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Calculation of Substituted Fredholm Determinants Using Complex Basis Functions
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Using basis functions arit complex coordinates, it is possible to construct discrete approx&~actions to
the Fredholm determi~ant directly at real energies using only square-integrable functions. For the case
of purely elastic scattering, the procedure is equivalent to an anIytic continuation of the coordinate
dependence of the Hemi&tonian. It is shown that improved convergence is obtained by an application of
the "dispersion~rrection" method. The method is generalized to aHo~ calculation of the substituted"
Fredholm determinants needed to construct the 8 matrix for ~attywhannel potential-scattering
problems. This gen~i~~tion is not equivalent to a simple continuation of the coordinate dependence of
the manywhannel Hami&tonian. Results of calculations on several model problems are presented.

I. INTRODUCTION

A Fredholm technique for computing phase shifts
for elastic scattering of a particle from a potential
V using only square-integrable (I,') basis i'unctions
has recently been discussed. ' The method pro-
ceeds by construction of the matrix representa-
tions H and H' of the operators H' and Q=Q'+P
in an I' set of functions, from which an approxi-
mation to the partial-wave Fredholm determinant,
D(z) =det[1 -6'(z) V], is calculated as

The outline of the paper is as follows: The
method of complex basis functions is introduced
within the context of potential scattering in Sec.
II. The results of application to several simple
potentials are given. The extension to many-chan-
nel problems is outlined in Sec. III, where the
results of application of the complex basis method
to compute elastic and inelastic cross sections
for the model problem of two coupled square wells
are presented. Section IV contains a brief discus-
sion.

H. POTENTIAL SCATTERING

E', and E', being the eigenvalues of the matrices
g and g', respectively. Phase shifts can be cal-
culated from 'D~"" iteehr by numerical analytic
continuation to obtain the 8+i& limit, ' or by work-
ing directly at real energies and making use of
the relationship between the I.' basis set and the
"equivalent quadrature"' generated by it.

This note describes an extension of this tech-
nique to the case of many-channel potential scat-
tering. In many-channel problems it is still possi-
ble to construct the open-channel block of the 8
matrix from the scalar-valued Fredholm determi-
nant considered as a function of a single complex
variable'; however, to accomplish this we must
consider D(z) as a multisheeted function of the
complex variable z. Specifically we require knowl-
edge of the "substituted'" determinants which may
be thought of as arising from simultaneously taking
the E —ie limit in some channels and the more
usual E+ie limits in the others. ' Using a techni-
que which is a simple generalization of the method
of complex coordinates described by Nuttall and
Cohen' it will be shown that there is a simple and
natural way to obtain these "substituted" deter-
minants within the framework of an I' computa-
tiona1 scheme.

A. Complex Basis Functions

The method of complex coordinates (i.e., con-
sidering the potential to be a function of complex
position) is well known in the theory of potential
scattering as it may be used to extend the region
cf analyticity' of the Lost i'unction into the lower
ha1f 4 plane. More recently the method has been
used as the basis for several new theoretical' and
computational advances. "As specific computa-
tional methods' have been given for the calcula-
tion of T-matrix elements we will simply sum-
marize the results which are needed in Fredholm
theory, where it will be seen that for potential
scattering the technique is equivalent to computa-
tion with complex basis functions. We postpone
until Sec. III the extension to multichannel prob-
lems, where it wQ1 be shown that the technique of
complex basis functions represents a generaliza-
tion which is got equivalent to the use of a Harn-
iltonian with complex coordinates.

We begin with the Fredholm series"

z -H(r) ~t'"k, a%,+, ( Vik, )
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D'(z) =1 —g'
""kdk(kg+

i V ikg)
z --,'k'g'40

(2.2)

where 8 = e ' ~, and (k 8~
( V

~
k 8) is the analytic

continuation of (k ( V ~k) evaluated at k 8= ke ' ~.
A simple change of variables gives"

8'pg*f V [kg) =(k [V(rg*) fk),

which leads to the formal identity

(2.3)

For analytic potentials, '" the matrix element
(k

~ V(k) is an analytic function of k allowing eval-
uation of the integrals in Eq. (2.1) along the dis-
torted contour obtained by rotating the integration
path into the lower half k plane:

of simple poles, but as these poles are not on the
real axis, D' ""e (E) gives approximate values
of D(E +is) and thus approximate phase shifts with-
out the analytic continuation needed in Ref. 1."
However, inspection of the matrix elements of
V =H -H' reveals by the same change of variables
used in Eq. (2.3) that

~0

r' dr p, (r)V(rB")p.j(r) = 8' r' dr
0 0

x U, (r 8) V(r)U, (r 8)

(2.6)

and thus that

e( )
-H(rg')

z -Ho(rg+) (2 4)
~PProx(e)(z ) det (r)

z H'(r)- (2.V)

D(z) has a branch cut along the positive energy
axis, while the branch cut of De(z) has been ro-
tated by an angle 2p into the lower half z plane.
D(z) and De(z) are identical everywhere on the
physical part of the complex energy plane except
in the region between the two cuts, where De(z)
provides the analytic continuation of D(z) onto the
second Riemann sheet, as is shown in Fig. 1. In
particular we note that D~ (E) = D(E+i~) In the.

spirit of Eq. (1.1) we can now approximate D (z)
as

~PP oKe)(z )
—det

z H(r 8)- (2.5)

Im z

z —PLANE

Re z

FIG. 1. D(z) and D (z) on the physical sheet. D(z) is
analytic except for a branch cut running out the positive
real axis indicated by the Sine-wave curve. D (z) is
~~~3ytic with the rotated cut (ramp-shaped plot) D(z)
and De(z) are identical, on the physical sheet, in the
unshaded region. The values of De(z) in the shaded re-
gion provide the analytic continuation of D(z) onto its
second sheet.

where H(r 8) and H'(r 8) are the matrix representa-
tions of H(rg) and H'(rB) in an L' basis (U, (r)). The
cut in De(z) has been replaced in D'~ "~e by a row

where the matrix representations H and H' are
defined in the complex (L') set (BU, (rg)I We. will
refer to the use of complex basis functions com-
bined with the usual real Hamiltonian operators
as the method of complex basis functions. For
potential scattering this "new" method is entirely
equivalent to the method of complex coordinates,
as is shown by Eq. (2.6); however, we will see in

Sec. III that the complex basis techniques will
generalize in such a way as to allow solution of
many-channel problems, and that this generaliza-
tion will not be equivalent to simply making the
coordinate dependence of the Hamilton complex.

B. Dispersion Correction of D~(z)

D(z) =1+ k dk
A(k)

0
—2

(2.8)

where E = 2k' and A(k) = -1mD(E +ia)/v gives the
discontinuity across the cut along the real axis.
The contour rotation of IIA gives the equivalent

The result of application of the method of com-
plex basis functions to the problem of computing
s-wave phase shifts for elastic scattering from a
square well are shown in Fig. 2. The oscillatory
results are evidently due to the proximity of the
poles to the real axis. Attempting to avoid this
source of error by choosing a larger rotation
angle y slows convergence, as has been discussed
in detail by Nuttall and co-workers, "who have
shown that the leading term in the error in the
phase computed from De(E) is of order 1/WN, N
being the dimension of the I.' basis. However, the
oscillating errors shown in Fig. 2 may be syste-
matically removed using the dispersion correction
technique of Refs. 2 and 15, allowing use of small
rotation angles.

The Fredholm determinant satisfies the disper-
sion relation
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result:

( ) 1 ~
"k dkA(k8)

z --,'k'8' (2 9)

where A(k 8) gives the discontinuity across the
rotated cut. The use of a discrete L,' basis to
approximate D8(z) gives

Deyy«&8)(z) =1 82 A( «8)
z --,'k'8' (2.10)

To utilize this formula we need the explicit "equiv-
alent-quadrature'" weights associated with our
choice of L' basis, and also knowledge of A(k).

1.0-

where the k, and u, are, respectively, the "equiv-
alent-quadrature" abscissas and weights associated
with diagonalization of H' in an I.' basis. For
small P and real z the integrand of Eq. (2.9}is
nearly singular and thus the approximation of
Eq. (2.10}will not be accurate for real z. This
error can be compensated for by subtracting A(k)
from the integrand before carrying out the quadra-
ture approximations giving the dispersion-cor-
rection formula"

Dcorrected(8) (@} Deyyro (8)(E) +A(k)g(E) (2 11)

where

The residues of the approximation of Eq. (2.7)
give 8'A(k, 8}k,~„allowing evaluation of A(k, 8)
which can be analytically continued to give A(k).
We note that this latter analytic continuation,
in contrast to that employed in earilier work, is
of a smooth function, "allowing computation with
arbitrarily small rotation angle, or for that mat-
ter, with no rotation at all. '

C. Numerical Examples of Method for
Potential Scattering

The method of complex basis functions coupled
with the dispersion correction technique has been
applied to the calculation of phase shifts for scat-
tering from an attractive square well, and from
a long-range potential with an asymptotic 1/r'
dependence of the type expected in inelastic elec-
tron-hydrogen-atom scattering. Figure 2 gives
the corrected and uncorrected results for the
square-well problem"; the dispersion correction
of Sec. IIB has gone a long way toward removing
the error involved in the discrete approximation
to D8(z). Results for s-wave scattering from the
potential V(r) = (e "—1)/r' are presented in Table
I. As expected, convergence for this long-range
potential is quite slow, as the region of coordinate
space spanned by N Laguerre functions i propor-
tional to N. However, in this case a simple semi-
classical estimate" suggests that for a potential
with a 1/r' tail the error will go as 1/N. This
allowed a highly accurate extrapolation of the re-
sults, which is also shown in Table I.

Al

g 0.5-
Vl

0.2-

TABLE I. s-wave phase shifts for elastic scattering
from the potential V(r) = (e "—1)/r 2. Results are given
for a basis of N Laguerre functions of the type we~"
L„(n~) with n =2 and tII) = -0.1 rad. As expected, for a
potential with a I/r 2 tail, convergence was slow, but
extrapolation yielded highly accurate results.

0.5 &.5

20 30 40 45 Extrap Exact
FIG. 2. sin (60) for s-wave scattering from an attrac-

tive square well computed by construction of D'PP""@(&)
with (dashed lines), and without (dot-dashed lines)
the dispersion-correction terms of Eq. (2.11). For this
example, the rotation angle P (8=e '~) was 0.1 rad, and
the uncorrected values of sin (50) oscillate about the ex-
act values (solid lines). Dispersion correction removes
these oscillations, allowing use of small rotation angles.
For this problem, the basis set consisted of 50 odd har-
monic-oscillator functions,

2

e &~ I2~ +i@,y), with /=0. 95e &r

which generated an equivalent quadrature of the Laguerre
type [H. Yamani (unpublished) J. The potential depth was
5 a.u. and the range 1 a.u.

0.4
0.6
0.8
1.0
1.2

2.949
2.453
2.112
1.861
1.668

2.970
2.469
2.126
1.874
1.681

2.981
2.478
2.133
1.882
1.688

2.985
2.481
2.136
1.888
1.690

3.017
2.504
2.156
1.916
1.708

3.016
2.506
2.158
1.905
1.712

Extrapolated phase shifts were obtained from ex-
trapolation of the lower order results in 1/X.

For the Laguerre basis used here the equivalent
quadrature weights are modified Chebyschev weights
of the second kind, see Ref. 2.

Exact phase shifts were obtained by diagonalizations
of the potential in a basis of 172 Bessel functions as per
the prescriptions of W. P. Reinhardt and A. Szabo, Phys.
Rev. A 1, 1162 (1970).
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D. Range of Applicability of the Method

The derivation of Eqs. (2.3) and (2.4), as out-
lined in Ref. 12, assumes that the potential V(r)
is analytic in the interval (0, ~), in addition to
satisfying the usual Fredholm conditions"

2 PLANE PHYSICAL SHEET

EI

limrV(r) =0,
y

-+ «)

iimr'V(r) =0.
0

(2.13a)

(2.13b)
z PLANE PHYSICAL SHEET

This implies that the rotated-coordinate method
can be used with the Fredholm techniques for
potentials which behave asymptotically as C/r~,
g &1, allowing the technique to be applied in the
presence of the long-range potential occuring in
atomic and molecular scattering. This is in con-
trast to T-matrix techniques where the use of
contour distortion by use of complex coordinates
of the type y g in the Hamiltonian is restricted to
exponentially bounded analytic potentials. " Of
course, if more-complicated contour distortions
are permitted, the analyticity conditions may be
relaxed (provided that appropriate moments of
the potential exist) as discussed in Ref. 11.

However, we note that for numerical work to pro-
ceed these conditions are unnecessarily restrictive.
The numerical results of Sec.II C show that, for at
least the square-well case,"we can relax the
analyticity condition, as it is actually only the
properties of the "potential"

Q I U, (8 )&(U, (8 ")
I V(r") I UJ(8r")) (UJ(8r') I,

i,j
(2.14)

which is implicit in the use of an L' basis, which
wQ1 determine the range of applicability of the
method. We note that for 8 = 1, the potential of
Eq. (2.14) is analytic and exponentially bounded
in y and y' for the types of basis sets used here,
assuming the existence of the matrix elements
(U, I VI U&). The question of convergence thus
depends both on the potential and the basis set
used. " Minimal conditions on the potential and
basis would seem to be the existence of the matrix
elements (U, (8r")

I
V(r")

I U~(8r")) and the corres-
ponding equivalent quadrature approximations to
the traces tr(GV)", m= 1, . . . , N, where N is the
the number of terms in the L' basis.

IH. MANY-CHANNEL SCATTERING

A. Calculation of Substituted Determinants

The $-matrix elements needed to compute cross
sections for many-channel scattering processes
are given in terms of the "substituted" Fredholm
determinants as'

'W
+M W

Ei

C.

z PLANE PHYSICAL SHEET

A
1 F

E(

FIG. 3. Continuation paths for construction of the
various substituted Fredholm determinants needed to
construct the open-ch~nriel block of the S matrix. For
clarity, only the branch points corresponding to thres-
holds are shown. It is assumed that the cuts run out the
positive real axis. Continuation path A represents con-
struction of D(E + ie); continuation path B shows the
eel~ tytic continuation needed to construct D~(E+ i&);
D~(E+ ie) may thus be interpreted as corresponding to
taking the E -i e limit in chn~nel 0, and the E+ ic limit
in all other channels. Path C shows continuation needed
for D~B {E+ie).

D.(E+ie)
D(E+ie) ' (3.la)

D(E +i e) = D(k, . . . k~. . .k 8. . . ),
D.(E+ie)=D(k, . . . -k. . ),

(3.2a)

(3.2b)

D 8(E+ie)=D(k, . . . —k . . . —k8. . . ), (3.2c)

k„k, ks being the channel momenta. An alternate
interpretation' of the substituted determinants is
that they may be obtained by analytic continuation
of D(z) from the physical sheet via the prescrip-
tions of Fig. 3. These continuations are easily
performed, using the contour distortions implicit
in the method of complex basis functions, even in
the case of degenerate thresholds, where simple
analytic continuation in complex energy fails."

Consider the Fredholm series for the many-
channel Fredholm determinant":

D (E+i e)Dg(E+ie) —D~(E+ie)D(E+ie)
a8 D(E +ie)'

(3.1b)

where
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~ ~pa g aVaa
D( ) 1 Q ~

1 1 11,, ~s-E,

( 1)fl

'nt
aa a8 ~ .~ ay

~o a V„V„''' V,„
k, dk, k, dk, . . . k„" dk„"i( ~) ( q)

~ ~ ~

a, S.'".n 0

(3.3}

where El'= —,'(k", )', and

V =2v(k"k )~ (j (k,r )(V~)j,(k r8)).

As in the one-channel case, we can distort the
integration contours. To evaluate D(E +i e) without
computing any principle-value integrals we rotate
all the cuts down by making the variable change
k', - k, e '~, which rotates all the cuts "down"
into the lower half z plane by an angle 2P taken
with respect to the individual threshold branch
points, giving rise to a new function De(z) such
that D(E+iz}=D (E). To evaluate D„(E+iz}we
take kp kate"-~ and kf kate

-'e (pen). The effect
of such a contour rotation on D(z) is shown in Fig.
4 when the branch structure of the new determinant
De(z) is shown. Above the threshold for channel
u we have D„(E+ie)= De(E), allowing computation
of the substituted determinant. D~(z} may be de-
fined in an analogous manner allowing calculation
of D~(E+iz) as D &(E). We note that in contrast
to the potential-scattering case, there is no sim-
ple analytic continuation of the coordinate depen-
dence of the Hamiltonian which gives rise to the
determinants De(z) and D~~(z), although of course
De(z), the determinant with all cuts rotated down,
is equivalent to use of a Hamiltonian with complex
coordinates.

The I.' analog of the contour distortions needed
to calculate D is to rotate the coordinates of the
(one-particle) basis functions representing the
unperturbed channels: If the various unperturbed

z PLANE

S. Multichannel Dispersion Correction

An appropriate generalization of dispersion cor-
rection is needed to obtain accurate scattering
information from the approximate determinants
De(E) and De(E)

We can use Cauchy's integral theorem to derive
a dispersion relation for De(E) analogous to the
one given for potential scattering

1 [D(z ') —1]z'

2wjczz (3.4)

where the contour used is shown in Fig. 5.

z PLANE

lm z

channel wave functions are expanded in L' sets
$U,"(r}j,we construct De(z) by taking (U,"(r}j- fe'eU, (re"+)j and (U",(r))-(e 'eU", (re 'e)), ye n.
As in the potential-scattering case this use of
L' basis sets replaces the cuts of De(z) by rows
of poles in D'~~'"~ ~(z). L' construction of D'~P'"~ &(z)

proceeds in a similar way. In principle the
prescription allows construction of De(E), De(E},
D~(E), and thus inelastic S-matrix elements,
directly at real energies using only square-inte-
grable functions. However, for calculations using
a small number of basis functions, necessitating
use of small rotation angles, a dispersion-cor-
rection technique is needed to "smooth out" the
calculated results.

FIG. 4. Branch structure of the determinant Dae(z).
The cut corresponding to eh~~el 0. has been rotated "up"
by angle 2P while all other cuts have been rotated "down"
by angle 2Q (6}=e ~~). Above the threshold for channel
a, D Q + ie) = De (E).

FIG. 5. Integration contour used for derivation of the
dispersion-correction formula of Eq. (3.7), needed to
compute accurate approximations to Dae(E) from
D approx (ej (~)
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FIG. 6. Unnormalized elastic and inelastic cross sections for s-wave scattering from bvo coupled square wells. Ex-
act results for the elastic cross section are indicated as solid lines; for the inelastic by dot-dashed lines. Potential
parameters are those of Eq. {3.9). The basis set consisted. of 30 odd harmonic oscillator functions for each channel.
Basis parameters are the same as those of Fig. 2. The two determinants needed to construct these cross sections
were obtained using the complex basis function technique of Section IIIA, and coupled with the dispersion correction
of Eq. {3.7); the calculated cross sections are indicated by the open circles.

Since De(z }-1 as z - «, we have the result

Dej i 1 r 8x
"&aAt, (8,1(', ) c A,

fS a, 8p i

(3 5)

C. Two-Channel Numerical Example

We have tested the procedure outlined in IIIB
by applying it in the calculation of cross sections
for the model two-channel problem

where Ae (8,k, ) is the discontinuity in D(z} across
the ith rotated branch cut. The L' approximation
to (3.5} is

where

-28(r —1) -18(r —1}
-(e(r-(( -2B(r —1)+2)' (3.9)

D«««~&e)(E} —Dxpp«x(e)(E) + Q A (E )C (E )

where

(3.V)

dE k~Q) ]C, (E,) —8, E 8xE
—8g QE 8x~fi i 4/2

(3.6)

where E, = ~k,
' and the index i runs over all chan-

nels. The A, (E,)'s are obtained by separate con-
tinuation of the residues of D'" "" (z} for the
various channels.

Ae 8 k&1k~(g)~
Dapp«x(e)(z) I + ~ 8 2

j/

(3.6)

where we have assumed a basis of N, functions for
each channel, the k", s being simply related to the
matrix eigenvalues offI'(r} in the various channels.
We now follow the dispersion-correction procedure
of IIB to obtain the generalization of E(I. (2.11),

8(r) =1 r &0,

=0 y&0.

The L' basis set consisted of 30 harmonic-oscil-
lator functions for each channel. The results for
the elastic and inelastic cross section are plotted
in Fig. 6 along with the exact cross section which
can be obtained analytically for this problem. "

IV. DISCUSSION

The method introduced in Section III allows the
solution of many-channel scattering problems
using only bound-state computational techniques,
without explicit enforcement of asymptotic bound-
ary conditions. As the determinants are complete-
ly "off-shell" the $-matrix elements are obtained
over a continuous range of energies from a single
major computational step. This suggests that the
method will be useful in electron-atom and elec-
tron-molecule scattering, as only standard con-
figuration interaction techniques' will be needed.
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