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Some objections concerning the validity of a neer nonperturbative treatment of multiphoton processes

("momentum-translation approximation") are presented and discussed. In the present state of the

question, it seems that the multiphoton amplitudes given by this theory cannot be considered as

reliable.

I. INTRODUCTION

A nonperturbative treatment of multiphoton pro-
cesses has been recently proposed. ' Its main ad-
vantage is to give the multiphoton-transition am-
plitude in a closed form, only involving the initial
and the final states of the transition. This method,
which is known as momentum-translation approx-
imation (mt approximation), has been applied to
several problems. '

However, we feel that some objections eoneern-
ing the validity of this approximation may be
raised. The purpose of this paper is to present
and to discuss some of these objections.

II., MOMENTUM-TRANSI. ATION APPROXIMATION

The Hamiltonian of an atomic system interacting
with an electromagnetic wave desex ibed by the
vector potential A(r, t) is

H =(2m) '(p eA)'+ —V(r) =H, +H',

where H, =P/2m+ V(r) is the field-free Hamilton-
ian and H' = —(e/m)A ~ P+ (8'/2m}A' is the coupling
between the atom and the field (e, m, and p are
the charge, mass, and impulsion of the electron,
respectively; throughout this paper, we take
R=c=1).

Starting at time t, from the field-free eigenstate
lP, (t, )& and switching on A adiabatically, one gets
at time t, a state lg(t, }& which is given by the fol-
lowing integral equation:

lt(t. )& = lg(t. )&-i '
e ~0'" 'H'(r)ly(7)& «. (2)

ti

If H' is too large to be treated as a perturbation,
it seems hazardous io solve Eq. (2) by iteration.

The following unitary transformation is then in-
troduced:

~-geA ~ r (2)

The transformed state

lAt)&= 2 l~(t)&

satisfies the Schr5dinger equation

i—l$(t)&= i —T Tt+THT~ gi(t}&.~ 8 8
(5)

tstlV(t)& =(H. +Hg)1%(t)&.

where

Hg=f —T T =8 —A ' r= —8 'r.
HI describes the coupling of the electric dipole
er with the electric field R of the wave.

It may be shown that

HI/O (U/(do ~

where &u/2w is the frequency of the electromagnet-
ic wave and vo/2w is a typical atomic frequency.
H is therefore small compared to H' when

(10a)

Even if H' cannot be treated as a perturbation
with respect to H„ it is possible for HI, provided
that

ergo((d/(do) && 1
~ (10b)

where a is the amplitude of A and ao is the Bohr
radius. The two conditions (10a) and (10b) are the
conditions of validity of the mt approximation and
will be supposed to be fulfilled in the following.

The idea of the mt approximation is the follow-
ing: one solves Eq. (I) to zeroth order, which
gives

IP'(t)&= ""' "'la(t, }&;

by inverting Eq. (4), one gets the approximate ex-

In the dipole approximation (electromagnetic
wavelength large compared to atomic dimension),
the variations of A with r are neglected, and T re-
duces to the translation in the impulsion space
p-p+eA so that

THT~=H . (~)

The Schr5dinger equation (5) becomes
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pression

T'( ) lV'"( )) (12)

for the state lg(T)) which appears in the integral
of Eq. (2). Equation (2) then becomes

lk(t)&=It (t })-t 'e """'ff'(T)T'(T)
tg

xe ~p(' 'l'lltl, (t, )& dT

The transition amplitude to the final field-free
state lpga) (the limit t, -+~ is taken, the field
being switched off adiabaticaOy) is

t2;,=&~,l~(t.}&=8„-*
tj

x TT(T)e ~ p' '~'l p, (t,}&dT.

(14)

After a few calculations, Eq. (14) leads to a tran-
sition probability per unit time given by

wg( = 2r Q l
T( ~

l 5(gt —E( —N ),

where

&i('=&"(«-Ey)&lt 14(«e'r)lit(& (18)

(4» is the N -order Bessel function and t is the
polarization of the vector potential X}.

Thus, the mt approximation yields an explicit
expression for the multiphoton transition proba-
bility between two atomic levels [according to
condition (10a), this expression is valid for N» 1].

- III. GENERAL R194ARKS

(a) The N-quanta amplitude (16}fails in repro-
ducing two well-known high-intensity effects:
(i) it does not seem to exhibit an enhancement
when an intermediate state is quasiresonant for
a P-quanta process (p& N); (ii) the resonance is
always centered at ~,=N~, vrhatever the ampli-
tude of the electromagnetic field is. In ordinary
perturbation theory, corrections to the lomest-
order resonance amplitude and xadiative shift
appear simultaneously in higher-order calcula-
tions.

(b) In the dipole approximation, the unitary
transformation (3}corresponds to a gauge trans-
formation.

The incident electromagnetic wave may be de-
scribed either by the vector potential A and the
scalar potential U =0 (gauge later referred to as
gauge 1), or by

X' =X+ Fx, (1Va

(17b)

X being an arbitrary function of r and t.
For the particular choice'

y=-Ã(r, t) ~ r, (18}

the spatial variation of X being neglected (dipole
approximation), one gets

A' =5

O'= —X r=-5 r (gauge 2).et

The Hamiltonians corresponding to gauges 1 and
2 are, respectively, H, +H' and Ho+Hz, the same
physical state is described by the vector lg(t)&
in gauge 1, and in gauge 2 by

le'(t)& ="'"""lc(t)& (21)

which gives, according to (18),

l(I" (t)& = ' ' lg(t)) = lg(t)&. (22)

(c) We can then understand the physical meaning
of the state TT(T )g( l(TP)&, which is introduced as
an approximate expression of leap(T)& in Eq. (2).
Since quantum mechanics is gauge invariant, this
state has the same physical content in gauge 1 as
y ' (T}) in gauge 2. But

leap

(T)) is obtained in
gauge 2 by treating Hl to Eeroth order, i.e., by
neglecting any interaction between the atom and
the field; it follows that, in gauge 1, TT(T}lipp~(T)&

represents nothing but an unperturbed atomic
state and cannot lead to any transition probability.

This statement may also be proved in the follow-
ing &ray: the transition amplitude to the field-free
state i/i& is written

llm &yI ly(t, )&, (23)
tg ~+OO

where lg(t, }) is the exact solution of the Schr5-
dinger equation corresponding to Eq. (2). If, in
Eq. (23), lg(t, )) is replaced by the approximate
solution T (tp)liPPl(tp)&, one gets, for the transi-
tion amplitude,

&~, IT'(t.)
- "'*-"l~,

& (24)
t2 ~ +'o

When t, +~, T (t,)-1 [the field is switched off
adiabatically and consequently lim, , +„A(t,) = ~].
The transition amplitude therefore reduces to

le (»p(fp t|) ly ) e-l»y(tp tg)8-
So, treating Hl to Eeroth order in gauge 2 also

leads to no transition probability in gauge 1.
(d) Actually, in the mt approximation, one calcu-

lates the transition amplitude not dix ectly from
Eq. (24), but from Eq. (2), lf(T)& being replaced
by the approximate solution TT(T) lg(Pl(T)& . since
this state vector, as we have seen before, cannot
yield any transition probability, one would expect
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to obtain by this procedure only one photon pro-
cess [H'(r) appearing only once in Eq. (2)] and
multiphoton amplitudes (16) seem rather puzzling.

H = p, ~/2m + ~m «)om x —eE( t ) x . (27)

The transition probability from the ground state
I4),& of the oscillator to the excited state IQ ) is
given by

W„o = e Io&"/nt,

where
e2 + oo

u= E(t)e' o'dt '.
2m (40

(26}

(29)

n appears to be proportional to the square modu-
lus of the Fourier transform of the excitation
E(t), taken at the frequency &d, of the oscillator.
If we assume a sinusoidal time dependence for
E(t),

E(t) =Eosin&ut, (30)

this Fourier transform exhibits resonant varia-
tions only for v = &u, and &u = —u&, (the width of the
resonance being proportional to the inverse of the
interaction time').

It follows that we cannot get multiphoton transi-
tions, for instance, between the ground state and
the first excited state I(t), &: W„=c(e "does not
vary rapidly near u0=2u, 3', ..., n~, ... .~

Let us now consider the results of the mt ap-

IV. COMPARISON WITH AN EXACT SOLUTION

FOR A PARTICULAR MODEL

In the mt approximation, no restriction is im-
posed on the form of the atomic potential V(r) in
the Hamiltonian H, . It is interesting to choose
V(r) in such a way that an exact solution can be
obtained; this allows a test of the multiphoton
amplitudes (16) given by the mt approximation.

Let us consider a three-dimensional isotropic
harmonic oscillator, of frequency eo/2v, for
which

V(r) = —,'m~, 'r ', (26)

and let us suppose thatthe , electric field f(t ) of
the incident electromagnetic wave is polarized
along the x axis. In the dipole approximation,
this problem can be solved exactly. 4 One has
to find the solution of the Schrodinger equation
corresponding to the time-dependent one-dimen-
sional Hamiltonian

proximation applied to this problem. From Eq.
(16), we get, for the N-photons transition proba-
bility per unit time between IQ, & andIQ, &,

e""'='ee.' (( Ie ( (31)

TI~O) is nonzero for N odd.
Therefore, this shows evidence for a case where

there is no agreement between the prediction of
the mt approximation and the exact solution.

H'T'= [T' H, ], (34a)

i —T = -T KI = -Ki T
Bt (34b)

which may be easily derived from Eqs. (5)-(7).
According to Eqs. (34a) and (34b), the r-depen-

dent operator appearing in the integral of Eq. (13)
may be written

V. WHERE THE MOMENTUM-TRANSLATION
APPROXIMATION IS QUESTIONABLE

In the derivation of the mt approximation, no
estimation is given for the error introduced by
replacing in Eq. (2), I $(7)& by Tt(7)I $&o)(r)& This.
error is

t2
5I g&= i -e '"o"2 'H'(~)T (7)

t~

x [I q(~)& —Iy
& "(~&&]dr. (32)

As I 7&) &o)(r)& is the zeroth-order approximation
(in H& ) for the solution I 1))(w) & of Eq. (7), the
square-bracket term of Eq. (32) is of the order
of H, /(d„which gives for the integrand an order
of magnitude of H'(Hi/~, ), i.e., H, when
H'/(do = 1.

This error seems to be small compared to the
mt approximation solution which, according to
Eq. (13), is the integral of a term of the order
of H'.

Actually, this is not true; as we will show later,
Eq. (13) may be written

t2
I tt(t. ) &

=
I y;(t. )& i-

t,
XHI(7')T (7)e '"()' "'

I Q& ( t, ))d7 . (33)

It is possible to replace, in Eq. (13), H' by Hz,
which gives an integrand of the order of KI . There-
fore, the integral of Eq. (13) is of the same order
as the error (32).

The derivation of Eq. (33}lies on the relations

iH Te'""ee'( ) '( ) '")"=e'""(e' ( lee—))e'( ))e '""= ,' —( '""e'( le '""I— '""('—)'( ))

=i [e'"' T (7)e '"—()']+e' ' H&(7)T (7)e '"0';
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Eq. (18) then becomes

( )& ( ( )&
-isoj [

'll Tt( )
- jj

~
o] jjjoj )y (t )&

- (te- b«o- )H (1)Tj().)e-jso jr jj-)( y (t

When the limit t, --, t, -+~ is taken, the in-
tegrated term vanishes (as the field is zero at
these two limits) and we finally get Eq. (33}.

One might think that this substitution of HI to
H' can also be performed on the expression (32)
which gives the error made in the mt approxi-
mation; if this substitution was possible, the
error (32) would be negligible. But this is im-
possible: replacing the bracket of Eq. (32) by
the leading term gj')(r}& [first-order term in the
perturbation expansion of g() )& in powers of
Hj/o)o], one gets for the new expression of 5 ( p&,

e '"'" 'H'( )T ( )lV'"( )&d,

(35}

T

( P')(.)&= i -e '"-' ')-H, (')
t~

« '"o" "'ie(t, }&dT'.

g'"() )& can be expressed as

IV'"(~}&=U'"(7')e'"o "IAj(t, )&,

where

(86)

(3V)

U&»(r) = j ~l e ' o j~ ~ )Hj(r'}e ' o d7' (36)

satisfies the differential equation

i—Uj')() ) = H, U" () ) + H, (r)e '"o ' .

Using the relations (34a), (3V), and (39), the r-
dependent operator appearing in the integral of
Eq. (35) can then be written

e"""H'(r)T'(~)U&')(7) = e'""[T'(r)H, —H, T'(~)] U' j( )}r

=e' "T'(r} i Uj')(r) —H, (r)e -'"" e-""H-T'(r)Uj )(r)

—i —[e' o T (y)U (y)] e o i—T"(r) U (g) e' o T (g)H (r)e ' o
97 87

According to Eq. (34b), the error (35) is then given by

5Ig&=e ' o o[e' o T~(r)Uj'(r)), ]e' o'j/ +;(t,) -&i e ' oj'o ')Hj(r)Tt(r)Uj')(r)e'"o'j /+ (tj, )& rd

i.e., by

t2
+i e *"'" ")H, (T)T~(T)e '"o' '

)~ y;(t, }&dr,
t~

t2
5I 0&= T'(t.}IV"'(t )&+i e '""" 'H (-~) '(T-~) -'e""" '"l ej(t,)&«-i. '""-" 'H (-~)T'(-r)I 0'"(~)&«

ty tg
(41)

The third term of Eq. (41) is negligible, as the
corresponding integrand is of the order of
H~(Hq/ooo). Taking as usual T (t,) =1(t,-+~},
and using Eq. (36), the first two terms of Eq. (41)
may be written in a unique integral:

tg
e '"oj'o-"' [T'(r) -1]H,(r)

. t~

'""' '"
l 0 (t,)&d (42)

T (7') —1 is of the order of a4r ~ eAP/jjj joo oo H'/joo

= l. It follows that the integral of the expression
(42) is of the same order of magnitude as the in-
tegral of Eq. (83). It is therefore Noncojjsistejjt
to neglect the first-order correction ) $")(v)& ijj
the calculation, since it Leads to terms comPar-
able lith those given by the mt approximation
jchich only keeps ~ $ jo)(r)&. This is due to the fact
that the integral of Eq. (13) has an order of magni-
tude smaller than expected [transformation of Eq.
(13) into Eq. (33)).

To improve the mt approximation, we must re-
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place, in Eq (3), Igr)) by T'(r)lip"'(r})
+ g "i(r)}].This amounts to add Eq. (41) to Eq.
(33), which gives, for l(l&(t,}),

I @(t,)}=
I @;(t,))+T'(t, ) I 7(("(t,) )

t2
e '""" 'H, (7')T"(7)I (lI (T)) (fT. (43)

T'( )+IV"'( )),
P=o

where IT(&
' &(T)} is the Pth-order contribution in

the perturbative solution of Eq. (7). Calculations
similar to the previous ones give, for l(t& (t,)),

n t2
1((&.»=&'(&.&g l("'(V& f*.--'""- &

P=o ty

x H, ( )T'(r)ly("&(.))d. . (44)

The integral of Eq. (33), utuch is at the origin
of the multiphoton transition amplitudes (16),
disappears, and the only remaining first-order
term is the T (t~) transformed of the first-order
solution of Eq. (7). The third term of Eq. (43)
does not represent the whole second-order cor-
rection to I g(t, )), since it does not include the con-
tribution of the second order term T (r) lp "(T)).

More generally, for a consistent calculation up
to the nth order in Hl/((&0 of I (t&(t,)), one must re-
place in the integral of Eq. (3) Ig(T)) by

As for the first order, a consistent nth-order
calculation (in H, /(d, ) gives nothing but the trans-
formed of the perturbation expression of I $(t,)).

We see, therefore, that the integral of Eq. (13),
which leads to the compact explicit amplitudes (16)
of the mt approximation for multiphoton processes,
disappears when we try to improve the precision
of the method by replacing I g(T)) by a more ac-
curate expression in the integral equation (2).

However, one could reply that the integral of
Eq. (13}represents an approximation of the exact
solution which, although not perfect in the low-
intensity region, represents a fit of this exact
solution on a larger interval of variation of the
intensity parameter a. But this important point
seems never to have been demonstrated, and
whether this is exact or not remains an open
question.

VI. CONCLUSION

%e have raised several objections concerning the
mt approximation: (i) absence of well-known
radiative effects; (ii) gauge invariance considera-
tions; (iii) disagreement with an exact solution in
a particular case; and (iv) inconsistencies in the
perturbation treatment of HI.

Therefore, in the present state of the question,
we feel that the multiphoton amplitudes (16) can-
not be considered as reliable.

~H. R. Reiss, Phys. Rev. A 1, 803 (1970); Phys. Rev.
D4, 3533 (1971).

2H. R. Reiss, Phys. Rev. A~6 817 (1972); N. K. Rahman
and H. R. Reiss, Phys. Rev. A 6, 1252 (1972); 8. P.
Tewari, Phys. Rev. A 6, 1869 (1972); F. H. M. Faisal,
J. Phys. 8 5, L196 (1972); J. Phys. 8 5, L 233 (1972);
H. R. Reiss, Phys. Rev. Lett. 29, 1129 (1972).

3This gauge transformation has already been used by
several authors; see, for example, M. Goeppert-Mayer,
Ann. Phys. (Leipz. ) 9, 273 (1931);J. Fiutack, Can. J.
Phys. ~»2 (1963).

48ee, for instance, I. I. Gol'dman and V. D. Krivchenkov,
Problems in Quantum Mechanics (Pergamon, New York,
1961), problem 3-13, pp. 103-106.

This result is not surprising, since in classical me-
chanics, the response of a harmonic oscillator is im-
portant only for cq = ++0.

The lack of multiphoton processes between lg ) snd
l(t&q ) also appears on a psr|urbation treatment; for
instance, we have at the lowest order and for asap =3M,
two amplitudes which interfere destructively,

4, ,a+3) —I4, ,a+2 }—4„s+» -l@„s),
4&», a+3 }—l(t&~, a+2 }—(t&t, a+1 ) —Iy~, s },

(tbs l(t&&, s }state represents the oscillator in state
I(t&& ) u~dth s photous) . This dsstructivs inter fsrsncs
still exists at higher orders of perturbation.


