I

+—R ——R ——R +—R )
I 1 2 2
30 10 30 11 15 12 15 13

+ (m/M)(-'2 R,R
- 3 R22 + 3 R)R}'

I 2 1 1 1
g ~

=
g2) + a (-R, -R +—

RRR +R—R4 -
RR R 9

—RR() +2 R,);

gr =a (RR —RRR —2R, +RR,}. (4.11)

the reduced Breit Hamiltonian in spherical ten-
sors. gx vanishes in S states.

The g factors can be evaluated to give theoreti-
cal values in the hydrogenic approximation

g' =g -80.3X10

~ = ~~ +3.8x10-e

gx
—-5.6 x 10-e

(4.12)

This result may be compared to the hydrogenic
approximation" using less precise radial integrals

The g factor g~, of order n2, comes from the
matrix elements of a tensor composed of a spin
vector and a spherical tensor of rank 2 such as
I sC(R) }'2), which arises from the recoupling of

gH =g~ (79.g y3.5)x10-',

g~ =g~+(1.1 +1.5)x10 ',

g» = (-3.2 y4.4)x10 '.
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B. Matrix Elements Using the Numerical

Wave Function for 2 P Helium

J1J'x [g, +( 1) '
'gr, ] (4.13)

If we let Xs =+ 03e, , we may write the matrix
elements of the complete Zeeman Hamiltonian:

('S,m, iz, i'Z, , m, )
JI

=&6 (-1)' ~&(2J+1)' '(2 J'+1)"'
-m~ 0 m~

J1J'

1 12'
!

+ 1 1 1 (-1)~g» p~. (4.14)
I Z Z 1

We note that the matrix elements of the Zeeman
Hamiltonian, using the numerical wave function
Eq. (3.3), is of the same form as Eq. (4.10) where
the pure (sp) configuration is assumed. Owing
to the presence of correlation in the Hylleraas
basis, one can consider the basis to include ex-
cited configurations as well as the (sp) configura-
tion —but this does not change the Zeeman Hamil-
tonian matrix. "

A computer calculation is performed to evaluate
the radial integrals. Table IG gives the value of
the g factors for each of the ten wave functions.
The series of ten values for each g factor is ex-
trapolated by standard techniques "Esse.ntially

TABLE III. 23P& helium g factors using numerical
wave functions.

Once the integrals in Sec. GIB are computed,
the calculation of the matrix elements of the Zee-
man Hamiltonian for the 2'P state is straight-
forward. 3CO has no radial or angular parts; hence
we obtain the same result as Eq. (4.4):

(9,m, i3c,i'I, , m,)

=&6 p~(-1) z(2 j+I)|a(2cP +1)' J 1
-m~ 0 m~

the g factors are considered a function of the index
~, which is extrapolated to infinity. The accuracy
of a calculation of this type is difficult to assess.
The calculation was performed in double preci-
sion to help eliminate loss of accuracy by sub-
traction. The error limits on the extrapolated
values in Table IG are based on the convergence
of the g factors as (d is increased.

We can compare the result of this calculation
with the hydrogenic approximations given in Eq.
(4.12) and the experimentally determined values. "
The comparison of the experimental and theoreti-
cal g factors appears in Table IV. There is good
agreement between the experimental and extrap-
olated values reported here. The calculated values
of g~ and g» are both within one standard deviation
of the experimental error. The theoretical value
of gs calculated with the numerical wave function
agrees well with the hydrogenic approximation
and agrees with experiment within two standard
deviations of the experimental error. Because
of the small discrepancy between the experimental
and theoretical values of gs, a more accurate
measurement of the Zeeman effect in 2'P~ helium
would be useful. The measurement of the g factors
in 2 P helium is important for the determination
of the 2'P, -2 P, and 2 P,-2 P~ fine-structure in-
tervals '"

The 2'P, state of helium lies 6 ~10' GHz above
the 2 'P~ states. Spin-orbit interaction between
states of the same total angular momentum J
leads to a partial breakdown of L,-S coupling.
Araki' and Pekeris" have shown that the singlet
admixture shifts the energy of the 2'P, state by
about 4.5 MHz. Second-order perturbationa from
the singlet state do not contribute because the
Hamiltonian &i is diagonal in I, and S. Hence the
lowest-order contributions to the Zeeman effect
are third-order perturbations of the form

TABLE IV. Comparison of g factors in 23P& helium.

(gs gs) x 10~

Terms gs gs) x 106 ~gl', gr. ) x 106 g&x 10

1
2
4

10
20
35
56
84

120
165

-115.739
-85.300
-82.953
-80.676
-80.453
-80.457
-80.460
-80.462
-80.462
-80.462

3.942
10.418
7.948
8.533
9.379
9,917

10.337
10.879
11.070
10.782

-6.74
-6.38
-5.59
-4.99
-4.68
-4.64
-4.54
-2.25
-0.57
-3.47

-3.5 + 2.5Extrapolated -80.46+0.01 10.6+0.4

Extrapolated
Hydrogenic
Experiment

Extrapolated
Hydro genic
Experiment

gxx10

Extrapolated
Hydro genic
Experiment

-80.46 + 0.01
-80.3
-76.0 + 2.4

10.6 +0.4
3.8
3.8 +9.0

-3.5 ~2.5
—5.6

4.0 *25.0
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('P, I spin-orbitl'P, )('P, I3C~I 'P, )('P, I spin-orbit( 'P, )
[E(2 P, ) —E(2 'P, )]

(4.15)

Hence

where

(4.26)

The magnitude of this perturbation is approximate-
ly 10 ' GHz for magnetic fields of several kG and
hence would change the g factors by less than
0.1 ppm.

C. Relativistic Contributions to the

Magnetic Moment of 2 S, Helium

gs gs 2a2 T + ~ (4.27)

This result agrees exactly with the calculation
of Perl a,nd Hughes. ' Pekeris" has calculated the
value of the matrix elements of T and r» using
a wave function with 715 terms:

Perl and Hughes' evaluated the relativistic con-
tributions to the magnetic moment of 2'S, helium.
Drake et al."measured the ratio of the atomic
g~ value of 2'S, helium to that of 1'S»2 hydrogen
by means of an atomic beam magnetic resonance
method to obtain the ratio

( T) = 2.175 229 376 24,

= 0 268 197855 3(
1

r12

Hence, using Eq. (4.27), the value for g~ is

(4.26)

(4.29}

g~ (He, 2'S, )
g, (H, 1'S,g, )

The theoretical ratio is'

=1 —(23.3 ~0.6)x10-'. (4.16)
g& g& 81 98322~10-e (4.30)

This result is also in excellent agreement with
Perl and Hughes. Thus, to order a2, we may
write

e 23S =1 —(23.3 a1.0)x10-8
g~(H, 1 S,q~)

g~(He, a'S,) =g~(1-40.99161x10-'), (4.31)

( sll+Ol sl) Psffggt'

(S&I&&l'S&) = &'WsW &), -
(4.18)

(4.19)

(4.17)

The Zeeman Hamiltonian in Eqs. (2.12)-(2.17)
canbe used to find theg factor of the 2'S, state
of helium.

Matrix elements of the Zeeman Hamiltonian
yield

using g~ from Eq. (2.9).
%'e may use the expression of Grotch and Heg-

strom' to evaluate the hydrogen g factor:

1 2 3 m m
g (ff 1'S }=g 1-—a' 1-——+3

2 M M

1, 5 m 7 m
+ n3 1-——+——

4m 3 M 3 M

(4.32)

(4.20)
where M is the proton mass. One obtains

g~ (ff, 1 ~s,(~) =g~ (1 —17.705 1 x 10 8) . (4.33)

(4.21)

(4.24)

By the use of the virial theorem, "one can es-
tablish

+ T + (4.25)

(4.22)

(4.23)

where T = T, + T, is the total kinetic energy of both
electrons. The matrix elements of the total Hamil-
tonian 3' =Q', ,X, may be written

(& I+
I

& )=PA lb++ ( 1.

+ ———T) ——

Hence from Eq. (4.31) and Eq. (4.33) the ratio is

He 2'S
=1 —23.286 92x10 ~. (4.34)

(See "Note added in proof" at the end of the Ap-
pendix. )

A recent precise mea. surement by Brossel
et al."of the ratio of the magnetic moment in the
2'S, state of 'He to the nuclear magnetic moment
in the ground state, of 'He, when combined with
other experiment measurements, yields a more
precise ratio than at of Eq. (4.16},

He 2'S
=1 —(21.6 +0.5)x10 (4 35)

The discrepancy between the theoretical value
of Eq. (4.34) and experimental value of Eq. (4.35)
is about three standard deviations of the experi-
mental error. The Breit equation includes terms



2854 V. L. LEWIS AND V. W. HUGHES

TABLE V. Corrections to g& factors in triplet states
of helium.

TABLE VI. Relativistic contributions, to order 0. ,
to the g factors of heliumlike ions. (g& -gs)x 10 is
tabulated.

23Pi 33P, 4 Pi 53Pi
2 Si
2 3Pi
33Pi
4 Sp

5 Pi

-81.983 22
-80.462 23
-75.12151
-73.294 33
-72.459 57

io order (Za)'gs/f. The next-higher-order term
in the Zeeman effect has not been calculated for
helium but should be of order a'p~. The a' con-
tribution to the g factor in the ground state of
hydrogen, g~(EI, 1 'S,»), in Eq. (4.32} is a'/4s
or about 0.03x10 '. Thus an n' correction of
this order of magnitude for helium would not elim-
inate the discrepancy between theory and experi-
ment. Experiments to remeasure the g factor
in 2'S helium are in progress at Berkeley, at the
Ecole Normale Superieure, and at Yale.

APPENDIX: EXPANSION OF POWERS

OF THE INTERELECTRON DISTANCE

The expansion of powers of the interelectron
distance r„was discussed by Sack." The series

l

r,,' =r& ' Q —"'
Pi (cose„),

t=o
(AI)

D. Relativistic Contributions to the Magnetic

Moment of Triplet States in Helium

and Heliumlike Ions

We note that the expression for gs in Eq. (4.27)
is valid for triplet states. The particular radial
dependence of the wave function is, of course,
important in the evaluation of the matrix elements.
Table V presents the g~ factors for five states of
helium. We have used matrix elements calculated
by Pekeris"'"'" for T and r,,'. It is very in-
teresting to note that the use of Eq. (4.27) verifies
our numerical wave-function calculation of g~ in
the 2'P state.

Table VI presents relativistic contributions, to
order a', to the g factors of heliumlike ions from
Li II to Ne IX. Matrix elements calculated by
Pekeris" were used in the application of Eq. (4.27}.

Li~
Bee I
B" rv
Ci2
N'4 vi

0 vn
F Vra
Ne20 Ix

-187.521 29
-338.8803
-534.5915
—774.6687

-1059.117
-1387.938
-1761.134
-2178.705

-171.9165
-308.136
-483.795
-698.897
-953.44

-1247.43
-1580.871
-1953.752

-166.548
-297.51
-466.19
-672.59
-916.7

-1198.6
-1518.1
-1875.39

-164.084
-292.6
-458.1
-660.47
-899.77

-1176.0
-1489.1
-1839.2

r"„=Q /t„, (r„r,)P, (cose„}.
l=o

(A3}

The radial functions R„, are defined in terms of
the hypergeometric function:

Z(a, P; r, x)=I++ . (A4)

where

(a)0 =1; (a), = a(a +1) ~ ~ ~ (a+s —1)= I (a+s)/I'(a).

The R„, are given by:

xE(/ —m, —
~ mn; l +—~, r(/r&). (A5)

The hypergeometric functions (A4} are finite
series if either u or P is a negative integer or
zero. Thus r» can be expanded in a polynomial
in (r&/r& }' if n is a positive odd integer, and it
can be shown that finite expansions are possible
for negative odd integer n. Various recursion
relations can be developed in the R„g.

In addition to (Al) and (A2) we may explicitly
write

is well known. Jen" gave the expansion for ry2
in terms of Legendre polynomials:

2 1 1 rr„=r, g —
2/ 3

—
2/ 1

—P, (cose»)
+ I, - r&

(A2)

Sack expanded r» in terms of radial functions and
Legendre polynomials:

r 2
rs2 = 3r&~g —

~ [(2l —1)(2l —3)] ' —2[(2/ —1)(2l+3)] ' —+[(Bi+3)(2/+5)] ' —
~
P (cos8,~), (A6)

s r&

r 2

r,~=-15r&SL —
~

[(2l —5)(2l —3)(2/ —1)] ' —3[(2l —3)(2l —1)(2l+3)]
g r&

s)
+ 3[(2/ —1)(2l +3)(2/+ 5)] ' ——[(2l + 3)(2l + 5)(2/ +7)] ' —~P (cos &,2),r) r&

(A7)



HIGHER-ORDER RELATIVISTIC CONTRIBUTIONS TO THE. . . 2855

r 2
y7» =105'&~ Q —

~ [(2l —7)(2l —5)(2l —3)(2l —1)] —4[(2l —5)(2l —3)(2l —1)(2l +3)]

4 e
+6[(2l —3)(2l —1)(2l + 3)(2l +5)] ' ——4[(2l —1)(2l + 3)(2l + 5)(2l + 7)]

Y)

8)
+[(2l+ 3)(2l +5)(2l +7)(21+9)] ' — iP, (cos&„), (A8)

r»' =, , Q, '„(21+1)P,(cos 8»),» r)2 r2& i r (A9)

r»'-— , » Q „, (2l+1)[(2l+3)r'&—(2l —1)r~&]P,(cos8»).
&( ~ &)

(A10)

The expansion of r» contains series whose sums are logarithmic. The first two terms in the expansion
are given by

(A11)

These expansions are rather useful in the computation of radial and angular integrals.
Note added in Proof. A new experimental determination of gz(He, 2'S,)/gz(H, 1'S«~) has recently been re-

ported [E. Aygiin, B. D. Zak, and H. A. Shugart, Phys. Rev. Lett. 31, 803 (1973)i]:

=1-(23.25 0. 30) x10-'.
g~(H, 1 S~(~)

This value is in excellent agreement with the theoretical value given in Eq. (4.34).

«Research supported in part by the Air Force OfBce of
Scientific Research AFSC under AFOSR Contract No.
F44620-70-C4091.

~Paper based in part on a dissertation submitted by M. L.
Lewis in partial fulfillment of the requirements for the degree
of Doctor of Philosophy at Yale University.

'A. Kponou, V. W. Hughes, C. E. Johnson, S. A. Lewis, and
F. M. J. Pichanick, Phys. Rev. Lett. 26, 1613 (1971).

'J. Daley, M. Douglas, L. Hambro, and N. M. Kroll, Phys.
Rev. Lett. 29, 12 (1972).

M. L. Lewis and V. W. Hughes, in Abstracts of Third
International Conference on Atomic Physics, Boulder, Colo. ,
1972, p. 149 (unpublished).

'M. L. Lewis, thesis (Yale University, 1972) (unpublished).
V. W. Hughes and M. L. Lewis, Bull. Am. Phys. Soc.
18, 120 (1973).

W. Perl and V. Hughes, Phys. Rev. 91, 842 (1953).
'W. Perl, Phys. Rev. 91, 852 (1953).
'V. W. Hughes, Recent Research in Molecular Beams

(Academic, New York, 1959), p. 65.
'S. J. Brodsky and J. R. Primack, Phys. Rev. 174, 2071

(1968).
' V. Beltrin-Lopez, and T. Gonzalez E., Phys. Rev. A 2, 1651

(1970); Phys. Rev. A 4, 429 (1971).
"F. M. J. Pichanick, R. D. Swift, C. E. Johnson, and V. W.

Hughes, Phys. Rev. 169, 55 (1968).
' S. A. Lewis, F. M. J. Pichanick, and V. W. Hughes, Phys.

Rev. A 2, 86 (1970).
"G. Breit, Phys. Rev. 34, 553 (1929).
"A. Abragam and J. H. Van Vleck, Phys. Rev. 92, 1448

(1953).
"K. Kambe and J. H. Van Vleck, Phys. Rev. 96, 66 (1954).
' C. Schwartz, Phys. Rev. 134, A1181 (1964).

"M. Leduc, F. Laloe, and J. Brossel, J. Phys. {Paris) 33, 49
(1972).

"C. W. Drake, V. W. Hughes, A. Lurio, and J, A. White,
Phys. Rev. 112, 1627 (1958).

"H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).' F. R. Innes and C. W. Ufford, Phys. Rev. 111, 194 (1958).

"B.R. Judd, Operator Techniques in Atomic Spectroscopy
(McGraw-Hill, New York, 1963).

"Reference 19, p. 181.
"M. Phillips, Phys. Rev. 76, 1803 (1949).
"T. Kinoshita and P. Cvitanovic, Phys. Rev. Lett. 29, 1534

(1972).
"W. Pauli, Rev. Mod. Phys. 13, 203 (1941).' E. A. Hylleraas, Z. Phys. 48, 469 (1928); Z. Phys. 54, 347

(1929).
"E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956).
"J. H. Bartlett, J. J. Gibbons, and C. G. Dunn, Phys. Rev.

47, 679 (1935); J. H. Bartlett, Phys. Rev. 51, 661 (1937).' T. H. Gronwall, Phys. Rev. 51, 655 (1937).
V. Fock, K. Nor. Vidensk. Selsk. Forh. 31, 138 (1958).

"C. Eckart, Phys. Rev. 36, 878 (1930).
"L. Hambro, Phys. Rev. A 5, 2027 (1972); thesis (University

of California, Berkeley, 1969) (unpublished).
R. A. Sack, J. Math. Phys. 5, 245 (1964); J. Math. Phys.
5, 252 (1964); J. Math. Phys. 5, 260 (1964).

'C. Schwartz, Phys. Rev. 123, 1700 (1961).
"C. L. Pekeris, Phys. Rev. 112, 1649 (1958); Phys. Rev.

115, 1216 (1959); Phys. Rev. 126, 1470 (1962).' J. Traub and H. M. Foley, Phys. Rev. 111, 1098 (1958).
"In Ref. 12 it was incorrectly stated that R 9 and R» diverge.

This did not affect the numerical results because of
cancellation of these integrals.



2856 M. L. LEWIS AND V. Vf. HUGHES

"G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651
(1959}.

"B.Schiff, C. L Pekeris, and H. Lifson, Phys. Rev.
137, A1672 (1965).
H. Grotch and Roger A. Hegstrom, Phys. Rev. A 4, 59
{1971).

"B.Schiff, H. Lifson, C. L. Pekeris, and P. Rabinovritz, Phys.
Rev. 140, A1104 (1965).

4'Y. Accad, C. L Pekeris, and B. Schiff, Phys. Rev. A 4, 516
(1971).

"C. K. Jen, Phys. Rev. 43, 540 (1933).


