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This paper discusses the case of a Doppler-broadened gas laser with a saturable intracavity absorber gas.
The semiclassical equations governing the field intensities and the atomic density-matrix elements are set up.
The latter are written as Fourier series, the components of which are shown to obey coupled difference
equations. In this paper the exact steady-state solution in single-mode operation is obtained. The lowest
approximation (rate-equation approximation) is used to compute detailed characteristics of the system. In
particular, the influence of the pumping rates in the two cells are investigated and displayed in the figures.
The regions of bistable operation are determined and conditions for the occurrence of an inverted Lamb dip
are given. The effect of a slow modulation of the pumping rates is discussed. The range of validity of the
lowest approximation is investigated both analytically and numerically. Finally, there is a brief discussion of
the influence of pressure on the parameters of the theory.

1. INTRODUCTION

In several recent experiments a nonlinearly
absorbing material has been saturated by laser
light. The largest field intensities are achieved
when the absorber is placed directly inside the
optical cavity of the laser. Then, however, the
operation of the laser is drastically affected and
acquires new features that are of interest in their
own right. These phenomena are mainly governed
by the properties of the absorber and provide
means for its exploration.

Lee, Schoefer, and Barker' were able to induce
strong coupling between the modes of a He-Ne
laser (0.6328 um) with an intracavity cell con-
taining Ne gas at a lower pressure than in the
amplifier cell. With large enough absorption,
single-mode operation was maintained over the
whole tunable region. The power losses due to the
absorber were remarkably small. A major frac-
tion of the total multimode power without absorp-
tion was obtained in the surviving mode. When
the pumping of the absorption cell exceeded 90%
of the value needed to extinguish the oscillation
totally, the laser system displayed hysteresis:

If interrupted, the oscillation did not start again.

Lisitsyn and Chebotaev? performed experiments
similar to those of Lee ef al. In the place of the
Lamb dip they observed an inverted Lamb dip of
the homogeneous width in the absorber cell. They
used this to measure the pressure effects on the
decay rates of the Ne atoms in different He-Ne
mixtures. In another paper? they report observa-
tions of the hysteresis effects: A detuning was
found to cut off the oscillation discontinuously when
the absorption was large.

Several applications of the saturable absorber
laser have been discussed: Mode selection is
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studied in Refs. 1, 4, and 5. The inverted Lamb
dip provides the basis for an extremely stable
frequency standard; see, e.g., Refs. 6 and 7.
Mode locking is achieved in regions where it does
not occur in ordinary lasers (Fox et al.). The
absorber can be used for @ switching and bistable
logic (Szdke et al.?). Perhaps the most successful
and scientifically interesting application is in the
field of nonlinear spectroscopy; see, e.g., Refs.
2, 7, and 10.

The theory of a saturable absorber was dis-
cussed by Feld, Javan, and Lee!' and Kazantsev,
Rautian, and Surdutovich!? within the framework
of a perturbative approach. When the pressure in
the amplifier cell exceeds that of the absorber
cell, the latter is saturated more efficiently and
the oscillating mode is found to be strongly coupled
to the neighboring ones. The narrow saturation
hole in the absorber causes the inverted Lamb
dip.

The authors in Refs. 11 and 12 are able to ex-
plain the qualitative features of the experiments,
but they are clearly aware of the limitations of
perturbation theory if quantitative features are
desired. In addition hysteresis effects cannot
be understood within third-order perturbation
theory, and already the fifth-order results are
considerably involved. Beterov, Lisitsyn, and
Chebotaev*'® solve the problem within the approxi-
mation usually referred to as the REA (rate-equa-
tion approximation; see, e.g., Ref. 13). They
derive the analytic expressions for the case when
the inhomogeneous linewidth greatly exceeds the
homogeneous one (the Doppler limit). This gives
simple results when there is exact resonance
between the atomic transition and the cavity mode
and also when these are detuned by a considerable
amount. Greenstein'* presents a discussion, which
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is essentially equivalent to the REA, even if dif-
ferently formulated.

In this paper!® we shall present a calculational
method based on the continued fraction approach
of Stenholm and Lamb.!® This is exact for one-
mode operation of any intensity. Its lowest approx-
imation is the REA, which here is evaluated with-
out the use of the Doppler limit. We also give a
brief discussion of the influence of a simple col-
lision model on our results within the REA.

In Sec. II we derive the equations of motion for
the cavity modes and the components of the atomic
polarization. These are given for a multimode
case more general than is needed for this paper;
in subsequent publications we will use these re-
sults to discuss other features of the system. In
Sec. Il we construct the steady-state character-
istics of the system in the REA. Section IV in-
vestigates the accuracy of this approximation and
its corrections. Finally, Sec. V briefly considers
the inclusion of collision effects.

II. GENERAL THEORY

A. Model of the System

The theoretical model to be used consists of two
mirrors forming the optical cavity, into which the
absorption and amplification cells are inserted.
The technical details of the experiment, e.g., the
cavity losses and the pumping of the cells, are
incorporated into the phenomenological parameters
of the model. The electromagnetic field is lin-
earily polarized by Brewster windows in the cells,
and we assume it to oscillate in longitudinal modes
only, neglecting the transverse variation of the
mode intensities.

In accordance with the semiclassical theory of
Lamb!” we assume the field in the cavity to be
described by Maxwell’s equations. The inhomo-
geneous driving term in the wave equation is the
induced atomic polarization, which in turn is cal-
culated from the preassigned field. This way the
electromagnetic field is determined self-consis-
tently by the saturation properties of the nonlinear
medium.

The linear losses of the cavity modes are de-
termined by their phenomenological quality factors
Q, giving the width ,/Q,, which normally is much
smaller than the separation between the longitu-
dinal modes. The driving polarization can thus
be written as a discrete sum over components
oscillating with nearly the cavity eigenfrequencies.
Each driving component induces a field oscillating
at the same frequency owing to the linearity of
the wave equation. The coupling between the modes
takes place in the nonlinear medium.

As there is no spatial overlap between the am-

R. SALOMAA AND S. STENHOLM 8

plifying and absorbing regions we can separate
the polarization into two components,

P(z,t)=P"™(z2,t) +P™ (z,t), 2.1)

and no cross processes occur. From this we
immediately deduce that the two terms in the po-
larization can be calculated independently, each
one from its own cell. The different driving com-
ponents of P can most easily be separated accord-
ing to their spatial behavior. Following Lamb!’
we introduce the projection

% dez sin(K,z)P(z,t)
0

- 2 Lamp O L““P amp

ol fo dz sin(K,z) T p*™e(z,¢t)

L [ az sin(K, z)22 pi (5 4) (2.2)
Labs o L

which acts as the driving term of the cavity mode
n. In (2.2), L is the length of the cavity, and L,y
and L, are the lengths of the cells. We notice
that the filling factors Lamp/L and Lgps /L will mul-
tiply the contributions to the polarization com-
ponent. These factors can, however, be absorbed
into the phenomenological parameters character-
izing the pumping rates in the two cells and need
no explicit consideration.

Lee et al.! remark that the lengths and positions
of the cells are of some importance for the proper
working of the laser system. This is easily under-
stood on account of the dispersion in the active
media and the standing wave variation of the field.
The calculation in (2.2) involves a certain choice
of positions of the cells but these end effects will
not be discussed subsequently.

The amplifying medium is assumed to consist
of a set of two-level atoms with the following
characteristics: The energy difference is E,

- E, =hw; the levels decay with the rates y, and
7», respectively, and they are populated by the
pumping mechanism at the rates A, and A, ; the
levels are coupled by the dipole matrix element
#. The atomic parameters w, v,, and y, are
taken to be pressure dependent. The time devel-
opment of this system is described by a 2X2 den-
sity matrix, which we calculate assuming the
electric field to remain fixed. Having obtained
the solution, we determine the induced polariza-
tion. This adiabatic procedure is justified because
the intensities of the modes change at the rate
Q,/Q,, which usually is at least an order of mag-
nitude less than the rate of change of the atomic
state determined by the decay rates y, and v, .
The atomic transitions are Doppler broadened by
the assumedly Gaussian velocity distribution of
width Ku. The dimensionless intensity of mode
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n in the amplifier cell is chosen as (see Lamb'?)

92|E lz
I, —W . (2.3)

We assume that the absorbing gas can be de-
scribed with a model similar to the amplifying
medium, but with different values of the charac-
terizing parameters. The absorber linewidths
y2s and y®* are chosen different from those in
the amplifier by keeping the cells at different
pressures or using different gases in the absorp-
tion and amplification cells. By keeping the am-
plifier cell at a higher pressure than the absorp-
tion cell, one can broaden the amplifier linewidths
more which, however, causes the resonance fre-
quencies of the media to be shifted. In case we
have different gases in the cells, the dipole
matrix elements and level spacings are unequal.
In this work we assume the resonance frequencies
to be the same in both cells. A generalization of
the present treatment is trivially carried out to
relax this restriction.

The dimensionless intensity of mode » in the
absorber cell is written

I =al,, (2.4)

Yoy pabs )2
a=—7ietb_ . 2.5
-y:bs -},gbs < @ ( )

In the following we shall assume that « is larger
than 1, which implies that the absorber saturates
more easily than the amplifier.!®

In Secs. IIB-IIC we develop the basic equations
of motion for this model in a form which will prove
useful for the present investigation.

B. Electromagnetic Field Equations

In accordance with the theory of Lamb we choose
the cavity eigenfunctions sin(K,z) with the cor-
responding eigenfrequencies Q,=K,c. Inorder to
eliminate the rapidly varying components from
the field amplitudes, we separate the mode fre-
quencies expanding the field as follows:

E(z,8)= Y 3E,(t) =%t + EX(t) ¢* ] sin(K, 2).

(2.6)

The slowly varying amplitudes E,(¢) are generally
complex, in contradistinction to the field ampli-

tudes used by Lamb.!” The active medium shifts
the oscillational frequency to the position

d
Vo= = —r argE, ()l ;= const) - 2.7
The shifts are different in the two cells, but in

the following we shall neglect that. In a manner
similar to (2.6), we write the polarization as

P(z,0)= 2 i[P(t) e~ %t +PX(1) ! %t] sin(K, 2).
' 2.8)

From Maxwell’s equations we obtain (see, e.g.,
Stenholm??) the relation

92 1 9 , 0% 1 2
<8t2 T e € azz>E(z’t)=__€: Eﬁp(z’t)’

(2.9)

where Q,=Q,7, is the quality factor of the cavity

mode n. Introducing the expressions (2.6) and

(2.8) into (2.9) and neglecting the supposedly small

terms E,, E,/1,, P,, and Q,B,, we obtain
(:—t . 217) E,(1)= ;—‘Z;Lpn(t), (2.10)

which describes the time evolution of the slowly

varying part of the amplitude of the cavity mode

n under the action of the driving field P,(¢).

It proves convenient to introduce the complex
nonlinear susceptibilities formally'® by

x,,(El, .. . ,EN)/eoE,, .
With this definition Eq. (2.10) separates into

LEx)=P,(E,, .. 2.11)

(5 +30) 1B =2 Gy IE,  (2.12)
2 argE, = L (Re x,,)- (2.13)

at 27,

Equation (2.13) describes the dispersion in the
active medium and hence the shift (2.7) of the
oscillational frequency. It turns out that Eq.
(2.12), which determines the amplification (at-
tenuation) of the mode, is not very sensitive to
small frequency shifts, and therefore we shall
ignore the difference between v, and ,, in the fol-
lowing and proceed to consider Eq. (2.12) only.
Instead of the magnitude, it is more convenient
to employ the dimensionless intensity I, defined
by (2.3) for which (2.12) gives the equation

al

1
"Eﬁ"‘ =-—7"- [Q,,(Imx,,)+1]1,,

LB, L. 2.14)
n
Clearly the gain functions H, depend also on the
frequencies of the modes, but this is not dis-
played. The set of equations (2.14) determines
the field amplitudes once we know the gain func-
tions H, .
Recalling the additivity of the amplitudes of po-
larization in the two cells [cf. Eq. (2.2)], we can
write

H,=G,™ -G}»* -1, (2.15)
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G2mprabs = Q| Tm yampeabs || (2.16)

where we have explicitly included the correct

signs of the contributions. According to the adia-
batic procedure the functions H, can be calculated
from given intensities I,. Determining new values
of I, from (2.14) and recalculating the gain functions
H,, we obtain the temporal behavior of the mode
intensities. Steady state is achieved when the
right-hand side of (2.14) vanishes.

C. Polarization of the Medium

The set of two-level atoms constituting the active
medium is described by the density matrix p. In-
stead of the diagonal components we prefer to use
the combinations N =p,, —p,, and M =p,, +p,, (see
Stenholm and Lamb!®), which are related by the
equation

M(Z,U,t)=(7\a+7\b)/)’-%(Ya—‘)’,,)
t ’
xf dt’ e T ON(z,0,¢").  (2.17)

Equation (2.17) enables us to eliminate M and
write an equation for N only

d
(dr +7) ¥zv,0- 0=
xf‘ dt' e”"*"t*"N(z,v,t")
29

A -\
B a2 COX))

(2.18)

with y =§(ya +v,) being the transverse relaxation
rate. The time dependence of z is taken to be

z(t)=z =v(t; - 1), (2.19)

where £, is the final time for which the polariza-
tion is desired?® at the point z. The off-diagonal
elements obey the equation of motion

x[pab(zavy t)_pba(z’ U,t)],

(L7 +i0) pulz, v, 0=~ 22 B (0, 08(z,0,0)
(2.20)

and its complex conjugate for p,, .
The assumed electromagnetic field is now writ-
ten

B (1), )= 20 E(K, v)ei ®a®-va, (2.21)
K,v
where K and v go over the cavity-mode wave vec-
tors K, and eigenfrequencies Q, and their combina-
tions.?! A comparison of (2.6) with (2.21) yields
N
1
E(K’ V) = 'E_Z(En 61/,9,' +E:5u,_ 0")A (Ky K“),

i 2.22)

AK,K,)=bgx =g, - (2.23)
A natural ansatz to solve Eqs. (2.18) and (2.20)
is the Fourier series

pab(zyvv t) = Z pab(K’ V,‘U)e‘ trece)= ut], (224)
Kv

N(z,u,t)=EN(K,v,v)e”’““""”. (2.25)
K v

Inserting (2.21), (2.24), and (2.25) into (2.18) and
(2.20) and identifying the corresponding Fourier

coefficients on both sides, we obtain the coupled
difference equations

i@
Pap(K, V)= v L(w =v +Kv)

X Z E(K',v')N(K=-K',v-V'),
k' v’
(2.26)

ig *
Poa(K, V) =W L(w +v=Kv)

X Z E(K',v')N(K=-K',v=V'),
k', v'
(2.27)

N(K,v)L(K,v)-x(K,v)

2i@y
- E(K',v'
By,vy xzu (K", v")
x[pab(K-K,)U_V,)—pba(K-K'yu-V’)]’
(2.28)
where

&(x) =y/ly +ix), (2.29)

10 -
L(K,v)=—~ <'y—iv+iKv—“—(yﬂ—Y")i—>,

Ya¥b v —iv +iKv
(2.30)
M _N =
MK, v) = =3 8x000,0= 0k 0p,0. (2.31)
a b

For simplicity we assume the pumping term A
independent of z,¢, and v in each cell.

The complex Lorentzian (2.29) becomes neg-
ligible once |x|>>+ which fact enables us to per-
form a rotating-wave approximation in Egs.
(2.26)~(2.28). Because of the Lorentzian in front
of the sum in (2.26), p,,(K,v) has non-negligible
values only near the point v=w in a region of
width Ku. Similarly, the influential components
of p,,(K, v) are located in the vicinity of v=~w.
Dividing (2.28) by L(K,v), we notice that N(X, v)
becomes negligible unless v is small (of the order
Ku).

Introducing E(K,v) from (2.22) and performing
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the rotating-wave approximation, we find

Pap(K, V) == £(w- v +Kv)

x Z E,A(K',K,)N(K -K',v -,),
K',p
(2.32)

Ppa(K, V)= .,B(w +v —Kv)*

x Z E} A(K', K)N(K ~K',v+2,),

(2.33)

where p goes from 1 to N (N is the number of
modes involved), and in (2.32) v is taken to be
near w and in (2.33) near —w. Inserting these
expressions into (2.28) and interchanging », p and
K’, K” in the part coming from p,,, we obtain the
recursion relation for the Fourier coefficients of
the population inversion

N(K,v)L(K,v)- MK, V)
B>
4 K' K" .p\n
x[L(w=-v-Q,+Kv -K'v)
+&(w+v =9, -Kv +K"v)*]
XN(K-K' -K",v+Q,-9,), (2.34)

I,A(K' K,)A(K",K,)

where we have defined analogously with (2.3)
Ln=92E,E}/20%y,y,, (2.35)

from which I, =1,.

The problem is to solve the difference equation
(2.34) letting the indices »n and p run over the
number of modes involved. Some symmetry pro-
perties of the solutions, which will be needed in
the following, are listed in Appendix A.

The atomic polarization is obtained from the
solution by averaging over the velocity distribu-
tion W(v)

P(z,t)=c,® fmdv w(v)

X[ pap(2,0, ) +ppe(2,v,8)], (2.36)

where the density of active atoms ¢, has been
introduced because of the normalization of the
density matrix. Inserting (2.24) and its complex
conjugate into (2.36), we find

Plz,0=cop 2 (f:dv W (o)

x[pab(K1 V, ‘I)) +pba(K9 V, 1))])

X gi(Kz=vt) (237)

Comparing this with the expansion (2.8), we obtain

(1/41)B,(t) =co® f”de(v)paAKmﬂ",v)

=—Cop J‘*‘wdv W(U)pba(_Kn,nn) —U),
(2.38)

where the properties W(-v)=W(v) and (A4) have
been utilized. The coefficients p,,(K,v,v) are
calculated by (2.32), and we find

ic,@? +oo
P,,=—-—_y°ﬁ—-f do W (v) &(w -8, +K,v)

X D E,A(K', K)N(K, —K',Q, =R, ,0).
K'.p
(2.39)

From the derived expression we can easily ex-
tract the complex nonlinear susceptibility (2.11).
According to (2.14) its imaginary part determines
the amplification factor G, of the cell, and we
find with the aid of (2.16)

G, &p—"-f dv W(v) Re(,c(w Q,+K,v)

x Z £ AK', p)I\r(lr{,,—K',sz,,-sz,,u)> :

(2.40)

The expression is valid for either cell, provided
that we use the appropriate values of the atomic
parameters, and it automatically produces the
correct sign—positive if there is population in-
version in the material and negative otherwise.
At this point it ought to be pointed out that a
study of the dynamics of the laser should include
an integration of (2.40) over the radial distribution
of the beam. Here, however, we neglect this on
account of the additional complexity arising (see
Beterov et al.*'®). In steady state the present
treatment is correct provided that the intensities
refer to areas over which the transverse varia-
tion is small and self-focusing can be neglected.

D. Exact Solution for One Mode

When only one mode is oscillating the difference
equations derived in Sec. IIC can be solved ex-
actly. The solution is the same as the one ob-
tained by Stenholm and Lamb'® in the form of a
continued fraction (CFS). The new aspect of this
work is the inclusion of the absorption cell into
the optical cavity.

In the one-mode case the sums over p and » in
(2.34) contain the term p =n=1 only. The fre-
quency variables of the Fourier coefficients be-
come equal on both sides, and because only the
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component A(K, 0) differs from zero, we must
take v =0. The sums over K’ and K” can be car-
ried out utilizing (2.23). As the inhomogeneous
term (K, 0) vanishes unless K =0 only the values
K =yK, with» =0, +2, +4,..., occur. Introducing

the new unknowns
n,=N(rK,,0)/x, (2.41)

we obtain from (2.34) the three-term recurrence
relation

Arnr_Br-l L —Br+lnr+2=6r,o9 (242)
where
A,=L(rK,0)+B,_, +B,,, (2.43)

B, =1l [&(w -Q +rKv) + £(w - - rKv)*],
(2.44)
and the subscript 1 on K,, ©,, and I, has been
omitted as unnecessary.

For » #0 we can solve the ratio of successive
n, from (2.42) and find

C = nr Br—].
" Nyes A Br+l nr+2/n
B 1
L= r>0 2.45
A Br+1/(Ar+2"°°.) ’ ( )
" B,y
D, = Nypia A =B, 1 n,_,/n,
Broy y<0.  (2.46)

B Ar—Bz-l/(Ar-a_...) ’

Setting » =2 in (2.45), v =-2 in (2.46), and inserting
these into the equation (2.42) with » =0, we obtain

no=lA4,-B_,D_,-B,C,]™"

=[Ao'2Re(Bl Cz)]-l, (2.47)

where the properties of A, and B, have been used
to write (B_, D_,) =(B, C,)* [this property is also
immediately verified from Eq. (A1)].

The amplification factor (2.40) for the single
oscillating mode is

G= eoyﬁ f dvw(v)

xRe{£(w - +Kv)[N(0, 0,v) - N(2K, 0,0)]}.
(2.48)

The calculated n, determine the nonzero coeffi-
cients N(K,0) by (2.41), and from the relations
(2.47) and (2.45) with » =2 we obtain

N? Ng2Q Re[£(w-Q +Kv)(1 -C,)]
f W) = 5 Re(B, C;) ’

(2.49)

where N=cyA. This is the exact CFS result which
can be used for both the amplifier and the absorber.

Even though the continued fraction in (2.49)
generally converges quite rapidly, the numerical
calculation of the integral over v is time consum-
ing. Consequently a simpler approximate solution
is presented in Sec. IIE.

E. REA Solution

The rate-equation approximation consists of
setting C,=D_,=0. Then we obtain from (2.49)
and (2.43)

G= 607h' f dv W (v)
% £, (w-Q +Kv)
1+31[8,(w-Q +Kv) +&£,(w-Q -Kv) ]’
(2.50)
where
£,(x)=Re&(x) =y¥(y? +x2). (2.51)

Expanding the integrand into partial fractions we
can express the result in terms of the plasma
dispersion function Z as follows:

v [42(22)+.2(22)].

The expressions for A, A,, x,, and x, and the
details of the derivation are given in Appendix C.
Some of the properties of the plasma dispersion
function are discussed in Appendix B.

When the oscillating mode is tuned to exact
resonance with the atomic transition we obtain
from the results of Appendix C that

P2NQ ZGk(l+1)?)

(2.52)

G= €, iKu @Q+nrz (2.53)
and for detunings far off resonance, i.e., |w -]
>>vy, we have

237 - +i 1ry1/2
_P*NQ Z((Q - w)/Ku+ik(l +31)'?) | (2.54)

" €,fiKu (1+3I)2
where k=y/Ku is the Doppler parameter. The
situation described by (2.54) is equivalent with
that of two oppositely traveling noninteracting
waves each of amplitude 3E.

The use of the REA to obtain numerical results
rests on the fact that the plasma dispersion func-
tion can be easily programmed on the computer
and the time consuming velocity integration is
avoided. In addition, the derivatives with re-
spect to the intensity and the detuning, which we
shall need in the following, are relatively simple
(see Appendix C). We shall return to the question
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of the accuracy and applicability of the REA in
Sec. IV.

III. ONE-MODE BEHAVIOR IN THE REA
A. General Features of the System

We first consider the behavior of the system in
the REA. This gives the total gain at zero inten-
sity correctly. Assuming the absorption cell
turned off, we obtain from (2.15) and (2.52)

_$2QN

H= < iKu Z(a+ik) -1, (3.1)

which agrees with (2.49) for I =0. The detuning
parameter for both cells is

A=(Q -w)/Ku. (3.2)

The imaginary part of the plasma dispersion func-
tion reaches its maximum at Q =w, and therefore,
when H=0, the threshold pumping value N is
obtained from (3.1) at exact resonant tuning A =0.
We define the relative excitation by
— 2
o = N ___#°QN

Mo G—OEEZ‘(ZK). (3.3)

The contribution of the amplifier cell to the total
gain is now written as

G*™ =Ng(a, k1), (3.4)
where the exact normalized amplification factor

Zump 18, by (2.49),

g(a, k,1)= m‘ J;T: dv W(v)

« Rele(w -2 +Kv)(1 -C,)]

A,-2Re(B,C,) (3.5)
In the REA the corresponding expression is,
according to (2.52),
g= ﬁ— (A, Z (rkx,) +A, Z (rx,)] . (3.6)
The linewidth in the absorber cell is
y® =gy, (3.7

where we assume ¢ <1. It is convenient to nor-
malize the absorber cell pumping rate analogously
with (3.3):

M =(p™PQIN™|Z, Gtk) /e fiKu, (3.8)

where we explicitly take into account the minus
sign in (2.15). It should be noted that the value
=1 is not connected with any specific threshold
in the laser but is chosen merely as an expedient
dimensionless reference point. For simplicity we
have assumed the same kinetic temperature for
both gases in the cells (u = T%2). In the numerical

work we choose y, =y, =y, which is easily relaxed
in calculations on specific laser systems.??
The total gain function (2.15) is now

H=%Ng(A, k,I)=-Mg(a, ¢k, al)-1. (3.9)

We assume that the parameters 9% and N can be
chosen arbitrarily by pumping the two cells in-
dependently. All changes in k, {, and a due to
changes in pumping currents are ignored.

The steady-state solutions of the equation (2.14)
are determined by

H(A L) .=0, (3.10)
which is satisfied if either H=0 or /,=0. In the
following we restrict our consideration to the
stable solutions I, only. If [.,#0, the linearized
equation (2.14)

s I, (3H
74 ———<81 >tn61 (3.11)

must have an exponentially decaying solution,
which requires that

<%I’1>Iw<o. (3.12)

The nonoscillating solution /[, =0 is stable pro-
vided that

H(a,0)<0, (3.13)

independent of the sign of the derivative. For
resonant tuning A =0, we obtain from (3.6) [cf.
also Eq. (2.53)]

1 Z (k1 +1)V?)
80,60 = (1+1)2 i Z,(ik)

(3.14)

For small values of k and reasonable intensities
(i.e., K1'2<<1) the ratio of the imaginary parts of
the plasma dispersion functions equals approxi-
mately 1, and from (3.9) we find

N _ M
M+DY2 T (A +al)?

With no absorption () =0), H decreases mono-
tonously as [ increases, and as soon as >1 we
have one and only one stable solution of (3.10).
For 9+ 0 the function H(0,I) may acquire a maxi-
mum (recall that «>1). The occurrence of non-
monotonic gain was first discussed by Kazantsev
et al.'? in the framework of fifth-order perturba-
tion theory.

These general features can be verified in the
full REA expressions. Calculated results are
displayed in Fig. 1. Depending on the amount of
absorption for fixed amplifier cell pumping N and
detuning A, three different regions are observed:
(a) H(a,0)>0 gives only one stable solution; (b)
H(A,0)<0, but max[ H(A,I)]>0 gives two stable

H(0,I)= -1. (3.15)
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FIG. 1. Gain function H at exact resonance versus the
intensity I for various pumping rates. The state of the
amplifier is kept fixed X =1.5, k =0.1, and ¢ =0.25).

operating points—one at I =0 and the other at the
zero of H(A,I) where 8H/81<0; (c) Max[ H(A,I)]<0
gives again only one stable solution I =0. In the
region where (b) is valid the operation is bistable.
It turns out to be informative to represent the
conditions for bistability as regions in the QT, )
plane. The detailed construction of these diagrams
is discussed in Sec. IIIB. Figure 2 shows an
example for resonant tuning. In region II we have
two stable operating points: Increasing the amount
of absorption we reach the region I where the
oscillation is extinguished, or decreasing M leads
to region III with a unique nonzero solution.

From Figs. 1 and 2 it is clear that hysteresis
effects are observed when 3 or M is varied over a
closed cycle passing through the bistable region.
Two examples?® of this are shown in Figs. 3 and
4. Similar hysteresis effects occur when we keep
the operating point O, M) fixed but detune the laser
system (Fig. 5). The origin of this behavior is
evident from the results of Sec. III B. The exis-
tence of these hysteresis effects was verified
experimentally by Lee ef al.! and Lisitzyn et al.®
but they tried to avoid the bistable region.

We have assumed that { was roughly 0.3 in the
experiment performed by Lee ef al.! and estimate
that N was below 1.3, which is suggested by the

20 "

15 —

m
1.0 |
0 05 1.0

FIG. 2. Regions of different behavior in single-mode
operation. The parameters as in Fig. 1.

SAILOMAA AND S. STENHOLM 8

T T T T T T
\A
0.5 -
B
m
1 D ] ) Ll C 1
E]'00 04 08

FIG. 3. Current hysteresis for a modulation of the
absorber cell pumping . Increasing M (N=1.3) de-
creases the steady-state intensity I until at point B the
stable solution coincides with the unstable one and oscil-
lation ceases. It begins to grow from noise only at point
D. The region A —+B or C—D corresponds to the bi-
stable solution. In this figure w =Q, k=0.025, and
£=0.1.

value for the tuning range obtained from (3.1).
Then Fig. 2 shows that bistable operation occurs
for values of I larger than 90% of the value
required to extinguish the oscillation completely.
This is in agreement with the experimental esti-
mate given in Ref. 1.

B. Calculation of the Operating Characteristics

For fixed detuning (2 - w)=AKu and for fixed
¢ (i.e., the pressures in the cells are kept con-
stant) the operating conditions are determined
solely by the two pumping parameters N and M,
and hence we display the steady state character-
istics in the (M, N) plane as explained previously.

From Fig. 1 it is clear that the region for one
stable nonzero solution is determined by the
relation

H(A,0)=Tg(A, k, 0) -IMg(A, £k,0) 120,
(3.16)

where the curve corresponding to the equality
sign is a straight line in the N, N) plane above
which the inequality holds. Below the line the

10

FIG. 4. Same as Fig. 3 but the amplifier cell pumping
is modulated with M fixed.
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system may have either two stable solutions or
the single nonoscillating solution I =0. The border
between these two types of behavior arises when
the maximum of the total gain H(A,I) occurs at

the amplification threshold H(A,/)=0. From Fig.
1 we see that this situation takes place when the
loss line is tangential to the gain curve, and con-
sequently the two equations

Ng(A, k,I)=-Mg(a, tk,al)-1=0, (3.17)
og(a, k,0) - 9g(A, gk, al)
qELB o7 =0 (3.18)

must be satisfied simultaneously. Solving these
for 9 and I as functions of I, we get a parametric
representation of a curve in the @R, N) plane.
Below this curve the oscillation is extinguished
(I=0), and above it up to the line (3.16) we obtain
bistable behavior. The curve meets the line (3.16)
at the point where (3.18) is valid for I =0 which
merely indicates, that a minimum amount of
absorption is needed to give a maximum in the
gain for non-negative values of I, implying the
possibility of bistable operation. From (C8) and
(C18)—-(C21) it follows that in the Doppler limit
(k<<1)

g, k0| z‘(AH'K)[ < A_2>"
3l oo dzGn) L1T\1t7E ]

(3.19)

Introducing (3.19) with appropriate values of the
arguments into (3.18) and utilizing (3.16) to elimi-
nate 0, we obtain for the minimum absorption
required to achieve bistable operation the value

_ (127 + 0@ - w)?] AU
M= <a 1%+ (@ - wp] _1> Z(a+ikk) ’

(3.20)

which for resonant tuning reduces to (@ —1)!.
This gives a very small value of I for large a.
Figures 6 and 7 show some calculated curves,

0 1 1

0 0.2 04
FIG. 5. Frequency hysteresis when N =1.6, N =0.56,

k=0.1, and £ =0.25. At B the oscillation is suddenly

cut off and is restarted only if the detuning is diminished

to D.

2.0 ' I ' J ' =
n =19 %s
L 03 -
15— =
01
1 1 lm
1 1 1
1'0(] 05 10 15

FIG. 6. Size of the bistable region for various ¢ at
exactly resonant tuning (x =0.025).

that divide the @, N) plane into regions of different
steady-state behavior. In Fig. 6 the size of the
bistable region is considered as a function of the
ratio { =yabs/y. For ¢ =1 both cells saturate iden-
tically [H= (1 -9M)g —1], and hence the bistable
region disappears. For {<1 (a>1) the absorber
saturates more strongly, and the region of bistable
operation grows with decreasing ¢. In Fig. 7 we
have plotted the bistable regions for various de-
tunings keeping ¢ fixed. The inclination to bi-
stability is found to be most prominent near reso-
nant tuning where the active medium saturates
most strongly and hence the contrast between the
saturation states of the cells is enhanced.

The previous discussion explained what solution
to expect when we know the pumping parameters
N and M. For fixed values of these the equation

H=Ng(A, kI[)-Mg(a,ck,al)-1=0 (3.21)

has to be solved to give the intensity I. A general
explicit solution is not possible even in the REA.
A straightforward way of treating (3.21) is to plot
H(A,I) and from its zero obtain I, (cf. Fig. 1).
More general information is made available if we
draw the straight lines (3.21) in the QW,91) plane
regarding [ as a parameter. A set of such lines
is shown in Fig. 8 together with the region of
bistable operation. Within the bistable region

one stable solution is always [ =0, and the second
value of I satisfying (3.21) corresponds to the
unstable operating point and will hence be omitted.

T T ]

20 ' T T j
n
R-w
- 0.500 T 0.375 <
0250
b / —

. ’— 0125 —~
0

1 1 1 1 | 1 |
UU 05 10 15

FIG. 7. Bistable region for various detunings (x =0.025
and £ =0.1).
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14 06
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FIG. 8. Steady-state intensity at exact resonance with
k=0.025 and { =0.1. The borders of bistable operation
are also included. Below the line I =0 one stable solu-
tion is always I=0.

The line (3.21) with constant I is tangential to the
border line of the nonoscillatory region at the
point where (3.18) is simultaneously satisfied.
After the point of contact the fixed / value does,
however, belong to the unstable solution as can
be seen from Fig. 9, and consequently the lines
(3.21) are to be drawn only to the point of contact.

' | T 1 I
n
1.8 —
C
- 4
B
14 —
- A -
L1 ] ] 1 | m
1 0(Il 04 08 1.2
H T I T T T I
/\/
A E
| ) | P
0.2 04 06

FIG. 9. Construction of Fig. 8. The point A corre-
sponds to the pumping rates (I, N) =(0.30,1.26), B to
(0.63,1.44), and C to (1.10,1.68). The corresponding
gain functions are displayed in the lower picture. The
intensity I equals 0.2, and other parameters are as in

Fig. 8.

8
T T T T
1019 -
I=01
V\ 4
0.3
0.8 AMPLIFIER -
_\\ ————————————— ga 1
0.6 SN —
M r === —— e 01

0l 01 |
ABSORBER
03
0 A

FIG. 10. Normalized gain factors of the amplifier and
the absorber cells with k =0.025 and £ =0.1. To facili-
tate the comparison of the dips, we have also drawn
their difference (dashed lines).

C. Detuning Curves

The experimental results are often presented
in the form of detuning curves, i.e., the steady-
state intensity is plotted versus detuning Q — w.
The Lamb dip and the inverted Lamb dip appear in
these curves. The occurrence of the inverted Lamb
dip can be explained already in the framework
of third-order perturbation theory (Lisitsyn and
Chebotaev?). The different saturation state in the
absorber and amplifier cell give rise to a peak
in the total amplification at resonant tuning causing
an inverted Lamb dip for sufficiently large ab-
sorption (see Fig. 10).

In order to obtain the detuning curves we use
equation (3.21) to plot I as a function of I with

03

_ 125 gmP--1
ms= gabs-

0.2

0.1

-0.1
0

FIG. 11. Curves needed to construct Fig. 12.
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FIG. 12. Detuning curves with N =1.25, k =0.1, and
£=0.25. The curves are symmetric with respect to the
ordinate axis.

A=(Q - w)/Ku as a parameter and N fixed. An
example is shown in Fig. 11, We construct the
detuning curves by drawing a line of constant W
and plotting the corresponding values of I versus
A. In Fig. 12 the results obtained from Fig. 11
are shuown, and we see how starting from M =0
with an ordinary Lamb dip of width v an increasing
M leads to the inverted Lamb dip of width yabs =¢y.
The dips are, of course, distorted by power
broadening which affects the amplifier less than
the more easily saturable absorber.

Greenstein' has discussed the inverted Lamb
dip in some detail but it appears to be useful to
give an analytic formula for its occurrence. From
Fig. 12 we see that the ordinary Lamb dip goes
over into an inverted Lamb dip when the second
derivative of I with respect to A changes its sign
at A=0. This guarantees only the existence of an
inverted Lamb dip but not the disappearance of
the ordinary Lamb dip, as can be verified from
Fig. 12. We expand the implicit equation (3.21)
near A=0:

oH OH oI
H‘°’”+<ﬁ+v 3:)
L[ 2 oL 2w oLy
* 2 [5a2 *“ a0l s "ol \on
oH 321] 2
o5) o1 " 22
+(81) vl 0 (3.22)

For the steady-state value of / we have H(0,/..)=0
and

9H
A

9l

A=°= , 4 (3.23)

A=0

for symmetry reasons. Thus the condition that the
second derivative of / vanishes gives the relation

a2I B a—II- -1 azH
aa? ~ \_ o[ 92

_(LRHNT (2% i”g_>_
_<_81> (“"aAz ~m—£) -0, (3.24)

At the stable operating point we have 8H/31<0,
and it follows that 9% /9A% has the same sign as
392H/5A%. From (C15) and (3.24) we obtain

9 (k, 1) + %ﬂnf(gx, al)=0, (3.25)
y ZGKA+DY?) 1+31+312
fleD =1~ Z, (i) T+1)?
I(1+31
-(1—’:‘7)%5 [1 - k(t +1)2 Z, (iK1 + IY'2)],

(3.26)

which together with the equation

g 3z, Gk +1)2) Mz (GLk( +al)'?) _1=0

T @ +1)V2Z,(ik) (1 +alY2Z,(ikg)

(3.27)

determines the minimum value of M needed to
obtain an inverted Lamb dip. In the extreme
Doppler limit k =0 the condition reduces to

1+ 84+9%al
1+al 8491

8+121+3I%+8(1 +1I)¥? 1)“

M=1 +al)t’? (0!2

8 +12al +3a22 +8(1 +al)¥? ~
(3.28)

where we have chosen [ as the independent vari-
able and the corresponding value of N is to be
determined from (3.27). For I =0 the relation
(3.28) gives M= (a? - 1)-!, If we take a nonzero
value for k we obtain for small values of I the
relation

15

1.0

05

0

FIG. 13. For given intensity this figure gives the mini-
mum absorption needed to obtain an inverted Lamb dip
for the Doppler parameters x =0.1 (solid line) and k =0
(dashed line).
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FIG. 14. Dynamic response of the laser system to the
modulation of the amplifier cell pumping (N=1.25,
k=0.1, and ¢ =0.25).

2 -1
Emz(————a L - 4i8 _1) (3.29)

I—-4k®

from which it follows that we must have I>4«? in
order to get a positive value for I.?* Some nu-
merical results are shown in Fig. 13.

D. Dynamic Characteristics

Bolwijn et al.?® have shown that there may be a
more pronounced structure in the ac response of
a laser system than in the ordinary dc response.
Stenholm and Lamb!é show that this holds only for
a limited range of intensities. It is of some in-
terest to see how the presence of the absorber
affects the dynamic response.

For a sufficiently slow modulation of the pumping
or the loss parameters we can use the linearized
form of Eq. (2.14) to obtain the response

oI, (3.30)

and similarly for the modulation of . From
(3.21) we find directly

ol 8H\ ~!

_8__ :gabs (.51_> R (3.31)
24 oH \ !
_a_._ = _gamp<_a_;_> s (3'32)

because H disappears at the operating point, which
is stable if 0H/81<0. The response of the ampli-
fier exceeds the response of the absorber, be-
cause, for a fixed I, g*™P>g? but it is of interest
to consider the modulation of the absorber cell
pumping as this is a new degree of freedom in the
system. The derivatives in (3.31) and (3.32) are
directly determined by the slopes in Fig. 11 with
IN fixed. In the REA one can use (C18)-(C21) to
get explicit results. Numerical results are shown

0

Q-w

u

|
!
|
|
I
I
|
|
!

1

FIG. 15. Same as Fig. 14 except that the absorption is
modulated.

in Figs. 14 and 15.

In the region of bistable operation the enhance-
ment factor (8H/3I)"! in (3.31) and (3.32) becomes
large, and at the border between bistable and
nonoscillating regions it diverges. For M =0 the
curve 31/ reproduces the result of Ref. 16,
but we notice that the curve for 81/89 at M =0
has a quite different shape. For the values of M
leading to bistable operation a singularity develops
at the edge of the amplifying range. Here, of
course, the linearization implied in (3.30) breaks
down.

It is also seen from Figs. 14 and 15 that the
central dip in 87/ has approximately the width
v and the dip in 81/891 has the width £y, which in
certain ranges of the parameters 3 and M could
be used to measure the two linewidths with better
accuracy than the dc curves of Fig. 12 admit. In
this paper we shall, however, not try to determine
the optimum range of the parameters for such
experiments.

IV. EXACT RESULTS FOR ONE MODE

A. Validity of the REA

In this section we shall give numerical results
for the exact normalized gain factor g(A, «,I) and
compare these to the REA results. Qualitatively
the REA reproduces all the features of the laser
system correctly, and therefore we shall not
repeat the calculations presented in the previous
part. In Sec. IVB we briefly discuss where the
REA should be replaced by exact results when
higher accuracy is required.

We now show that the REA coincides with the
exact results for small values of I in the Doppler
limit and for a very large value of I. For small
I, the third-order expansion of (2.49) and (2.52)
gives



|

I (Zi(éix)—zi—2aé+ Z

& 8pma™ (1 +4a®) Z,(ik)

where a=(Q - w)/y. The function Z =Z,+i Z, is to
be evaluated with the argument (a + i)k unless
otherwise is explicitly indicated. The difference
(4.1) is obviously large only near a =0 because of
the factor (1 +4a2)"! on the right-hand side. In
the Doppler limit Z, =72 and Z,/a is of the order
k [see Eq. (B6)], and therefore (4.1) vanishes at
least as «.

For very large values of I we must use the
asymptotic expression of Z [Eq. (B7)] and, from
(3.14) we obtain at resonant tuning

g0, k1) =[xz, (i) I]"* +O(I7?), (4.2)

which is in agreement with the exact asymptotic
behavior derived by Stenholm.?® If one does not
use the correct asymptotic expression for Z,
namely, one ignores the fact that power broadening
makes the Doppler-limit approximation invalid,
the incorrect asymptotic behavior gocl -1/2 pe.
sults.

Utilizing the properties of B, and A, and the
recurrence relation (2.42) with » =0, one can show
that the integrand in (2.48) is

Re[£(w -2 +Kv)(ny - n,)]

1-n, 2ReB, N 2Re(B,C,n,)
I IA, IA, '

4.3)

From the first equation we note that the exact
gain factor is proportional to the area of the holes

08

06

0.4

0.2

0

FIG. 16. Normalized gain factor at exact resonance
with k =0.1. The relative error in the REA is given by
the dashed line (the relative error on the right-hand
scale).

—

1 +4a? 4q

GAS LASER WITH SATURABLE ABSORBER. 1I... 21707

_%[1 +KaZ, - KZ, - 2ka® Z, -2xaz,]> +0(1?),  (4.1)

—

burned into the velocity distribution (cf. Bennett?’).
The first term in the second equation is the REA
contribution. If the CFS solution converges, C,
approaches a finite constant as I increases, and
for physical reasons we can, on the other hand,
conclude that n, approaches zero, and hence, for
very large values of I, we can ignore the second
term compared to the first one.

We have compared the exact results to those of
the REA numerically in Figs. 16 and 17. The
exact curves are calculated truncating the compu-
tation of the continued fraction of C, when for a
fixed value of v the next estimate differs less than
1078 from the previous one (for a convenient al-
gorithm calculating continued fractions, see
Feldman and Feld?®). The integration over v is
carried out with Simpson’s formula using the step
length Kv/y =0.1 near the origin and near the
maximum of the Lorentzian. We use larger step
lengths when going away from these regions. The
point where the integration can be halted is esti-
mated from the remainder of the integrated gain
factor

wren ()] /()] o

which can easily be derived from (3.5). The ap-
proximate overall error in g is less than 0.2%.
From Fig. 17 we see that the worst case occurs
near resonant tuning. This is easily understood
on account of the results by Stenholm and Lamb,!®
who show that the velocity distribution exhibits

066

REA ==
024 ) | | (Q-w)/Ku 2

0 01 02 03 04 05

FIG. 17. Normalized gain factors for various detunings
with I=1 and 10 (x =0.1). The corresponding relative
errors are given by the dashed lines (scale on the right).
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ripples near the origin which are absent in the
REA. One fact to be noted is that the REA over-
emphasizes the Lamb dip because of its incapa-
bility to reproduce this structure. From Fig. 16
we see that with realistic values of I, i.e., I <1,
the REA introduces an error that is less than 2%.
In most applications this is sufficiently accurate.

B. Discussion of the REA

The main advantage of the REA is that we avoid
the velocity integration as we already stated. This
becomes especially important when we need the
derivatives of g with respect to I or the detuning.
In the exact method several values of g must be
calculated near the point where the derivative is
to be evaluated if good accuracy in numerical
calculations is needed.

In certain regions the errors tend to cancel when
we calculate H because a change AH is composed
of two contributions, i.e.,

AH =A™ —IMAg™ . (4.5)

This cancellation is rather efficient because 3 >M
and normally Ag*™ is of the same sign but smaller
than Agabs, The error may be large when one
computes properties that depend on the position
of the maximum of H. If, however, the intensity
acts only as phenomenological label of the curves,
the REA may still produce reasonably good re-
sults (cf. the construction of the lower limit of
the bistable region). We do not give any numerical
comparison here.

Comparing to the other major approximations
in this work, i.e., taking the pressure effects into
account by a Lorentzian broadening mechanism,
neglecting the radial distribution of the field and
ignoring the focusing, we consider the use of the
REA to be justified in most cases.

V. INCLUSION OF PRESSURE EFFECTS

When the atoms of the whole velocity profile
sustain single-mode oscillation in the laser, the
details of the atomic collision processes are
presumably averaged out. The effects of in-
creased pressure can then be discussed within a
simple parametrization of atomic collision events,
and their influence on the present calculations will
be briefly considered. We have previously dis-
cussed a model® where both velocity and phase
changing collisions are included but the correla-
tion between these processes is neglected. The
resulting gain factor is

PNQ

6= LN o, 8 (1+i =5 olh,m)

(5.1)

where
N =co(hg=2,)/7, (5.2)
Y =%, +(1/T)(1 - cosn), (5.3)
A=w~-Q +(1/T)sinn, (5.4)
I=9?|E|Y2r%y3, (5.5)
£,(x) =v¥6® +x7), (5.6)

o(,a)= fmdv w(v):[L,(a+Kv) +£,(a -Kv)]

_BT) [£ (A +Kv)

< (1 g
+£,(A—Kv)]) )

(5.7)

In (5.1)-(5.7), v, is the free atom and vy the pres-
sure-broadened linewidth, T is the average time
between collisions, and 7 the average phase change
in a collision. Comparing (5.7) with (C1) we find

=X rT

G_-yoGRBA< Ku’ 1+y,T [>
[1”_7;__25_&_
1+y,T #2NQ

T N7
Ku ' 1 +'Y° I)] ’ (5.8)

where I is the dimensionless intensity defined by
(2.3). Introducing the normalized gain factor g
we obtain

xGREA(

G:yng <l +1 KZ{(zK)mg> ’ (5'9)
)

T
14+y,T
where g is calculated with the arguments A, «,
[T/ +y,T)]1. In the Doppler limit we can ne-
glect the second term in the denominator, and
consequently

G=0/ry)Rg(a,«, 1), (5.10)
where

7Y S 11

&= 149, T v, (5.11)

Because X is a free parameter we can include
y/7v, into it, and we conclude that in the Doppler
limit we are allowed to use the REA results with

& given by (5.11) and the pressure shift of the res-
onant frequency included into A.

APPENDIX A: SYMMETRY PROPERTIES
OF THE FOURIER COEFFICIENTS

Taking the complex conjugate of (2.25), changing
the summation indices K, v to —K, —v and recalling
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that N(z, {,v) must be real, we find
N(_K) "‘V,‘I))=N(K, V,U)*. (Al)

Applying the same procedure to (2.24) and recalling
that p,, = (p,,)*, we obtain

pab(_Ky _V’U)=pba(1(7 V’U)*‘ (AZ)

Replacing K by -K, v by —v, and changing K’
to —=K’ and K” to —-K” in (2.34) and remembering
that A(-K,K,)=-A(K,K,), we see that N(-K, v, —v)
satisfies the same equation as N(K, v,v) [note that
M=K, v, -v)=\(K,v,v)] and consequently

N(-K,v, -v)=N(K,v,v). (A3)
From (2.32) we obtain by (A3) that

Pap(=K, v, ~v) = =p,, (K, v,v), (A4)
and from (2.33)

Poa(—K, v, =v) ==p,.(K, v,v). (A5)

APPENDIX B: PLASMA DISPERSION FUNCTION
The plasma dispersion function is defined by

vo dtet

1
Z(§)= 71,112 '[_w t—¢

where ¢ =x +iy and y >0. From the symmetry
relations

=Z,@)+iz,k), (Bl)

Z,6)=2,(x,y)==2,(~x,y), (B2)
Z,(§)=Z,(x,y)=Z,(—x,y), (B3)

it follows that in the present context we have for
y<0

2" =[z©1*=-1z(-0)]* (B4)

instead of the ordinary expression (see, e.g.,
Fried and Conte® or Abramovitz and Stegun®')

Z(£%) =2 () +2in2em ¢, (B5)
For small values of { we have
ZE)=im"? e 20 (1 - 32+ 30040 00),  (B6)
and for large values of ¢

1 .3
22 YAt

In the whole complex plane the derivative of Z
is

Z(§)=—%(1+ +> (Img >0). (B7)

Z—f:-zu +£Z). (B8)

From (B1)-(B8) it can be shown that

f”au W(0) £(w -0 + Kv) = -% ZE),  (B9)

f:du W(v)£(w—QiKv)*=-Ii{—Z-[Z(If)] ", (B10)
fmdv W) e(w-Q+Kv)]*
1 l'}/ k ak-l
A <—‘ﬁ> EFZ(I), (B11)
where
£=(Q -w)/Ku+iy/Ku, (B12)
W(v)=(1/1"2u) e/, (B13)
L(x)=v/(y +ix). (B14)

APPENDIX C: REA

Symmetrizing the integrand with respect to v
in formula (2.50) and using (3.3) and (3.4), we
obtain

1 + 00
g= _—KZ,(iK) j_w dv W(v)
X3[&,(w -9 +Kv) + £, (w -Q - Kv)]
X{1+31[L£ (0w -9 +Kv) + &, (w -Q -Kv)]}"2,

(C1)

which is written as

£~y |, W (®

'“’,1,—’{—”), (C2)
Y Y

fla, I,x)=( +a%+x2)[(1 +a? +x2)?

—4a%2 + I(1 +a? +x2)] -1,

(C3)
The function f(a, I,x) can be expanded as
4
fla,1,x)=2 Aa, I)lx -x,(a, )] (c4)
i=1

if the roots of the denominator in (C3), i.e.,

x;=x[a® =1 =341+ GI? - 4a® - 2a7)V/2] V2
=x(c+d)'? (C5)

do not coincide. Fourfold roots do not exist be-
cause c®>d?, and double roots cause no trouble
because they can be treated with a proper limiting
process. If we label the roots x, = —x, = (c +d)'/?
and x, = —x, = (c —d)"'2, we obtain

A =-A,=(1+a® +x%)/4dx,, (ce)
Ay=-A,=-(1 +a® +x2)/4dx,. (cn

Introducing the expansion (C4) into (C1) and car-
rying out the integration over v with the aid of
(B1) and utilizing the properties x, = —x,, x, = —x,,
A, =-A,, A;=-A,, and the formulas (B2) and (B3),
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we get
.2
&= 7Z.Gx)

For values a?<< I we derive from (C5)-(C7) the
expansions

[A, Z (kx,) + Ay Z (kxj)] . (cs8)

%, (1+— 4 +1)>+O(a4), (c9)
xa=1i(1 +I)"2< —-22;— 4;13;1>+0(a4), (C10)
A= Z;za +0(a%), (c11)

1 Z Gk + 12

&= 7Z.(ix) [ A+

kI(1 +31)
1+1

which at resonant tuning a =0 gives (2.53). For
very large detunings a%>>1 +1 we obtain from
(C5)-(Cn)

x1=x;=a+i(1 +§1)”2, (c16)
A =AY =[4i@ +51)V2])1, (c17)

Insertion of these into (C8) gives (2.54).

For the determination of the bistable region we
need the derivative of (C8) with respect to the
intensity I. From (C5)-(C7) and (B8) a straight-
forward calculation gives the results

_ 1 402 1+31+312 4
A= g (7 ST 10w
(c12)

With the aid of (B8), (C9), and (C10) we can show
that to second order in a
Z (kx,) =Z (ik) -M a1 +ikz(ik)], (C13)

ika® 4+31

Z(Kx3)=Z(iK(1 +I)ll2)+ b W

x[1+ik@ + Y22k +1)V2)].  (C14)
Insertion of (C9)-(C14) into (C8) yields

1+31+312

4a (Zi(llf) Z‘(ZK(]. +I)l/2)wz—

[1-x(l+1)l’2z,(ix(1+1)"2)]>] , (C15)
I
A, A (-1+2x,A +dA,/x))
ol d ’ (C18)
0A; A1 -2x,A,+dA,/x;)
ol d ) (C19)
Sh=-4, (=1,3), (c20)

> 2wy =2kA,[1 +kx, Z(kx,)] (R=1,3),
(c21)

which can be employed in computing the deriva-
tive.
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This paper determines the stability of single-mode operation of a laser with an intracavity absorber.
The strong-signal theory for one mode is taken from the previous paper, and the linear response at a
different cavity mode is calculated. When its gain exceeds the losses, the chosen operating point is
unstable. This determines the regions of stability. The influence of the intensity and position of the
strong mode is determined in the rate-equation approximation (REA). The REA is found to follow the
exact results rather poorly and an improved approximation (IREA) is given, which at least qualitatively

reproduces the structure of the exact gain functions.

I. INTRODUCTION

The introduction of a saturable absorber cell
into the optical cavity of a gas laser provides an
efficient method for mode selection.! ™ If the
saturability of the absorber greatly exceeds that
of the amplifier, the absorption is bleached at
the frequency of a strongly oscillating mode,
whereas the unsaturated absorption may suffice
to extinguish oscillations over the rest of the
amplification band. Thus single-mode operation
prevails with only a minor power decrease.

In Paper I* we considered the case with identical
gases in the cells; the unequal saturability was
assumed to be achieved by different amounts of
pressure broadening (a simple generalization of
the parameters used includes more general situa-
tions). We calculated the nonlinear susceptibili-

ties of the polarizable media for single-mode
operation with an arbitrary field strength. In this
paper we discuss the stability of the hypothesized
operating point and determine the parameter
ranges where all other modes are damped out.
Two ways of approaching the question of the
stability of single-mode operation are available.
One can start from steady-state multimode opera-
tion and determine the conditions under which this
becomes unstable.® This requires the solution of
a general multimode case—a problem of enormous
complexity for strong signals. On the other hand,
one can assume single-mode operation and scan
the Doppler-broadened gain band with a weak
signal.!'*2+® In the regions where the amplification
of the scanning signal is below threshold no self-
sustained oscillations can occur. If this is true
for all cavity eigenmodes the single-mode solution



