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Correlation efFects in parametric photon-pair production are studied within the framework of a

physicaHy realistic model. The analysis, which is fully quantum mechanical, takes into account the finite

sizes of the target and the beam cross section, and aHows for dispersion and anisotropy in the linear

susceptibility. The correlations in position and time at which the two members of a parametrically

generated pair may be detected are carefully evaluated. These correlations, which have been measured

experimentaHy, are intrinsicaHy quantum mechanical; i.e., they can be explained by no theory in which

the subharmonic fields are described purely by c -number functions. A complete solution, from which

field correlation functions of arbitrarily high order may be evaluated, is obtained by a method which at

the same time aHows for an arbitrary degree of parametric gain. The solution is expressed entirely in

terms of a particular two-point field-correlation-function, as evaluated in lowest order in the incident

field strength, at points distant from the target. The function in question is found by directly examining

the fluctuating currents in the material medium, rather than by eliminating the matter variables at the

outset through the introduction of a nonlinear electomagnetic susceptiMity.

I. INTRODUCTION

Spontaneous subharmonic generation or "fre-
quency splitting" of light, whereby a photon of fre-
quency e, propagating within a nonlinear medium
divides its energy between two photons of smaller
energy (u, and +„ is a particularly simple physi-
cally realizabl. e process which demonstrates the
inherently quantum-mechanical nature of the elec-
tromagnetic field. The correlations in the direc-
tions and in the times at which the two photons are
emitted-and therefore detected —ean be explained

by no theory in which the radiated field is de-
scribed by a purely classical function. The coinci-
dence counting rate recorded by a pair of optimally
placed detectors, for sufficiently weak incident
fields, is proportional in the quantum theory to the
incident field power &„and hence can be made
arbitrarily large compared to the accidental or
uneorrelated coincidence rate, which is propor-
tional to &', . Ample confirmation of the predic-
tions of the quantum theory of spontaneous fre-
quency splitting has been achieved by Burnham and
%einberg' in an experiment w'hich, finding more
than a hundred-to~one ratio between actual and

accidental coincidence counting rates, leaves
little room for any conceivable semiclassical ex-
planation of the process. '

Stimulated frequency splitting, on the other hand,
in which a field is initiaQy present at one or both
of the subharmonic frequencies, may be described
by a straightforward (though not fully correct)
semiclassical theory based on the elimination of
the atomic variables through the introduction of a
nonlinear electromagnetic susceptibility. ' This is
done by taking the expectation value of the atomic

current operator, evaluated in the presence of
two of the (~-number) fields, to be the source for
the third. A solvable quantum theory including
spontaneous as well as stimulated processes can
be obtained from the semiclassical theory simply
by replacing the c-number subharmonic field am-
plitudes by Heisenberg operators. ' Spontaneous
frequency splitting then emerges as amplification
of the "vacuum fluctuations" associated with the
noncommutation of the field operators. The sim-
plest model of the parametric amplifier, in which

the field at each subharmonic frequency is repre-
sented by a single discrete mode of oscillation,
has been extensively discussed in quantum-me-
chanical terms, ' for arbitrary degrees of amplifi-
cation.

More realistic models, in which infinitely many
modes are excited, are far more difficult to treat,
and analyses of them seldom allow for the possi-
bility of amplification' or are concerned with cor-
relation effects. The coupled-mode approach out-
lined above is particularly difficult to apply beyond
the simplest approximation in cases where the
nonlinear medium occupies a limited region of
space, as it does in real frequency-splitting ex-
periments. Previous theoretical analyses' of the
frequency-splitting process are not adequate, in
particular, to describe correlations such as those
measured in the Burnham-%einberg experiment,
nor do they allow for the possibility of parametric
gain.

In this paper a rather complete theoretical anal-'

ysis of the frequency-splitting process is pre-
sented, which, while physically realistic, provides
a solution for field-correlation effects of arbitrary
order and allows for an arbitrary degree of para-
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metric gain. The analysis is carried out by first
obtaining solutions in the limit of low incident
field intensity, where the process is entirely
spontaneous, and then using the solutions so ob-
tained to construct the solution which applies when
parametric gain may be appreciable. The solutions
in all cases are expressed in terms of the values
of the quantum-mechanical field-correlation func-
tions" at points far from the target, and may be
used to find the complete statistical distribution
of photocounts.

Field-correlation functions of arbitrary order,
it is found, can be expressed in terms of the single
function Gt' ' (x„x,) —= (A ' (x,)At' (x,) ), which
represents the product of two photon-annihilation
operators. In order to facilitate comparison with
semiclassical theories, this function is evaluated
not by using a formalism in which the atomic vari-
ables have been eliminated but instead by a direct
examination of the fluctuating electric current
within the material medium, as induced by the in-
cident or "pump" field. (The latter is represented
by a c-number function. ) A quite general relation
is derived which expresses the function G~"~ at
points distant from an arbitrary current distribu-
tion in terms of a suitable two-point electric cur-
rent-correlation function. (The derivation of this
relation requires careful attention to operator
ordering. ) In the ease of spontaneous frequency
splitting, the mean values of the atomic current
operators vanish, while the Quctuations described
by the aforementioned current-correlation function
do not. The intrinsically quantum-meehanieal na-
ture of the spontaneous frequency-splitting process
is thus exhibited in a particularly fundamental way.

In the weak pump-field limit, expressions are
obtained for the function G '~, and hence for the
coincidence counting rate recorded by a pair of
detectors, for the case of a target consisting of a
plane slab which is illuminated by an incident beam
of arbitrary cross-sectional profile. The effects
of linear dispersion and anisotropy are fully taken
into account. Suitable limiting cases are discussed,
and the correlation time and angular width are
evaluated within which one photon of a given para-
metrically generated pair may be detected, given
the location at which the other is detected. The
cross-spectral function Gt"'(x,', x,)
—= (At ~(x,')At'~(x, )) which determines the intensity
and frequency distribution of one subharmonic
field is obtained directly, for weak pump fields,
from the function G~ '~.

Field-correlation functions of higher order than
G~"' and G~' '~ are most easily found by a method
which at the same time allows for an arbitrary
degree of parametric gain, and thus yields cor-
rected expressions for the functions G~ '~ and G~"'

themselves, valid to arbitrary order in the pump-
field strength. The method in question consists
of finding the unitary operator which generates
the quantum state of the radiated field from the
vacuum state, thus representing the coherent
superposition of the two-photon wave functions
emitted by the individual atoms. (In one-photon
scattering, the analogous method leads to the in-
troduction of the unitary displgc ament oPey'ahoy'

and to the consequent representation of the scat-
tered field by a coherent state. ) The characteris
tie junctional for the scattered field, from which
field-correlation functions of arbitrary order can
be directly evaluated, is found by this method to
be expressible in terms of the (corrected) func-
tions G~" and G~"" alone. These in turn are
found by the same method to be expressible as a
power series consisting of multiple convolution
integrals of the function G~"~ as evaluated to
lowest order in the pump-field strength, at points
distant from the target. The series is governed
by a parameter roughly equal to the number of
photons located, according to the lowest-order
theory, within a coherence volume in the scatter-
ing region. The solution in the case of strong
pump fields implies considerable amplification of
the spectral components of the field near the cen-
ter of each subharmonic emission line, and thus a
reduction in its width.

In Sec. II the current-correlation function which
determines the function G~o'~ is derived in a quite
general context. The value of this function for a
single atom driven by a prescribed field is then
found, to lowest order in the field strength, in Sec.
III. In Sec. IV the scattering from a target con-
sisting of many atoms is discussed, and the spatial
and temporal correlations in the lowest-order
coincidence rates are found. Sec. V is devoted to
an analysis of the effect of parametric gain, and
contains the solutions for field-correlation func-
tions of arbitrary order.

H. CURRENT-CORRELATION FUNCTION FOR
PHOTON PAIR EMISSION

The electromagnetic-field-correlation function
which describes the photon-detection coincidence
rate at two separated space-time points is directly
obtainable from the four-point function' '
G~"~(x,', x,'; x„x,)

where x=-(r, t) and the superscripts on the (Heisen-
berg) vector-potential field operators are fre-
quency signatures. In the cases to be considered,
it will prove possible to express the function de-
fined by Eq. (2.1) in terms of the simpler two-point
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functions

G(0')(x„x,}-=(A'(x )A ' (x )} (2.2)

Equations (2.6) enable one immediately to write
down the solution for the cross-spectral field-cor-
relation function

G(', )(x1 x~) = (A(-)(x1)A(-)(x~)& (2.2)

G(1,1)(x) x) = (A( )(x))A(+)(x)& (2.11)

In particular, when the state of the field is the
superposition of the vacuum state and a state I2}
containing two photons with small probability,

(2.4)

it is not difficult to deduce the approximate factor-
ization relation

G(")(x' x' X„X,) = G(' (x' x') G ")(x x ).
(2.5)

The function G(0')(x„x,), which for equal time
arguments may then be roughly described as the
wave function for the photon pair, has squared val-
ue proportional to the simultaneous two-photon-
detection probability.

The field-correlation functions will ail be eval-
uated subject to the initial condition of vanishing
field strength at an initial time in the distant past,
at which the Heisenberg and Schrhdinger pictures
of the motion will be taken to coincide. The state
vector I} for the system at this time then satisfies
the relations

A('(.) I&=o= (IA(-)( ), (2.6)

where At (x) A,' (x) +A, (x) is the freely propagat-
ting or homogeneous part of the solution to the wave
equation. It is convenient to introduce the function

D(x) = [A)(, ( -)x, A (t'x)]/ ctf'=D, (x) -D„(x), (2.V)

where D,(x) and D„(x) are the causal and advanced
Green's functions

G"')(x, x)= ffd'xd'xD. (x -x)D,(x-x)
~«'-'(-)J"{-)& (2.12}

since the contributions from the freely propagating
operators A((x) in Eq. (2.10) vanish identically.

The function defined by Eq. (2.2), on the other
hand, takes a more complicated form when A(x) is
obtained from Eq. (2.10), for while the contribu-
tion from AI'(x, ) on the right-hand side vanishes
by virtue of Eqs. (2.6), the contribution from
A,')(x,) on the left-hand side does not. The func-
tion G(0')(x„x,) is therefore given as

G(")(x„x,) = ffd'x, d'x, D( )(x, x,)-
x D,"(x,-x,){J(X,)J(x,)&

+ fd'x, D(')(x, ,) {[—A—(')(x,), J(x,)]&,

(2.12)

(A(j')(x,)J(x,))= ([A(')(x,), J(x,)]&, (2.14)

which follows from Eqs. (2.6).
The commutator of the freely propagating field

operator Az(x, ) and the full Heisenberg current
operator J(x,) may be expressed in terms of the
current operators alone in a straightforward
manner. One may begin by noting that the full
Heisenberg operators A(x, ) and J(x,) must com-
mute at equal times,

where D(')(x) is the positive-frequency part of D {x).
In the second term use has been made of the relation

(2.8a,)

= —e(- t)D(x). (2.8b)

(1(x) = () — &, )
'

&
= ))())))(x),

7)' V ()(a+et)
V' 4((ct'

[A(x,), J(x,)]=0 for t, =t, (2.i6)

By making use of Eq. (2.10) for A(x, ) in this rela-
tion, one finds the relation

[A,(x,), J{x,)] = —fd'x, D,(x, -x,) {[J(X,), J(x,)])
Here e(t) is the unit step function,

e(t) =1 for t~ 0

=0 for t&0.
(2.9)

(t, =Z,). (2.16)

It then follows from Eq. (2.8a) that at t, = t, one may
write

In accordance with the boundary condition of
vanishing field for t- —~, the solution to the wave
equation for the Heisenberg field operator A(x) has
the form

[A,(x,), J{x,)]=—fd'x, e(t, F,) D( ,x—x)-
x {[J(x,), J(x,)]}. (2.1V)

A(x) A1(x) +fd'xD, (x —x)J(x), (2.10)

where J(x) is the Heisenberg electric current op-
erator, d'x —=ed't'dt, arid the integrations on r and
t extend from —~ to ~.

It is easily shown that the latter equation (unlike
Eq. (2.16)) is valid not only at t, =t» but for all
times t, . The proof of this assertion follows
immediately from the fact that both sides obey the
wave equation, i.e., vanish under the operation
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2
Q2 g2

C2
2 (2.18)

x((Z(x, )Z(x,)),) t"&, (2.20)

in which the positive-frequency parts are to be
taken after time ordering.

It may be noted that the function G~'"(x„x,) as
given by Eq. (2.20) is symmetric under the inter-
change x,—x„as one should expect it to be at
points far from the current distribution.

III. SPONTANEOUS PAIR-EMISSION
COEFFICIENT AND NONLINEAR

SUSCEPTIBILITY

For a single atom at the point r, the electric
current-correlation function in Eq. (2.20) may be
expressed, in the electric dipole approximation,
as

&(J(x2)J(x,))r) ~"~ = —5~'~(r r2)5~2~( r, —r)

x(2n) 'ff &od(2', e ' 2'2 ' 1'1

X002u1gr ' (~21 F1)1 (3.1)

where g~' "(to„00,) is defined in terms of the
atomic dipole-moment correlation function
&q(t, )q(t, ) ) as

g" "(~ )=s(~)e( )(2 )
'

xf dt, f 2dt, e'~2'2"

x & p(t, )g(t, ) )+ (2 —1). (3.2)

and both have the same value at t, = t, . [That both
sides have the same time derivative with respect
to ~2 at ~2 ~y foil ow s directly from an az gument
similar to the one leading to Eq. (2.17).]

By taking the positive-frequency part (with re-
spect to t,) of Eq. (2.17) and substituting the result
into Eq. (2.13), one finds, with the aid of Eq. (2.7),
the relation

d0"(x„x,) = ffd'x, d'x, tD,"(x, x,—)D,"(x;X,)
x((Z(X2)J(x,)r )+ e (I; —t,)D„+ (x. , —X2)

xD, t'(x, -x,)&[J(x,), J(x,)])), (2.19)

where the subscript T denotes time ordering (later
times are to the left).

It is not difficult to show that in the limit of in-
finite distance from the current distribution, the
term containing the advanced Green's function in
Eq. (2.19) (which represents waves traveling to-
ward the target) must make a vanishing contribu-
tion. By transferring the frequency signatures in
the remaining term to the current-correlation
function, one finds the relation

d"&(x„x, ) = ffd x,d.' x,D,(x, x,)D.(x,-x,)-

+ (i/tf)' f dt' f dt '[[tel(t), gg(t')], g,(t")]

x E(t')S(t"}+~ ~, (3.8}

where ti(t) is the interaction picture (freely os-
cillating) operator

W(t} = Z».e""Ij && t
I

d,k

~„=(z, z,)/n. —

(8.4a)

(3.4b)

For the case in which E(t) is the harmonic func-
tion

E(t) = E0e o'+ c.c., (3.5)

one finds by retaining terms only up to the first
power in E0 in Eq. (3.8) that the function defined
by Eq. (3.2) is in this approximation nonvanishing
only for co, +&a, =~, , and may be expressed by
means of the relation

g r" '((u„0&,) = —itic( (o„—(o„-(o0)E„(3.6)

in which the third-rank-tensor function y is de.-
fined as

1
2 1 0 ((d21 0011 (d0) = ——

2 5((d2+ (d1+(d0)

X.p(g) ~P( j.) &9(0)
~sr,2 2 X

2(2) + J2 2)(+2(0)

(3.7)

In the latter relation, the superscripts are vector
indices, g represents the ground state of the atom,
and P is a permutation on the indices 0, 1, 2. All
six such permutations are included in the sum in
Eq. (3.7}, which thus defines a function which is
fully symmetric in all three of its arguments, i.e.,
which is invariant under the interchange (01, , X,)—(&u2, A2} for any pair of indices j and k.

For real values of the frequency arguments I,
w„and ~„ the function y can be shown to obey
the identity

21 11 0} P( ~21 1 I 0}' (3.8)

In the analysis which follows, all field frequencies

[The interchange 2 —1 includes the (suppressed)
vector indices as well as the frequency arguments
002 and (d, .]

The atomic correlation function in Eq. (3.2) is
readily evaluated when the atom is driven by a
prescribed electric field E(t). By using the dipole
coupling H, = —pE(t), , it is not difficult to show
that the Heisenberg operator p, (t) may be ex-
pressed in increasing powers of the field strength
by means of the series expansion

i2(t) = P,(t) + (i/@ f dt'[P2(t), P2(t')]E(t')
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will be assumed far enough from the atomic res-
onance frequencies to justify omitting the small
imaginary terms, proportional to the damping
constants, which would otherwise appear in Eq.
(3.7). It should be noted that in this approximation
the function y, which in Eq. (3.6) specifies the
amplitude for a frequency-splitting process (in
which a photon of frequency co, divides its energy
between two photons of smaller energies w, and
~,) specifies the amplitude for the inverse process
as well. If an atom is stimulated by the field

E(t) =E,e '"&'+E,e ' 2', (3.9)

then, as one finds by directly substituting this ex-
pression into Eq. (3.3) and retaining terms qua-
dratic in E, the mean atomic dipole moment has a
component oscillating at the sum frequency &y+ g,
which is given by the relation'

(Po(t))= f d~oe ' 0( ~oi ~|-~ ~2)@i+2~

(3.10)

where y is the function defined by Eq. (3.7). [The
functions y in Eqs. (3.6) and (3.10) are complex
conjugates of one another, as is apparent from
Eq. (3.6) and the symmetry of the function defined
by Eq. (3.7).]

Similarly, the simultaneous presence of the two
fields E, and E, induces a component oscillating
at the difference frequency vo- +, , which is given
by the relation'

(p,(t))=f d(o, e ' 2'q( r-u„—(o„(u,)E,*E,.
(3.11)

The process represented here is stimulated sub-
harmonic generation, the same process whose
spontaneous part is represented in Eq. (3.6). The
value of the spontaneous coefficient as 8 times
the stimulated coefficient, it should be empha-
sized, has been derived from a direct calculation
of each, and not from a quantum Hamiltonian
formalism based on classical analogy.

E,(r, t) =E,f(x, y)e'"0' ' o'. (4.1)

If the number density E of atoms is constant within
the target, then at observation points far away the
function Gto'~(x„x, ) may be approximated as

IV. SPATIAL AND TEMPORAL CORRELATIONS
IN SPONTANEOUS FREQUENCY SPLITTING

When a large number of atoms are stimulated by
the same light wave, it becomes necessary, in
evaluating the function do "(x„x,) defined by Eq.
(2.2), not merely to add coherently the contribu-
tions from each atom, but to replace the propaga-
tion function D,(x) in Eq. (2.20) by the one which
represents the effect of the linear dielectric sus-
ceptibility on the emitted waves. Let us assume
that the incident wave propagates in the ~ direction
and that its amplitude is specified in the transverse
plane by the function f(x, y):

G~o 2~(x, , x,)=,2P2P, ffe '
2 2 ' x'xT2T, ike, tu, rp( tu, , —(o, ,-(uo) Eat(k, +k, —ko)d&u, d(u, /2v,4gej ' r,r,

(4 2)

where P=1- /rrr' for r=r, „F, ,=t, , —r, ,/c;
y is the nonlinear coefficient defined by Eq. (3.7);
k, and k, are the wave vectors within the target
associated (through Snell's law) with the fre-
quencies &, and ~, and the external observation
directions r",= r,/r, and r,= r,/r„"respectively;
&, and T, are quantities proportional to the cor-
responding amplitude transmission coefficients";
and the function &(k) is defined by the relation

f(k) —=f d're '"' f(x, y)g(r). (4.3)

The function q(r ) is here defined as unity inside
the target and as zero outside. For the case of a
plane slab perpendicular to the beam and of thick-
ness l and cross section larger than that of the
incident field, one may put

(4 4)

It is apparent from Eqs. (4.2) and (4.3) and the
frequency 5 function in the definition of q that a

QPf + QP~+ = COoy (4.5a)

,(4.5b)kf'+kg =—ko,

are then, like ~,* and k,*, functions of r", .
In the limit of infinite target thickness and inci-

dent-beam cross section, the emission is wholly
phase matched. This means that the emission in
the direction r, occurs exactly at the frequency

resonance in the emission occurs when momen-
tum and energy are both conserved, i.e., when

k, +k, =k, and ~, +~, =~, . Wave vectors k, for
which these relations are both satisfied (for given
k,) are said to lie on the "phase-matching sur-
face"' for pair production. It is assumed in what
follows that the external observation direction r&

(which is thought of as fixed) is such that for a
particular frequency ~f, the associated internal
wave vector k,* lies on the matching surface. The
complementary frequency &,* and wave vector kg,
defined by the relations
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~,*, and that the complemeatary photon of fre-
quency ~2~ is emitted in a precisely defined direc-
tion re (associated externally, through Snell' s
.law, with koo). The correlation time for the pair-
emission process is correspondingly infinite in
the limit under discussion, i.e., the detection of
one photon at a given time provides no information
about the time at which the other photon is likely
to be detected.

For finite values of the target thickness and
beam radius, on the other hand, what may be
thought of as a diffractive effect leads to a nonzero
spectral width in the emission in the specified
direction r„and to an uncertainty in the direction
r2 in which the complementary photon is emitted.
At the same time, the correlation time for the
process becomes finite. (It is in fact compara-
ble to the transit time of a photon through the
scattering region. )

It is convenient to introduce the parameters

dk, dk, (4.6)
dM, dM,

A= k,/v, ' —k,/e, '. (4.9}

The parameter 8, for the case of isotropy in the
linear susceptibility, is simply

8 = k2542. (4.10)

For sufficiently large target thickness and beam
cross section, it is not difficult to show that the
function do'o) as given by Eqs. (4.2) and (4.2) is
well approximated by the expression

G(o,o)( )
f&i*o)o*X(o)o*~ &~*)Eo

(4oc)'r r

(4.11)

in which the parameter X is defined by the relation

2 2

2

in which k, k, /=—k, ; 5k, is the shift in internal di-
rection associated (for o), = woo) with the difference
6t 2 =~2 —r2~ between actual and optimal external
directions; v is the group velocity V„v; and

g'-=v S. (4.6)

Each of the derivatives dk/do) in Eg. (4.6) is eval-
uated with external direction held fixed. In the
absence of linear dispersion (where the internal
direction also remains fixed), dk/der is the "phase
slowness"" k/o) k/v=', and the parameter A has
the value

These relations follow readi. 1y from the approxi-
mations k, =k,*+(o),-o),*}dk,/d&u, and k, =k,*+8
+(&u, —&u*,) dk, /d&u, in Eqs. (4.2) and (4.3).

The coincidence counting rate at two points r,
and r„with effective time delay

r = f, f, ——(r, —r,)/c,

according to Egs. (2.5) and (4.11), is directly
proportional to the function (gv; r, , r, ) ~'.

The function P is readily evaluated in the limit-
ing cases of interest. If the target thickness / is
much greater than the beam radius R, for exam-
ple, one finds, taking the x-z plane to include the
vector r", (and hence 0f, koo, roo, and A), that P is
well approximated by the relation

P(r r r )=(2w/A )e "s*~"o

x f (a, —J3.A„/A. , a„)g(r/A, ) (I »g. t)
(4.14)

in which f is defined by the wave-vector decom-
position

f(x, y) = (2s) ' ff e"+"o~"f (0„,k„)dk, dk„. (4.15)

The coincidence counting rate in this limit there-
fore vanishes, according to Egs. (4.14), (4.4) and

(4.9), unless the time delay r is small enough to
satisfy the inequality

I
& l&o I l(cose, i)/u, ' —(cos e „)/v, ' I, (4.16)

where 8,&
and 82& are internal polar angles.

It should be emphasized that what is evaluated
here is the coincidence detection probability for
the two photons which are generated during the
same elementary parametric process. The ap-.
proximation that at most two photons are present
in the scattered field is implicit in the analysis of
of this entire section, which is based on the weak-
pump-field approximation in Eqs. (2.6) and (2.5}.
A more complete theory, adequate to describe
pump fields of arbitrary intensity, will be pre-
sented in Sec. V.

To determine the dependence of g on the shift
in the external observation direction r2 relative
to its optimal value, one must use Snell's law to
express &t'2 in terms of 6k, , and then make use
of Eq. (4.V) in Eq. (4.14). In the case of isotropy
in the linear susceptibility [where Eg. (4.10)
holds], one finds that for a beam with Gaussian

NP, P,T,T,rp( &o-„-&o„&o o) Eo/Eo

= 5(oo, + (o, —ouo))((te„(o,), (4.12)

and the function g is defined as

y(r; r„"r)=fd'rf(x, y)g(e)e 'o'5(r-A. r).
(4.12)
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cross section

f(x, y) = exp[- 2(x'+y')/R'],

the function given by Eq. (4.14) has the value

(])(r; r„r,) = (2v/A, )g(T/A, )e"

x exp(- —,'R'k', [y'(58, i)'

(4.17)

+sin'8, ((5',)']} (l »R), (4.1&)

where &'82& and 6y2 are the shifts in the internal
polar and azimuthal angles, respectively, p.
= k, (sin8„)/A. „and y= X k,/A, . The angular
'widths ~82 and &y2 are thus both inversely pro-
portional to the beam radius R in this limit, while
the correlation time (or effective correlation
length in the direction of r, ) is proportional to the
thickness E of the target.

In the limit in which the beam radius is large
compared to the thickness of the target, on the
other hand, one finds that the function (l) as given
by Eqs. (4.13), (4.10), and (4.17}is well approxi-
mated by the relation

x G&o 2](» x )
8

ag 2& 1
2 (4.20)

in which the time t, is arbitrary. When Eqs. (4.2}
and (4.12) are substituted into this relation, one
finds that G" has the form

(G1, 1)( x)x ) r-2 (d(ii ei wi( i 'i tl)-
1) 1 1 J 1

xI(&o„r"'„r,)c/2(d, ',

where the function I is given as

(4.21)

Gt'"(x,', x,), which for r', = r, determines the
counting rate at a single point, can easily be found,
in the weak field limit under discussion, from the
solutions for the function G("](x„x,), which deter-
mines the coincidence counting rate at two differ-
ent points. In particular, it is a simple matter to
show that in the state represented in Eq. (2.4), the
functions defined by Eqs. (2.11), (2.2), and (2.3)
obey the identity

G("](x' x )=,fd'r, G" "(x' x )
2i

sin(~ y 'k, 158,i)
2y'4' l68 ]

(4.19)

where p,
'= k,(co—s8„)/A„and y'—= A k,/A, . The

azimuthal angular width in this limit is still pro-
portional to R ', while the polar angular width
and correlation time are proportional to l ' and R,
respectively.

The cross-spectral field-correlation function

(t)(T ~ r r ) (2v)&/2R1A -&ei»&ail '

x exp[- ,' r'/R'A, '—,—'R'k,'—sin'8,((5',)'] x E(8,)'n, '5((d(k, ) + ru, —(d,)

x&*(k2+k,' —ko}g(k, +k, —ka). (4.22)

The function F(8) in this relation is the ratio be-
tween external and internal solid angles, and n2 is
the index of refraction kp/(i), .

In the limit R»l, for the Gaussian beam de-
scribed in Eq. (4.17}, it can be shown that the
function f(&o„r,', r, ) is well approximated in the
isotropic case by the relation

t(ss, ;r, ', r)=)S, ,-' ssp —,' [(SS„)'sss'S„~(SS,)'sis'S„]) (R»l)sin'(&pl5~, ) R'(d, '
—,'pt5m, ' 4c' (4;23a)

l(4w)'c'n, n', ]v„) (4.23b)

in which 6~1=+1 ~1 &81 = 81 &1 and
The parameters K and p are defined

by the relations

and to the angular uncertainty in detecting the
complementary photon at frequency ~2. The spec-
tral intensity l(&o„r„r,) = l(&o„r,) may be ex-
pressed in terms of the function (t)(~; r„r,) by
means of the relation

dk,p=v, g (v, —v, ) ~

dG01
(4,23c) x fdQ„Q((d, —(d,*; r, , r",) )', "(4.24)

where &, is the pump-field power. The cross-
spectral correlation function G " is thus char-
acterized in this limit by angular widths propor-
tional to R ' in both the 8 and p directions, and
by a spectral width proportional to l '.

The nonzero spectral width of the function I is,
in general, due both to the finite correlation time

where the integration is over the external solid
angle, and the function g is defined as

t( ])r(„()r,) =—(2v) ' ' f dec '"' l(r; ))rr, ) (4.25).
The total intensity (radiated power per unit solid

angle} in the direction r, is obtained simply by
eliminating the frequency 5 function in Eq. (4.22)
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and setting x', =r, . One readily finds, for suffi-
ciently large values of R and I (though indepen-
dently of their relative magnitudes) the relation

dII&» (»)'c'no&2 ~(v -v ) dk, /d»d, ~

In the absence of linear dispersion, dk, /d~,
= k,/v'„and this expression reduces to the result
found by Kleinman. ' " The modification which
arises when linear dispersion is present is due to
the fact that waves of different frequency which
propagate in the same direction outside the target
originate from waves propagating in different
directions inside the target, if the index of re-
fraction is frequency dependent.

V. HIGHER-ORDER STATISTICS AND PARA-

METRIC GAIN

The approximate nature of the results found in
the preceding section is evident from the fact that
the expressions which were found for the coinci-
dence counting rate fall identically to zero outside
limited coherence regions. This is due, of course,
to the assumption that only two photons are pres-
ent in the scattered field. What was omitted is
the possibility of simultaneously detecting two
photons which are members of two different para-
metrically generated pairs. One should expect
the coincidence counting rate to fall to the "acci-
dental" counting rate at sufficiently separated
space-time points, i.e., to the product of the in-
dividual one-photon rates. The accidental rate,
for small &„ is proportional to &'„and thus can-
not appear in the result of a lowest-order analysis.

In this section, the restriction on the pump-field
intensity implicit in the analysis of the preceding
section will be removed. Solutions will be found
which are valid to arbitrary powers of the pump-
field amplitude, and from which field-correlation
functions of arbitrary order may be evaluated. The
contributions due to multiple pair emissions, even
those which occur frequently enough to interfere
coherently with one another, will be fully repre-
sented, and thus the effect of parametric gain will
be found. The pump field will still be represented
by a prescribed unattenuated function, however,
thus implying that the probability remains small
that a single pump-field q~hoton is affected by the
target.

Let us denote by 6+~,~, the momentum-space
wave function (expressed, for convenience, in
terms of discrete-mode basis functions) of the
photon pair which is emitted by an infinitesimal
fraction of the atoms within the target. The field
state vector due to these atoms alone is then

2» 1

2' 1

(5.&)

The term added on the right-hand side makes the
operator multiplying the vacuum state unitary. It
is clear that the field state vector which results
from the emission of photon pairs by all of the
atoms within the target can be found by multiplying
the vacuum state by products of similar unitary
operators for each infinitesimal fraction of the
atoms in the target. When this is done in a sym-
metrical way, the result is

~)=exp —,
' P (a, a, ,a» —o*» a, .a, ) ~0).

The quantity n» in this relation is just the full
2 1

wave function for the photon pair emitted by the
entire target, as calculated in lozvest order. (It
is linear in the incident field amplitude E, in the
case under discussion. )

It is perhaps worthwhile to show that the method
used here gives results in agreement with those
obtained by more familiar methods, in the closely
related two-mode parametric amplification pro-
cess. ' For that case, by elementary perturbation-
theory arguments one is led to write, as in Eq.
(5.1), the contribution made by an infinitesimal
fraction of the atoms in the cavity to the (interac-
tion picture) state vector for the system at time t
as (1+ ibzta b }~0 ), where a and b are the cre-
ation operators for the two modes, and &~ is the
contribution of the atoms in question to the non-
linear pair-emission coefficient K. By steps sim-
ilar to those used to reach Eq. (5.2), one is then
led to write ~t ) = exp[inst(a b +ab) j~ 0) for the state
vector due to all of the atoms. This is just
e '" ~0), where H is exactly the Hamiltonian
which expresses the parametric coupling between
the two modes, and leads to exponential increases
in the energy of each.

In order to show how the result in E»I. (5.2) en-
ables one to write down closed solutions for the
field-correlation functions in terms of those eval-
uated in lowest order in Sec. IV, it is convenient
to begin by introducing the characteristic or mo-
ment-generating function

x((n, kn -=(nx»(r(,'n, -n', nn))

(5.2)

This function can be evaluated in the state defined
by Eq. (5.2) most easily by introducing a dimen-
sionless parameter ~ into the exponential function
on the right-hand side, thus defining the unitary
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operator

U(A) =—exp[2'h(a a:n-n*:aa)], (5 4)

a(X) -=U '(A)aU(X). (5.6)

By differentiating Eqs. (5.6) and (5.4), one finds

—a(Z} = at(A)n; —a (A) = n*a(Z).
dA,

'
dA.

(5.7)

The solution to these equations, subject to the
initial condition a(0) =a is

a(A) =(cosh'. )a+a n,t sinhPX

sinha (&) = a coshP X+ n* a,
p

(5.8)

in which o. is the symmetrical second-rank tensor
with elements a» . The characteristic function

1 2
}('.(})) is then given as

X(n)=(0I ""'" "*'"I0&I.=„ (5.5)

where

1 (s}= expI- s (si'ex p}x'

sinh2P
+ —,,})*})*: n i+ c.c.

2P ]
(5.11)

The transcription of this relation into terms
relating to continuous functions of space and time
is straightforward. One begins by introducing the
normally ordered characteristic functional

}t}}([h(x)) -=(e xp[(2t/h c) fd2rA (x)$(x)]

x exp[(2i/gc) f d'r8*(x)A ' (x)] ), (5 12)

where A ' (x) and A (x} are the positive- and

negative-frequency parts of the vector-potential
field operator, and 8(x) is a freely propagating,
positive-frequency c-number function. One may
think of the matrix P as the momentum-space
representative of an operator which acts on one-
particle state vectors, and of the second-rank ten-
sor e as the representative of a two-particle state
vector. One is led to introduce the quantities

where P is the Hermitian matrix

p
—(nnps)1/2 (5.9}

G(0,2) 1gc2% 1 2R 1 2' ~ Q
2P (5.13)

Only positive powers of P' = nn*, it should be
noted, appear in Eqs. (5.8).

By substituting Eqs. (5.8} into Eq. (5.5) and using
the result to evaluate the normally ordered char-
acteristic function'

Xs(2})-=(&' "e "*')=e""" X(})) (5.10)

(where (2}~'=—g, )24(')} one finds the relation

and

1'1 = 1gC2(d 1 2( ~2p)% 1

where the "frequency operator" u is defined to.
have eigenvalue ~ = kc when operating on a state
with configuration-space wave function e'" '. The
characteristic functional defined by Eq. (5.12) is
found from Eq. (5.11) to have the value

2 2 1 2 2

g}}([h(x)]=exp — —ff d2rd'r't2 (x)G("~*(x,x')$(x')- ——f ff dpr2d'r, S (x2)$2(x, )G 2 2 (x„x)+c.c.]

(5.14)

Q(022) & gC2~ 1/2 ~ 1/2
t

G 1'1 = 1ttC2(M 1 2nn2% 1 2)sp
0 2

=(2/Ic )G2' (uG

(5.15a)

(5.15b)

where the latter relation follows from Eq. (5.15a)

where the functions G "(x„x,) and G "" (x, x'}
= G~"'(x', x) are the configuration-space repre-
sentatives of the objects defined by Eqs. (5.13).
That these functions are in fact the field-correla-
tion functions defined by Eqs. (2.2) and (2.11) may
be shown simply by expanding the exponential in
Eq (5.14) and. comparing the result to the defini-
tion in Eq. (5.12).

In the limit of weak pump fields, e and P ap-
proach zero, and Eqs. (5.13) and (5.9) reduce to
the expressions

G(0,2) + -1/2 g (g1/2G(121) *(y 1/2
Kc

X (d1/2G(0, 2)
0

G(' ~ ') *= -'RC2(g-1/2=2

(g1/2G(1 1) ~1/2 (g -1/2"Sc2 0

(5.16a)

i (5.16b)

in which G0 and G0 ' are the corresponding

and its complex conjugate. Equation (5.15b) is' in
fact equivalent to the relation already noted in Eq.
(4.20) as existing, in lowest order, between the
functions G ' and G(0,2)

By using Eq. (5.15a) to express n in terms of
G2( ' ~, one finds with the aid of Eqs. (5.13), (5.9),
and (5.15b), that G 2'2' and G" are given by the
relations
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lowest-order solutions, and the (analytic) func-
tions f,(x) and f,(x) are defined as

f,(x) =- (sinh2&x )/2v x,
f,(x) =- sinh'Wx . (5.17)

Together with the results of Sec. IV (in which

G," and GP' are evaluated), then Eqs. (5.16),
(5.17), and (5.14) represent a complete solution,
valid to all orders in the pump-field strength, for
the statistical properties of the radiated field.
The solution so represented involves integrations
over the limited regions of space in which the
lowest-order field-correlation functions are non-

vanishing, and thus involves the values of these
functions only at points far from the target.

The multiple integrations represented formally
in Eqs. (5.16) are not difficult to carry out in

many limiting cases of interest. In the case de-
scribed in the weak-pump-field limit by Eqs.
(4.23), for exar "„'e, one finds by making use of
Eqs. (5.16b), (4.21), and (4.23a) a relation ex-
pressing the spectral function I(ar„r,', r, ) as a
power series consisting of terms similar to the
one given by Eq. (4.23a), but with ever-increasing
angular widths. The series is governed by the
dimensionle ss parameter

u = I,(&u„r,}8v'c'/R&u, 'R' cos e „, (5.18)

where Io(&o„r,) is the intensity as given in the
weak-pump-field limit by Eqs. (4.23) with r,'=r, ,

'

(4v}'c'n, n,'(-,'pl5ar, )'

(5.19)

I((u, , r, ) = Io((a„r,) 6'.(u),
"

(5.20)

where 6 (u) is the function

2 &" siW2y " 22~ ~u
P(u) = — dy =P

u 0 y „=, n(2n)!
(5.21)

The parameter u, as given by Eq. (5.18), is
roughly equal, in lowest order, to the number of
photons with frequency between co, and (oy+dcoy

which pass by a given point in time 1/d&u„within
the solid-angular width AA, -c'/R'&u, ' specified
by Eq. (4.23a). When this number becomes com-
parable to unity, the lowest-order expression
I,(&o,) for the spectral density ceases to be appli-
cable, and it becomes necessary to use instead

For pump fields of arbitrary strength, the spec-
tral intensity at frequency co, is found to be given,
in the case under discussion, by the relation

the relation (5.20}, which shows the effect of para-
metric gain. Since the gain is greater where I, is
greater, the relative intensity is increased at the
center of the emission line, and the spectral width

is consequently reduced by the parametric-gain
process.

The solutions for the field-correlation functions
G ""and G""enable one to construct the char-
acteristic functional given by Eq. (5.14).and hence
to evaluate field-correlation functions of arbitrari-
ly high order. The four-point function defined by
Eq. (2.1), for example, is given by Eqs. (5.12) and

(5.14) as

G&'2!(»' x' x x )-G!2 &»(x~ xi)G«&»(x» )

+ G" "(x'„x,}G""(x,', x,)

+ G!"&(»;,x,)G!"&(»;,«,),

(5.22)

to all orders in the pump-field power I', . For
weak pump fields, the first term on the right-hand
side of this relation is proportional to &„while
the second and third terms are proportional to
Po The latte r two te rm s we re omitted in the ap-
proximate relation (2.5} and in the analysis of
Sec. IV. They are necessary even in lowest order,
however, to evaluate the coincidence counting rate
at points x, and x, so far separated from one an-
other as to make the function G""vanishingly
small.

The function given by Eq. (5.22), it may be
noted, has the form characteristic of Gaussian
fields when G "'=0. Indeed, it is clear from the
solution in Eq. (5.14) that the field statistics of
arbitrarily high order are Gaussian, provided that
the detection points lie outside the two-photon
coherence regions. The transition from the famil-
iar cia.ssically understandable Gaussian statistics
to the highly correlated intrinsically quantum-
mechanical statistics which takes place as the
detection points are brought within the (mutual)
two-photon coherence regions is one of the most
interesting features of the parametric frequency-
splitting process. It is one of the simplest physi-
cally realizable electromagnetic processes for
which solutions can be obtained in closed form,
and which exhibits such specifically quantum-
mechanical features.
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