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An explicit thermodynamic equation of state is proposed for the region near the line of liquid-vapor

critical points in mixtures of He' and He~. The equation (of the scaling form) embodies nonclassical

exponents and uses chemical potentials or activities as independent variables in place of composition

and volume. The properties of the mixtures are shown to result, in the main, from an interpolation

between the critical properties of the pure components, in a suitable set of variables. Failure of
experiments to reveal a weak divergence in the isothermal compressibility (at fixed composition), in

contrast to previous phenomenological theories, is explained through the small size of the region near

the critical line~ where one might expect to see the "true" asymptotic behavior.

I. INTRODUCTION

The phenomenological thermodynamic description
of critical points in fluid mixtures has a long
history. Much of the work has been based on the
van der Waals or similar "classical" equations
of state, "but in recent years the apparatus
of critical indices, scaling, etc. , developed for
pure fluids and simple ferromagnets' has also
been applied to fluid mixtures. ' In this paper
we attempt to fit the thermodynamic properties
of the mixture He'-He4 at all compositions along
its liquid-vapor critical line using a single equa-
tion of state, of the scaling form, which embodies
nonclassical exponents. So far as we know, this
is the first attempt to provide an explicit thermo-
dynamic formula (including numerical values for
all parameters) for properties along such a line
using a nonclassical equation of state.

Our analysis differs from many previous dis-
cussions of binary mixtures' in that the composi-
tion of the mixture does nest play a fundamental
role as one of the independent thermodynamic
variables. Rather, our independent variables are
the temperature and chemical potentials, or
activities, of the two components, and the
composition appears as a derived quantity, and
thus a dependent variable. While it certainly
should be possible to introduce nonclassical
exponents in equations of state which have compo-
sition as an independent variable, it is our opin-
ion that our choice of variable (details are found
in Sec. II) has certain practical advantages and

may be useful in the phenomenological analysis
of critical lines in other systems.

The measurements of the equation of state
in He'-He4 mixtures near the critical line recently
published by Wallace and Meyer' form the basis
of our analysis, together with other data on the
properties of pure He' and pure He' near their
respective critical points. ' " These measure-
ments show that the critical temperatures, pres-
sures, and densities are monotone and almost
linear functions of composition over the entire
range from pure He' to pure He4. For such a
simple situation, phenomenological theories" "
and model calculations" predict that the isother-
mal compressibility at fixed composition K~,
which exhibits a "strong" divergence in a pure
fluid, should show only a "weak" divergence in
mixtures, analogous to the divergence of the
constant-volume heat capacity in a pure fluid.
The same theories indicate that the constant-
volume, constant-composition heat capacity C„„
in mixtures should not diverge at all but rise
to a finite cusp. In fact the experiments of
Wallace and Meyer' show no evidence that K~,
diverges at all, while-a measurement of C„„by
Brown and Meyer" (with mole fraction of He'

equal to 0.805) indicates a heat capacity diverging
at about the same rate as in pure He'. There is
thus an apparent contradiction between theory
and experiment which is, however, not difficult
to reconcile on the basis of our equation of state.
It turns out (Sec. V) that the theoretically pre-
dicted behavior should occur only very close to
the critical line, and our numerical estimates
indicate that this asymptotic region is so small
in He'-He' that it will be quite difficult to observe
experimentally.
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An outline of the paper is as follows: In Sec. II
we discuss the choice of thermodynamic variables.
An explicit form for the thermodynamic potential,
with a number of adjustable constants, is set
forth in Sec. III, and the procedure for determining
these constants on the basis of experimental data
is discussed in Sec. IV, which also contains a
comparison of experimental dew-bubble curves
and isotherms with those computed from our
formula. The region asymptotically near the
critical line is the subject of Sec. V, while Sec.
VI provides a brief summary.

II. THERMODYNAMIC VARIABLES

A. Choice of Variables

BP =(u(vs, v, B), (2.1}

which possesses all the advantages of p mentioned
above; here"

B = (RT)-',

with p the gas constant, and for j=3, 4

(2.2)

The choice of independent variables in a thermo-
dynamic analysis is not obvious a priori and must
be based on considerations of conceptual simpli-
city, convenience, etc. The use of "fields"
in the sense of Ref. 11 (intensive quantities which
are always the same in two coexisting phases)
has certain conceptual advantages in discussions
of phase transitions and critical points. In ad-
dition there is the very practical advantage that
the thermodynamic potential may be conveniently
written (Sec. III) as the sum of a regular and a
singular part, with all the discontinuities and
divergences, that is, the characteristic features
of the phase transition, determined by the latter.
Consequently we have chosen to base our analysis
on the "fields" p, T, p, , and p, , (chemical poten-
tials of He' and He', respectively), despite the
fact that the chemical potentials are not measured
directly in the experiments of interest to us.

From among the fields it is necessary to single
out some to serve as independent variables and
one to serve as the dependent variable or thermo-
dynamic potential. In simple pure fluids it is
known" "that p(p, , T) is more symmetrical be-
tween liquid and vapor phases than is p. (p, T), and
there is some evidence that the coexistence curve
is smooth (continuous second derivative) near
the critical point in the p, , T plane but not in the

p, T plane. " These considerations suggest that
in a mixture p(p„p.„T)may possess some practi-
cal advantages over a choice in which p is one of
the independent variables.

We shall however, for reasons to be explained
below (in Sec. III), use as a potential not p but

The fundamental differential relationship for
cg is:

de = p, dv3+p4dv4-udB,

(2.3}

(2.4)

where p, and p4 are the densities of He' and He'
in moles per unit volume, and u is the energy
per unit volume.

B. Transformed Variables

In pure He', v4 goes to -~ and in pure He',

v3 goe s to —~. In order to obtain var iab 1es which
remain finite everywhere along the critical line
it is convenient to introduce the variables

9 =
C4e "4+C,e~,

g = C,e "4/8,

(2.5)

(2.6)

which are simply expressed in terms of the
absolute activities, e"&. Here C, and C4 are posi-
tive constants. Note that g is 0 in pure He' and
1 in pure He'. To a first approximation near the
line of critical points, one finds

g=1-x (2.7)

where x is the mole fraction of He'. Whereas
(2.7) is very valuable for conceptual purposes, it
is not exact and, in fact, g and x are two very
different sorts of variables: g is the same in
two coexisting phases while x (in general) is not.

In constructing an expression for the potential
it is convenient to introduce in place of the
variables B and 9 the quantities.

~=B,(g) -B,
h =In[8/8, (t., T}]=ln8 H(g, T) . -

(2.8)

(2.9)

Here B, is the critical value of (RT) ' as a func-
tion of g, while 9, is the value of 9 on the liquid-
vapor coexistence surface, considered as a
function of g and y. Of course, the coexistence
surface terminates at the critical line, but we
shall assume that it can be smoothly continued
through the line of critical points to define a
surface which we shall, somewhat imprecisely,
refer to as the "coexistence surface" even where,
"above" the critical line, there is only one phase.

Let us make perfectly precise what is meant
by (2.8) and (2.9). Given a point (v„v„B) in the
thermodynamic space, we compute g and 9 using
(2.5) and (2.6). This value of g determines B,(t)
and therefore v. by (2.8). Together, these values
of g and z determine a curve in the thermodynamic
space which we assume intersects the coexistence
surface (or its smooth extension) at a single point.
The value of 9 at this point is the 9 which ap-
pears in (2.9).
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The vax'iables z and 5 have a simple interpx eta-
tion in one of the pure fluids (/=0.or 1). Evidently
h is (8T) ' times the deviation of the appropriate
chemical potential (p, , in pure He', p., in pure
He'} from its value on the coexistence curve
[or its smooth extension in the (g, I') plane], and

y is g ' times the deviation of the inverse tem-
perature from its critical value. Thus it is ap-
parent that these variables ax e very similax
to those which have been employed in scaling
analyses" of properties of pure Quids. In terms
of the Ising-model magnet analog of the liquid-
vapor critical point one can (with a slight lack
of precision} think of v as the deviation of tem-
perature from its critical value and h, as the
magnetic field. Note that, in any case, z and

5 form a coordinate system with the y axis
(h = 0) parallel to the coexistence curve and h

measuring (in some sense) distance away from
the coexistence curve. In the Quid mixture
z and h for a fixed g have the same geometrical
significance: v a measure of distance from the
critical line in a direction parallel to the co-
existence surface, and g a measure of distance
away from the coexistence surface.

In the case of pure fluids it is common practice
to replace y by a dimensionless variable t by
dividing or multiplying by the critical temperature.
We have purposely not done this. The reason is
that there is no unique critical temperature but

rather a continuum of values between those for
pure He' and He4. We do, indeed, introduce a
g-dependent "normalization'* for y when it occurs
as an argument in &„ the singular part of &

(see Sec. III below), but the g dependence is
treated as an adjustable parameter.

C. Thermodynamic Functions

in Terms of w(f, r,h)

4Pg =
~ 40g~ = (2.10)

(2.11)

In Sec. III below we shall introduce a functional
form for w in terms of the variables g, v, and fg.

The relations (2.4) through (2.9) permit one to
write various thermodynamic quantities in terms of
partial derivatives of ~. The derivations are
straightforward but somewhat tedious, and we
display here the appropriate formulae. In order
to shorten the notation, partial derivatives with
respect to one of the variables g, r, h (the other
two being heM constant) are denoted by sub-
scripts, e.g. ,

80 8 lne (2.12}

The yartial derivatives of g, v, and h with
respect to v„v„and 8 are as follows (s/sv,
means v, and 8 fixed, etc.):

8$ 8$ =-r(I- C),
8PS 8V4

—-08$
88

(2.13}

(2.14)

87 8T = —g(I —g)8,
8Ps 8P4

{2.15)

(2.is)

8h 8h =I —g+l(I —g)(8, +8,a,), (2.1V)
8PS 8 P4

(2.18)

The following results are obtained by combining
(2.4) and (2.13)-(2.18), e.g.:

Q=-

= -QPg QP~ GP~

Thus we have

(2.19)

(2.20)

(2.21)

(2.22)

(2.23}

(2.24)

x = p, /p = 1 —I' —g(I —g)q/p (2.25)

The heat capacity at constant volume and the
compressibility, C„„and X~, both at constant
composition, are most conveniently expressed
in terms of Jacobians. By C„„we mean the
heat capacity per mole. It is multiplied by p
in (2.26} because u is the energy per unit volume.
We can write

Note that in the above expressions +„has every-
where been replaced by p, the total density of the
mixture (in moles per unit volume). The quantity

Q is a convenient abbreviation with no physical
significance. The mole fx action of He' in the
mixture is
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pC„, = — = -RB (2.26) (2.28)

or

pCtjT e(uq pq x) E
RB e(B, p, x) F ' (2.2V)

or

e(p, B,x) F
B e(~ B x) G ' (2.29)

and where

E= ' ' = 1+(1—2g) —[Q~ PHTT-(uhh]+g(1 —r) p 'QqTh — H~q Bqq
—-QTh-HTTQ@ —2' QT,

e(u, p, x)
e(r, g, h)

+ [P(HgtHTT H(T) -HTT Bn-u] aa (2.30)

F = ' ' = 1+(1—2f) — (uhh+g(1 —f)[(p 'B~(u -Ht~ —2B~H~T-BrHTT}(uhh+p '(B~Q~+Qo, —2B~Q,)],e(r, g, h) P
(2.31)

-e(B, u&, x)
G = ' ' =

[p +(1 —2$)Q]+ f(1 —()(B~~u —p[H~~+2B~H~+B tH~]+ (ott+2Bt&u ~T+B t&dTTe(r, g, h)

—2p (41~+B ttdT}(43g, B+g(d )Th+ p (ld g+B g(dT) (dhg (2.32)

The quantities p, Q, and u which appear in these
expressions are defined in (2.20) to (2.24), and,
in addition the following determinants or cofactors
appear:

III. THERMODYNAMK POTENTIAL

We shall assume that ~ as a function of g, Y, h
can be written as a sum of two terms

(u=~, (g, r, h)+(u, (g, r, h), (3.1)
Q Th +TT ~hh

Qo = ~utah (u'a)

Tlt Q Tf h'lf &

(2.33)

(2.34)

(2.35)

CO gg M gT CO@

fT TT Th

CO g 40T~ (d~g

(2.36)

Expressions for entropy and the chemical
potentials in terms of g, 7, and jg, in contrast to
the expressions for p„p4, and g, involve ex-
plicitly the constants C, and C,. Thus using
(2.5}, (2.6), and (2.9) one finds hd, (f, r, h) = c(g) + d(g)r+f(L)h, (3 2)

where u&„ the "regular" part of the potential,
is a completely smooth (analytic} function of its
arguments, and ~, contains (in its derivatives)
the singularities associated with discontinuities
in density and composition at the coexistence sur-
face as well as the various divergences at the
critical line. We shall further assume that w, and
all its first partial derivatives vanish along the
critical line v =0, jg =0, so that the critical values
of (d, p3, p4, and u are determined entirely by e„.

Next we shall assume that co„can be expanded
in a power series, in particular in the form

v, =B)h, =h +H +ln(1 —g) -lnC, ,

p4 =Bp, 4
= Jg +H +in/ —lnC4.

(2.3V)

(2.38)

where

(3 3)

(3 4)

G =N3p +N4p. 4, (2.39)

PS/R = u&+Bu —phvh —p, v, (2.40)

The entropy S per mole is easily obtained, noting
that the Gibbs function for N, moles of He' and
N, of He4 is

(3 5)

Of course, additional terms are possible, and
we have only listed those we actually employed
in fitting experimental data. Similarly we assume
that B, and H can be expressed as smooth func-
tions of their arguments;

The problem of choosing appropriate zeros for
the energy is discussed in Appendix B.

B,(K) = a, +a, g,
H = bo + if b+ ha f + (gh +gi g) r

(3.6)

(3.V)
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where again additional terms are possible (but
note that H is independent of 5, and B, of both
h and v).

It is not obvious a priori that (3.2) to (3.7) are
reasonable assumptions, especially for g near
0 or 1, that is, in the limit of one or the other
of the pure fluids. We note, however, that these
equations yield a form for u„which is itself
not unreasonable as the thermodynamic potential
of a fluid mixture far from a critical point. In
particular, it is in accord with Henry's law, "
according to which the chemical potential for
component j should have a leading singularity

—RT lnx + (3.8)

",=V(t)&(r, &),

with

7= I(g)v,

where q and l are smooth functions of g;

(3.9)

(3.10)

when the mole fraction g& of this component goes
to zero.

The principal considerations which influence
our choice of a functional form for co„ the
singular part of w, are that it should reproduce
the known critical properties of pure He' and He4

and that it should depend smoothly on (.
We have chosen the form

justable constants once the critical indices have
been fixed. Details are given in Appendix A.

There have recently been some suggestions'
as to the form of "corrections" which may be
expected to a scaling equation of state. We
could, of course, include correction terms in
v (in which case one would probably wish to
replace the second argument by 5 times a func-
tion of g), but these hardly seemed worthwhile
in a first attempt to fit properties on the critical
lines of mixtures.

It is, however, worth emphasizing that there is
nothing in our basic assumption, (3.1), which
precludes the use of an +, which includes non-
scaling (singular} terms, asymmetries, and the
like. One would merely need to devise a func-
tional form providing a smooth interpolation, as
a function of g, between properties of the pure
Quid s.

One practical advantage of using the "fields"
as independent variables is that the thermody-
namic potential can be conveniently written as
a sum of two terms, with the critial entropy and
density determined by one and the divergences
(and discontinuities) near the critical point
determined by the other. This is not in general
possible if the independent variables are "densi-
ties" or a mixture of "densities" and "fields"
(in the notation of Ref. 11}.

e(C) = I+a,C+q. t(1 —C),

t(t') =1+ t, g,

(3.11)

(3.12) IV. VALUES OF CONSTANTS AND COMPARISON

WITH EXPERIMENTAL DATA
and m is similar to the singular part of the free
energy of a ferromagnet near its critical point,
with h the free energy and 4- the deviation of
the temperature from its critical value.

For n we have used the Schofield" ""linear
model, " a convenient, explicit parametric form
believed to work moderately well'" "for pure
He' and He'. The equation is of the "scaling"
or "homogeneous" form and possesses two ad-

A. Constants from Properties of the Pure Fluids

The expressions for ~„, &u„B„danH in (3.2)
-(3.7) contain a large number of adjustable con-
stants. Fortunately, many of them can be
determined from the known properties of He'
and He4 which are summarized in Table I. The
constants a„a„c„c„d,d„f„and f„given in
Table II, were determined directly from the

TABLE I. Properties of pure He3 and He4 at their respective critical points.

Property Symbol a
Value and reference

He3 He4 Units

Critical pressure
C ritical temperature
Critical densities
C ritical entropy

Slope of vapor-pressure
curve

pc
Tc
j()c

S

d~
dT

860.5 b

3.3105b

0.013 82 b

22.5+ 0.3 '
882 b

1705 c

5.1884 'd

0.0173
22.56 '

1289.2 f

Torr
K

mole/cm
J/mole K

Torr/K

Use a subscript 3 or 4 depending
on the isotope: pg3.
Reference 7.
Reference 9.

Reference 15.
See Sec. IVA of text.
Reference 17.
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quantities in Table I.
Adding a constant to H is equivalent to multi-

plying C, and C, by a common factor [see (2.5}
and (2.9)], and thus the constant 5, is arbitrary.
We have set it equal to zero. Similarly, changing

g, in (3.7) corresponds to changing the zero of
energy [see (2.20)]. The choice of energy zeros
is a somewhat subtle problem in our formulation
and is discussed in Appendix B. In any case,
given the choices b, =g, =0, C, and C, may be
determined from the absolute critical entropies
of pure He' and He', respectively, using (2.37),
(2.38), and (2.40), and values are given in Table
II ~ The critical entropy of He' in Table I is
not too reliable, since it was computed by inter-
polating heat capacities between the highest
temperatures reported by Abraham, Osborne,
and Weinstock" and the lowest temperatures of
Brown and Meyer. ' There seem to be no
experimental data in the range 2-3 K. The
corresponding inaccuracy in C, does not at
all affect the values of p, and p4 as functions of

p and T.
The Schofield function w (see Appendix A) con-

tains two adjustable coefficients and depends
on two critical indices. These four constants
were determined from the known properties of
pure He' near its critical point, and are also
displayed in Table II. Acutally four critical
indices (n, p, y, a = p6) are given in Table II, but
the scaling relationship implies that only two
of these are independent. Our particular choice
for ~, in (3.9), which satisfies the properties
of "smoothness"" or "universality", ™plies
that pure He' and He4 have identical critical

indices. The experiments have been interpreted
in terms of different indices, in particular for
u. We do not claim that our analysis removes
the discrepancy, but only that within the rather
limited precision which is our aim in this paper,
the difference in indices for the two fluids (as-
suming that it is real) does not make much
practical difference. Adopting this point of view,
we are able to determine the constants q, and l,
by comparing the properties of He' and He' near
their respective critical points (see Appendix A).

B. Constants from the Properties of the Mixture

H( +BgH7' = bx +g (4.1)

that is to say, that this quantity is independent
of g, a condition which in turn implies that

b2 = ~glB~ . (4.2}

Dew-bubble curves and isotherms were com-
puted for various choices of constants and plotted

The remaining constants not determined by
properties of the pure fluids, that is to say
c„c„f„b„b„g„adnq„were obtained by
fitting the experimental p, p, T, x data of Wallace
and Meyer, ' in particular their dew-bubble
curves and isotherms in the one-phase region for
different values of g, to theoretical values calcula-
ted from the formulas of Secs. II and III.

We first assumed that the critical inverse
temperature B, is strictly linear in g [see (3.6)].
This assumption is not quite as restrictive as
it may appear at first sight, for reasons given
in Appendix B. Next we assumed that [see (2.24)]

TABLE II. Constants in the equation of state for He -He mixtures.

Constant Value Constant Value

ap

bp

bg

bg

Cp

Cg

C2

C3

dp

dg

fo
fg
f2

4.844X 10~ mole/Torr cm
= 0.036 33 mole/J

-1.753& 10 8 mo'. e/Torr cm3'
= -0.013 15 mole/J
0
0.25
0.2568
0.004 168 mole/cm3
0.001 101 mole/cm3
0.0001 mole/cm3
0.0003 mole/cm
2059 Torr =0.2746 J/cm
2924 Torr = 0.3899 J/cm3
0.013 82 mole/cm
0.003 48 mole/cm3
0 ~ 0005 mole/cm

lnC3
lnC4

P
7

a
g'

lg

q~

2.93X 10 Torr cm3/mole
=39.1 J/mole
1.683
2.931
0.098
0.361
1.18
1.541

1.325
0.012 96 mole/cm3
0.844
0.32

—0.25

ap=1/RT 3 ate=1/RT 4 ap.
cp =~c3/RTc3, c~ =~c4/RTc4 —co ~

dp= Tc3(dP(y/dT) Pc3 df = Tc4(dPo4/dT) —Pc4 —dp ~

fp=~c3 fi ~c4 ~c3
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on graphs. The constants were adjusted to im-
prove as much as possible the agreement,
determined visually, with the experimental values.
Dew-bubble curves in the p, T plane and isotherms
in the p, p plane for T &7, were employed to
determine b„gy ce and c„while dew-bubble
curves in the p, p plane helped fix f, and q, . The
search for optimum constants was not carried
out in any systematic fashion. It seemed to us
of greater interest to obtain a reasonable fit
to the data, and then work out various implica-
tions of our approximate equation of state. One
should note that c„c„f„andq, are in any case
fairly small corrections to properties of the
mixture obtained by a straightforward linear
interpolation (in a suitable sense) between prop-

'erties of the pure fluids.

C. Comparison with Experimental Data

The accuracy with which we are able to fit
the experimental data of Wallace and Meyer
on mixtures is indicated in Figs. 1(a), 1(b), and
2(a)-2(e). Dew-bubble curves at fixed g in the

p, T plane are shown in Fig. 1 together with
experimental points for x=0.2, 0.4, 0.6, 0.8,

0.886, and 0.96. For each of the compositions
previously mentioned, except z =0.96, dew-
bubble curves and some isotherms in the p, p
plane are shown in Fig. 2 together with the
experimental results.

Examination of Figs. 1 and 2 shows that the
agreement between calculations and experiment
is on the whole quite good, though there is
certainly room for improvement. In Table III
are listed the computed and experimental critical
values of pressure, temperature, and density
(p„T„and p„respectively) as a function of

The agreement of the p, and T, values is
quite good, though the computed values are
systematically a bit high. On the other hand, our
values of p, are systematically lower than the
experimental ones. Indeed, our values in each
case lie closer to the Wallace and Meyer value
for p, (the "symmetry density" about which the
dew-bubble curves are approximately symmetri-
cal in the p, p plane) than to their value of p, .
This may well reflect simply the imprecision
of our equation of state. On the other hand,
Wallace and Meyer had to compute p, from their
data by a somewhat indirect technique due to
difficulties in experimental measurements near
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dew-bubble curves in the
p, T plane for various
values of x. The solid lines
are computed values while
the open circles are experi-
mental results of Wallace
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V. PROPERTIES VERY NEAR THE
CRITICAL LINE

A. Divergences: Asymptotic and Observed

As mentioned above in the introduction, our
thermodynamic equations predict that K~
diverges weakly while C„„remains finite upon
approaching the critical line in the mixture
(0 & g&1), but that this asymptotic behavior occurs
too close to the critical line for convenient obser-
vation. The behavior of C„„is closely analogous
to that of C, near the A, transition" in pure He4

and other cases" of what Fisher~ has called
"exponent renormaiization. " Fisher and Scesney '
have shown that in some cases these "renormali-
zation effects" will, in practice, be very hard
to observe. This also tuxns out to be the case
in He'-He' mixtures, which we shall now discuss
with the aid of Eqs. (2.26)-(2.32).

Note that all divergences at the critical line
arise from second partial derivatives of w and
these in turn come from corx'esponding derivatives
of w [see (3.9)]. The quantities s'v/sh' and
s'w/8T' correspond to the susceptibility and heat
capacity in a constant magnetic field in the
analogous Ising ferromagnet and possess strong
and weak divergences (e.g. , as v & and y " for
h =0; see Table II for values of u and y) at the
critical point, whereas s'w/svgg' has a (strong)
x (weak) divergence. It follows that of the quanti-
ties appearing in (2.30)-(2.32), Q &~, 0,„, and

(a&,„p have a (strong) x (weak) divergence; a&„„,

Qz„, and 0, have a strong divergence; ~„has
a weak divergence; and all other quantities (in-
cluding Q, u, and p) remain finite at the critical
line. 32

Thus we can summarize the principal divex-
gences and the most important g dependence of
E, F, and G in Eqs. (2.30)-(2.32) in the form

G = (const}+ l(1-g)(strong)+ ~ ~ ~ . (5.3)

The use of (3.6) and (3.7) for J3, and H, without
the presence of higher-order tex'ms, means that
9

&&
and H „vanish identically. While this leads

to some slight simplification of (2.30)-(2.32}, one
should note that it does not alter the pattern of
divergences indicated in (5.1)-(5.3).

It is then evident that in the pure fluids, g=0
or 1, C„,o-E/F and K~~F/G have a weak and
a strong divergence, respectively, while in the
mixtures, 0 &g&1, C„„approaches a constant
while X~ possesses a weak divergence asymptot-
ically close to the critical line, in accord with
phenomenological predictions. "

However, the coefficient of the (strong) x(weak)
term in (5.2) is numerically small compared to
that of the strong term, even at g= —,'. Eventually,
sufficiently close to the critical point, the more
divex gent term must win out. But since its
ratio to the other term is only a weak divergence,
its relative magnitude increases rather slowly,
and "sufficiently close" turns out to be very close
indeed. Thus within the easily accessible experi-
mental range I' appears to have only a strong
divergence. Note that this single fact explains
simultaneously the "anomalous" experimental
behavior of both K~ (which appears to rise to
a finite maximum) and C„, (which appears to
diverge).

A somewhat similar phenomenon occurs in the
case of G, see (5.3). Usually in the mixtures G
is dominated by the strongly divergent term near
the critical line, including the region easily ac-
cessible to experiment. However when g is
sufficiently small, or close to 1, which is to say
the composition is very close to that of one or
the othex' of the pure fluids, the divergence of G

E =(strong)x(weak}

+ g(1 —g)(strong) x (weak) + ~ ~ ~, (5.1)

I / ~ I I I

0.28—

I I ~ I I I I I
I

I I

----- X = I capt

F= (strong) + g(1 —l)(strong) x (weak) + ~ ~ ~, (5.2)

TABLE III. Experimental and computed critical con-
stants in Hes-He4 mixtures. The experimental values
are those of Wallace and Meyer (H,ef. 6}. The concentra-
tion x is the mole fraction of He3.
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FIG. 3. Experimental and computed heat capacities
C» at x = 1 Jure Hes) and x = 0.805.
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is harder to observe and K~ appears to diverge
strongly, as in a pure fluid.

B. Crossover Condition

By equating the dominant strong and (strong)
x (weak) terms in (2.31), it is possible to make
a rough estimate of the point at which F "crosses
over" from one sort of behavior to the other. This
leads to the condition

(5.4)

In writing (5.4) we have ignored a certain number
of strongly divergent terms which occur inside
the square bracket in (2.31), but which (for our
choice of constants) amount to only a few percent
of the initial strongly divergent term.

In using (5.4) the right-hand side may be
evaluated on the critical line itself and is there
a smooth function of g except near g =0 and 1,
where it diverges because of the explicit (
dependence in the denominator. The left-hand
side is equal to

(5.5)

where the quantity in curly brackets is, apart
from a slowly varying factor, the heat capacity
at constant magnetization in the analogous Ising
ferromagnet, and in the Schofield linear equation
of state (Appendix B) depends only on r, not on e.

In the h, 7., g space (5.4) defines a "tube" of
roughly elliptical cross section surrounding the
critical line 7=h =0, with dimensions which

approach zero as & approaches 0 or 1. At the
position where the tube is largest, near &=0.5
(x —0.65), the maximum value of

~
&

~
on the tube

corresponds to a temperature deviation, at fixed

g, of about 2x10 "K from its critical value;
the maximum value of (lg

~

is 5 x10 " (note that
h is dimensionless), and the maximum deviation
of density from its critical value is 5xi0 '
cm'/mole, if one adopts the constants of Table II.
For other values of g these values will be even
smaller. None of these numbers is to be taken
too seriously, since each depends on extrapolating
the scaling equation of state, Appendix B, into
a region very close to the critical point where it
has never been verified in the pure fluids, much
less in the mixture, and this extrapolation makes
use of the exponents in Table II and depends
rather sensitively on the choice of z. Thus, for
example, by assuming a value for a of 0.15 the
crossover T —T, (with@ =0) increases to 3x10 '
K at g=0.5.

The above numbers refer, of course, to

deviations from the critical point at constant
g. One can also consider the crossover curve,
along which (5.4) is satisfied, in the p, T plane
at constant x. We have investigated this situation
numerically for )=0.5 (x=0.65) and find the
following result. Very near the critical point the
dew-bubble curve (which separates the one-phase
from the two-phase region) is practically a
straight line with a finite slope dT/dp (in contract
to the coexistence curve in a pure Quid which has
dT/dp=0 at the critical point). The crossover
curve is practically parallel to the dew-bubble
curve but lies at a slightly higher temperature,
which never exceeds 4x10 "K, at any given value
of the density. This temperature deviation gradual-
ly goes to zero as the density moves away from
the critical density, and the crossover curve
meets the dew-bubble curve at density deviations
of +5 x10 ' and -5 x 10 ' cm'/mole from the
critical density. The temperatures at which the
crossover and dew-bubble curves meet are (due
to the finite dT/dp) at temperature deviations
of -5 x10 ' and + 5 x10 ' K from the critical
value of temperature. The situation is indicated
schematically in Fig. 4. The region between
the crossover and dew-bubble curves where one
might expect the "true" asymptotic behavior to
become apparent is, thus, a long, thin, needle-
shaped region lying along the dew-bubble curve.
For g differing from 0.5 one would expect this
region to grow even smaller. Again, the precise
magnitudes of these numbers are not to be taken
too seriously.

One should, of course, note that the apparent
divergences of C„, and K~ do not change abruptly
at the position given by (5.4). The change is a
gradual one and if experiments would be carried
out sufficiently close to the critical line one might
expect a gradual acceleration of the rate of in-

p n

P C

FIG. 4. Schematic drawing, not to scale, showing the
dew-bubble curve (solid line) and crossover curve (dashed
line) near the critical point (solid circle) in the p, T
plane for fixed x'. At x = Q.65 the computed values (see
text) are AT= 5x&Q K, 6T —4x&Q 2 K, ~= 5x1Q '
mole/cm3.
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crease of K~ and a corresponding deceleration of
the rate of increase of C„, while approaching the
critical point and passing through the region where
(5.4} is satisfied. The detailed behavior can be
calculated if our equation of state is assumed
valid.

C. Crossover and Heat Capacity Maximum

v t g2 7'h g (5.7)

since for our choice of constants H„=O. Now

C„&, while it is not a real heat capacity, reduces
to C„at & =0 and 1, and has a weak divergence
near the critical line for all values of g. One
can regard it as in some sense a smooth inter-

Ioo

80—

Cvx 60-
R

An alternative and in some ways preferable
point of view towards (5.4) comes about upon
noting that the right-hand side is, for a given

&, closely related to the value of C„, on the
critical line, C„„,which can be obtained from
(2.27) by retaining only the most divergent terms
in E and F. The result is

C„„B'
pg(1 —l)R',3 [p+(1 2K}Q-+r(1 —C)~ggj,

(5 6)

where the right-hand side is to be evaluated on
the critical line h = g=0. Apart from a factor
of 8'/p, it differs from the right-hand side of
(5.4} only in the presence of the &o~~ term which,
however, is only a few percent of the other terms
in the square brackets and can be neglected for
our purposes.

The left-hand side of (5.4) is proportional to

C„~/R = C /R. (5 6)

The right-hand side of (5.6), and thus of (5.6), is
easily calculated. It depends only on w„and is
thus independent of all assumptions about co„
including the value of a. The result is plotted
in Fig. 5 as a function of x. The minimum value
of about 20 occurs near x =0.65. This leads to
a simple interpretation of the crossover condi-
tion: to observe the "asymptotic" behavior in
the Quid mixture even with an optimum choice
of z one needs a proximity to the critical point
which in either of the pure Quids would corre-
spond to C,/R of about 20 or more. The largest
values'" of C„which have been observed in pure
He' and He' are about 5g and 7&, r'espectively.
These maximum values have presumably been
observed in the two-phase region, so that the
maximum values in the one-phase region are
somewhat smaller. In the range which has been
observed, C„ increases by 1R or 2P for every
tenfold decrease in T —T,. Thus one should not
be surprised that measurements in the mixtures
have always been well outside the asymptotic
region.

ln place of (5.6), one can compute C„„from
the formula"

dS dP du ~ dxq dp. q

dT dTdT ~ dt dT
(5 9)

where C„„„$,and v=p ' refer to one mole of
material, 1-x4=g, =-g, and the derivatives on
the right-hand side of (5.9) are along the critical
line itself.

As a rough approximation let us assume "ideal
mixture"'4 behavior along the critical line

p, =RT in@, , S= RQ x-, lnx, .
f

Upon inserting (5.10) in (5.9) and discarding all
terms which do not diverge in one or the other of
the pure Quids, one has

(5.10)

polation between the pure Quids, the heat capacity
of a hypothetical pure Quid with properties inter-
mediate between those of pure He' and He4.

Using (5.6) and (5.7), one finds that (5.4)
amounts to:

40— RT (dÃ/dT)
x(1 -x) (5.11)

I I I

0.2 0.4
I

0.8 I.O

FIG. 5. Value of C» /R along the critical line as a
function of x. The solid curve has been computed from
Eq. (5.6) and the circles from the approximate Eq. (5.11).

If, in addition, dT/dx is approximated by the
difference in critical temperatures, one obtains
the result shown for selected values of x by the
circles in Fig. 5. Although (5.11) is only a rough
approximation, it gives a curve of the same
general form as (5.6) and, perhaps by accident,
approximately the same minimum value for C„„.
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These considerations indicate that the experi-
mental "invisibility" of the asymptotic region in
the mixtures is not simply an artifact of our
choice of constants or the precise functional form
of ao,. It is perhaps fruitless to argue about the
properties of the "true" asymptotic region in
helium mixtures. However, it seems safe to
assert that our formulation provides a thermo-
dynamically consistent description which agrees
reasonably well with experimental measurements
in the region where these have been carried out
and serves to reconcile them with earlier phenom-
enological predictions.

All of the above calculations refer to a "cross-
over" in the thermodynamic region where one
phase is present. We have not attempted to
calculate the asymptotic behavior of bulk proper-
ties in a container in which two phases are
present, though it seems likely that (5.8) will
again give the order of magnitude of the cross-
over to asymptotic behavior. In the pure fluids
the heat capacity in the two-phase region is
larger than the one-phase region, but not suf-
ficiently large [see remarks following (5.8)]
as to make the asymptotic behavior easily ac-
cessible. In addition the long relaxation time
found by Brown and Meyer" makes experiments
in the two-phase region rather difficult.

%'e have shown that a relatively simple equation
of state is able to account qualitatively and, with
limited precision, quantitatively for the experi-
mental data on He'-He' mixtures near the liquid-
vayor critical line. The critical yroperties of
the mixture are largely determined by an inter-
polation, in a suitable set of variables, between
the critical properties of the respective pure
fluids.

Our equation of state differs from other formula-
tions of the problem of mixtures (at least those
of which we are aware) in two important respects;
the behavior near the critical point involves non-
classical critical exponents, and the independent
variables are "fields" (temperature and chemical
potentials), while the composition is a dependent
variable. One disadvantage of our formulation
is that the independent variables are not so
simply related to experimentally observable
quantities as in other formulations. Hence
numerical computations are required to generate
properties of the system at constant composition.
In discussion of phase equilibria and critical
points, on the other hand, the van der %'aals
equation must also be supplemented by numerical
computation. '

By examining asymptotic yroperties of our
equation of state near the mixture critical line
we have been able to reconcile yhenomenological
predictions on the behavior of E~ and Q„,
with experimental observation. The problem is
essentially the "invisibility" of the asymptotic
region to experimental observation.

It is probable that from a thermodynamic point
of view the He'-He' system is comparatively
simple. But there is no x eason to suppose our
formulation cannot be extended to other mixtures
which have a continuous line of critical points
extending between the liquid-vapor critical points
of the pure components. Still other cases" can
in principle be discussed in a similar fashion, but
the (relatively) complicated geometry of the
coexistence surface may make our formulation
impractical.
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APPENDIX A: SCHOFIELD LINEAR MODEL

We have assumed that s(v, h) has the form given
by Schofield's linear model, ""with 7 and h

corresponding to 7' and H in Schofield's notation.
Thus we write

(Al)

(A2)

(AS)

(A4)

and, following Ref. 21, choose 5 ' equal to

(A5)

Various symbols appear in the above equations
with a bar (e.g., 5) to avoid confusion with other
constants in this paper. Note that in (AS} an
extra factor of (RT„) ' appears, with T„, the
critical temperature of pure He'. It is included
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here because r has (in our formulation) the
dimensions of (Rlf) ', and it is convenient in the
Schofield formulation to have y dimensionless.

The critical indices are assumed to satisfy
the usual scaling relationships',

~=P5=y+P=2- a-P
The various partial derivatives of m are given
b '

(A6)

(A7)

8'm g r &

aa' FV at(e)
'

a'n, n(e), =a 1( Rr„)'r ~(),
a'n, , (A —p) e
aha- " Z(e)

where

p(e) =-ug ( A- P)'( I- 2P)( A- I P)-
a 2(1 —n}(2 —c()(t). - 3P)

(A8)

(A9)

(A10)

(2A+P —A'-P'-1) ++ e'+(d, --.')e',
1 —n

(A11)

d(e) = ).(", -„')~,

n(e)= [ -AI P(+--3P3- )A]e.
(A —P)'(1 —2P)

2o(t), -3P)

(A13}

(A14)

The critical indices p and y [from which the
others follow by (A6)] and the constants a and g
were determined using the results of Wallace
and Meyer' for the discontinuity in density along
the coexistence curve and the divergence of the
isothermal compressibility along the critical
isochore in pure He'. Note that in this case
& =0 and the functions q and l which appear in
(3.11}and (3.12) are equal to 1. When i = 1
(pure He'} these functions are I+q, and 1+1„
respectively, and their values were determined
by comparing the density discontinuity and C„
in He with the corresponding quantities in He'
at comparable deviations of temperature from
its critical value. Results are given in Table II.
The results are in reasonable agreement with
those of Huang and Ho" when one takes account
of the difference between their choice and our
choice of critical indices.

(e)
))

( P)() mp)
( — -)))( ))) ~)-2n (1 —a)(t), —3P)

(A12)

APPENDIX B: CHOICE OF ZEROS OF ENERGY

If one adds a constant & to the total energy per
mole of the mixture, this is equivalent to adding
q to p, s and p,4, or BE to v3 and v4, and hence to
adding a term Bs to H [see (2. 37) and (2. 38)] or
a term e-to H, and thus pe to u [see (2.20), and
note that u is an energy per unit volume]. Ob-
viously there is no change in measurable physical
properties induced by this transformation, and
only a minor change in the formal relationships
of Secs. II and III. In particular, g remains un-
affected by the transformation, and the functions
(()(g, r, h) and B,(g) remain unaltered. Only
H(f, v) is changed, and this by the addition of a
term which depends very simply on v and is
independent of g.

The situation is quite different if one alters
the energy zeros of Hes and He4 by different
amounts by adding c, to p. , and e4 to p, „with
e, 4 &4. Again there is no effect on measured
physical properties and the fundamental dif-
ferential relationship (2.4) remains correct with
co unchanged and the addition of Be, to vs,
Bc4 to v„and p,~, +p4~4 to u. However, when
these changes are carried through in (2.5} and
(2.6) we find that g is altered to a quantity i
which is a nonlinear function of g. This in turn
induces fairly complex changes in the functions
B,(g} and H(t', 7) if they are now expressed in
terms of g and v, the latter defined by (2.8}
using the new function B,(f). In particular since
g =0 and 1 in pure He' and He4, the same as g,
and B, is unaltered in the pure fluids, B,(~) is
no longer a linear function if B,(g) is a linear
function (and vice versa)

There seems to be no a Pro~i reason to choose
one zero of energy for He' relative to He' rather
than another, although one or another energy
zero might be preferred on grounds of elegance
or convenience, etc. The appearance of, if
not the ultimate physics contained in, the functions
~, B„and H depends strongly on the difference
of energy zeros of the two pure fluids (the absolute
energy, with difference held constant, enters the
formalism in a rather trivial way, as previously
indicated). What we have in fact done is to
leave this energy difference as a free parameter.
However, we have chosen B,(r) as a linear func-
tion [see (3.6)]. There is no reason to expect
that any choice of energy difference will yield
the real B, a strictly linear function of g.
However, our approximation consists in retaining
only the first few powers of & in our expansion and
it is not unreasonable to suppose that an appro-
priate choice of energy difference might make the
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g(1 —g} contribution to B, vanish, leaving only
the linear and higher-order terms. Assuming
this to be the case, one can justify the omission

of the |Iuadrattc term in (8.6} on the grounds that
we are merely making a useful choice for the
energy difference.
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