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%e investigate the photocurrent power spectrum induced by laser light scattered to a detector from a
suspension of homogeneous charged particles in the presence of a square-wave electric field. Constraints
associated with optimal heat dissipation require that a time-dependent field be used in order to obtain

good resolution in measurements of electrophoretic mobilities. A calculation of the power spectrum
yields an expression that depends on both the diffusion constant and electrophoretic mobility of the
particle. This expression is used to analyze experiments data in order to obtain values for those
parameters.

I. INTRODUCTION

The broadening of the spectrum of light scat-
tered from randomly moving particles is a well-
known effect and has been extensively used in
recent years for the measurement of diffusion
constants by the technique of light-beating spec-
troscopy. " The technique has proven to be ex-
tremely rapid, highly accurate, and highly sensi-
tive. ' Extensions of the technique for the measure-
ment of the characteristics of particles undergo-
ing directed motion retain these happy features
and allow the determination of not only diffusion
constants but also of electrophoretic mobilities.
In principle, with a suitable electric field and
heterodyne detection, it is possible to determine
the instantaneous electrophoretic velocity from
the spectral characteristics of the scattered light.

Unlike the classical methods of electrophoresis'
which make use of a constant electric field, the
laser-light-scattering methods used heretofore
require a time-varying electric field in order to
obtain high resolution. The difference is, in large
part, due to the fact that in the classical methods
one essentially measures a displacement, whereas
in the light-scattering methods one measures
instantaneous velocity. Thus resolution is in-
creased in the former methods by waiting a longer
period of time or increasing the applied electric
field, but in the latter method only by operating
as higher electric fields can one increase the
velocity separations of the constituents under
study. Unfortunately, when high electric fields
are applied across a conducting solution all or
some of the following deleterious effects may
occur: convective instabilities due to Joule heat-
ing, electrode reactions with gas bubbling, elec-
trode polarization effects, and concentration
gradient effects. Application of a pulsed or os-
cillating square-wave electric field rather than
a dc electric field minimizes these effects and

allows the attainment of high-resolution Doppler
spectra. In addition, with a square-wave field
there is no transit-time broadening, i.e., there
is no frequency uncertainty arising from the finite
time of traversal across the laser beam.

Ware and Flygare used a pulsed electric field
to measure the electrophoretic mobilities of
bovine serum albumin4 and fibrinogen' in a scat-
tering cell very much like the Tiselius electro-
phoresis cell.' They applied alternating polarity
voltage pulses (of O. l-sec duration and spaced
about 1 sec apart) to electrodes separated by
about 10 cm. This low-duty-cycle pulse tech-
nique avoids convective turbulence from Joule
heating but results in rather inefficient spectral
data collection and requires gated signal analysis.
Furthermore, if the pulse length is made short
(less than 0.1 sec, for example) as it must be if
a high electric field is applied to the conducting
solution, then artificial broadening of the Doppler
spectra can become significant. Nevertheless,
Ware and Flygare were able to make accurate
mobility determinations for the proteins investi-
gated and resolve spectral components for a mix-
ture of such proteins.

The square-wave electric field technique con-
sidered here (Fig. 1) requires relatively simple
electronics and, more importantly, results in
perfect spectral-data-collection efficiency. Broad-
ening of the Doppler spectra from the application
of a finite length pulse is also avoided by this
technique. In our experiments, turbulence from
convective instabilities is minimized by use of
a narrow-gap electrode arrangement which avoids
large temperature gradients in the scattering
region of the cuvette.

In some cases for which the random motions are
fast compared to the frequency of electric field
reversal, the electric field may be regarded as
quasistationary. In general, however, the switch-
ing introduces added structure in the power spec-
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trum of the scattered light. Spectral peaks occur
at the harmonics of the switching frequency and

the interpretation of the spectra is not straight-
forward. It is the purpose of this paper to describe
and interpret the Doppler spectra which results
from the scattering of light from particles sub-
jected to a square-wave electric field. It will be
shown below that the spectral resolution obtained
in an oscillating field is equivalent to the spectral
resolution obtained in a dc electric field. There-
fore, the accuracy of the mobility measurement
should, in principle, be comparable to the accura-
cy obtainable from an ideal system in which the
electric field is kept constant.

In Sec. II, we review the standard calculation of
the heterodyne power spectrum obtained in the
presence of a dc field. We then extend that treat-
ment to the case of the square wave. Section III
contains a brief description of the experimental
apparatus. The results of Sec. II are then used to
analyze the data obtained and assess the usefulness
of our approach. Some concluding remarks con-
stitute Sec. IV.

z,(r, t)=z,(r)e "'+z, (r, t-} (2 l)

The first term is due to the local oscillator and
the second to the scattered light.

The photocurrent is

a. eA~CmATroN

A. Review of Heterodyne Detection Formalism

In a heterodyne mixing spectrometer, "the
total field incident on the photosurface is given by

terms are not included. The scattered-field auto-
correlation function Zs(t, r) may be evaluated by

setting

z (~) g esto (2.5)

(+ t) g e- j(ut p ej vj(t) (2.6)

Here 8, is the amplitude of the field scattered by
each of the E particles in the solution in which an
origin of coordinates is taken to be a distance B
from the detectox and

(2.8)

4mE=; sin 36),
A. / n

where r, (t) is the vector between the origin of
coordinates in the solution and the particles, n

is the solvent index of refraction, and 8 is the
angle between k, and k, . Substituting (2.6) and

(2.8} into the field autocorrelation function, one
obtains

g =8 [ei'"' "/Z] (&d/c)'(a —o&,)V sine, (2.V)

where k, is the wave vector of the scattered wave,
4 is the angle between the direction of polarization
of Eo and k„n —ao is the difference between the
dipole polarizability of the particle and the solvent
and V is the particle volume. The phase factor
y&(t) for a given scatterer is the path length from
an incident to a scattered wave front relative to
an origin in the scattering volume. ' Thus

rp~(t) =(k, -k, ) r, (t) =K r~(t),

(()) af lz (~, )=)l'»»,

where

(2.2) )) (, rl (,~ ( (ge" r-. ,( ~ »-,s»») &2 9)

a = (Ge)}/hv)(c/8v) (2.3)

with C the photodector gain, 8 the electron charge,
q the quantum efficiency, c the speed of light, Av

the light quantum energy, and dA a differential
detector area.

For simplicity, it is assumed that both Eo and

E, are in phase over the detector surface A. Then
for Eo»E, the photocurrent autocorrelation func-
tion is given approximately by

Z, (t, v) =(i (t)i(t+r))

For uncorrelated motion, only terms with i =j
are nonzero. After ensemble averaging, since
each particle is taken to be equivalent and spheri-
cal, one has

R, (t, 7')=2c(i,AN~(g, ~'Re(e' i'i"'~ 'i'"i)

(2.10)

For a homogeneous isotropic stationary system,

= 2ai, A Re( e' 'Z, (t + T)Z ~(t))

=2ai OARezz(t, r), (2 4)
-pt, -t, 6 f( 2f ( 3t ( 4l( 5ti

Ttllf

where ( ) represents an ensemble average,

i,=a Jz, f'A,

and here, and in what follows, dc and shot-noise

The experimental electric field vs time. The
temporal variables used in Sec. II are defined in the
figure.
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where the first term accounts for diffusion and the
second for the possible presence of a uniform field
E, . Here p, is the electrophoretic mobility of the
particle.

As is well known, 'the power spectrum associated
with the observed current may be related to its
autocorrelation function. In general

dR T
G(e)=tim2 e ' ' — R, (tv)dt ),dv,

2T "-T

(2.13)

where v=(u/2v. For a stationary process, in which

R& is independent of t, this reduces to the Wiener-
Khinchen formula

R(7)e ' ' dr. (2.14)

B. dc Applied Field

For a constant applied field in the x direction,
the solution to (2.12) may be obtained by Fourier
analysis as

W(r, T) = (4wDr) '~'exp —f [(x+pEv)'+y'+z']/4Dr) .
(2.15)

Substituting this into Eqs. (2.11}and (2.10):

the phase-correlation function can be written ex-
plicitly as

(f ~) (edK [2(2+r)-2(2H) W(R ~) («R)dRR

(2.11)

where W(R, r) is the conditional probability that a
particle centered at ~ at time t will be r +R at
time t+&. This probability satisfies the equation

aw BW

Bt
=DV2W+ p.E„ Bx

9 p.EK,. (2.19)

For this stationary case, the power spectrum is
given by Eq. (2.14) as

G(v) =2Py, ,+,1 1
y2 + Q 2 y2 + +Q 2 (2.20)

Since G((e) is symmetric about (2) =0, positive and
negative parts can be combined to yield the posi-
tive frequency spectrum

4Py
y'+((d -Q)'' (2.21)

tl 0
+— R, (t, r)e '~'drdt.

GI
'0

(2.22)

Again either a symmetry argument or specific
calculation indicates that the second term equals
the complex conjugate of the first. Thus

C. ac Applied Field

We now consider the power spectrum associated
with the type of applied field used in our experi-.
mental work. We use the square wave of frequen-
cy v„=1/(2t, )which is shown in Fig. 1. The photo-
current correlation function R, (t, v) is no longer
stationary and Eq. (2.13) must be used to obtain
the power spectrum.

Since the alternating field is applied for very
many cycles, it is clear that the integral over t
is equivalent to an integral over the interval
0& t & 2t, . In fact, integration over the interval
0& t & t, is sufficient by the obvious symmetry
arguments or by the specific results that follow.
The power spectrum Eq. (2.13) can be written as

~ tl
G(v) =— R, (t, v)e ' ' dr d t

1"0 0

R, (t, r) -=R,(r) =Pe &' cos(Qr),

where

(2.16)
4

G(e)=—Re R, (t, v)e ' ' dv dt) .i

(2.23)

y=K D,

R, (t, r) = Pe "' cos[QT],

(2.17)

(2.18}
I

t, —t &7&0,

For 0& t & t, and 7'&0, the correlation function
may be written, with the use of Eq. (2.16), as

=Pe "' cos[Q(t2 —t) —Qr2], (t2 —t) + t2 & V & t2 —t,
= pe ~'cos[Q(t, —t) Qt, +Q~,—], (f, —t)+2t, &~&(t, —t)+f„

etc., where
7'2 = 7' —(t2 —t), rR = V —[(t 2

—t) + t 2) .

(2.24)

(2.25)
The sign of the 7, -dependent terms in the cosine arguments varies in successive intervals due to the
change in sign of the electric field. The phase memory is, however, retained. For 0& t& t, and v &0, the
general expression for the correlation function can be written,
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for

R((t, ~)=Pe "'cosQr,

=Pe "' cos[Q(t, —t —v(, )],
=Pe "' cos[Q(- t+&, ,)],

—t +j t~ & v & —t+ (j —1)t~.

t, —t &v'&0;

j=2, 4, 6, . . .
j=3, 5, V, . .. (2.26)

Here

T~ =v'- jt~+t.
These expressions may now be used in E(I. (2.28} to yield

(2.2V}

ty p tj-t ~ t~ -t+jtg
G(.)=—"R.

il

' .- - ..~.d.d.~ 'il . '- ~ -'"" ' '-" d. dtcosQ(- t+T( ()
0 0

(2.28}

where the upper and lower cosines are used in even and odd j terms, respectively. This expression is,
as noted above, independent of the sign of Q (and hence E). If, in the second term, we change the v
variable of integration to x=—~& „using

~ =x t+0-1-)t,
and combine successive even and odd j terms in the sum, we can rewrite E(I. (2.28} as

G(e)=—Re(leg ejl ),
4p

1 ~ ~J-2/4/0 0 0

(2.29)

(2.30)

p t~ ~ t~-t
8 {~ ) cosQl d7 dt, (2.81}

&-{y+3~){g-Ot&

i t) t)
dt (e "~ '+e "+'~ ') dxe ("" "cos[Q(t, —t- x)] .

(2.32)

(2.38)

We nom evaluate these expressions. The sum

g&+(»( ( 1 (sinhyt, cos(((t,) - i(coshyt, sin(dt, )
2 sinh[(y+t(e)t, ] cosh2yt, —cos2(dt,j= 2 y4'I ~ ~ ~ )=2,4,".

(2.84}

Since Q appears only as cosQz in both I and II, those double integrals mill yield expressions mhich can be
written as &~ »(y, ~ t„Q)+&z

~ »(y, ~ t„-Q). We shall explicitly display only the first of these terms.
The integral I can thus be written

j t~ y
-{y+ftd+ jQ){tg-t) -{g+f~+ fQ)t&

I= — ' dt . . = .' . +
2(+y +i((+iQ() 2(y +i&((+iQ) 2(y+iv +iQ)'~ ~ (2.38)

Hence

t y —[1—e "'(cos((o+Q)t, ][y' —((d+Q)~] —2e &'&sin[((u+Q)t, ]y((o+Q)
2b '+ (~+Q)') 2[y'+ (&u +Q)'] *

The same terms with Q replaced by -0 must be added to this expression.
We nom consider II . The first integral is given by

tg ++/+km)tj +iAtj
A. , = e+"" '*cosQ(t, —t x) dx=e '"' -. =e ("(A

2(y+i(e+iQ) (2 3'I)
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where

A, ={—[y(e ~"cosset, —cosQt, ) —(~+Q)(e ~'sin&et, +sinQt, ))

+i[y(e "'& sin~t, +sinQt )+(~+Q)(e ~'&cos~t, —cos Qt, )]].{2[y'+(&u+Q)']]

Again the same terms with 0- -0 must be added to this expression.
The t integrals in 11 are now given by

(y+~~-g n)t~

A, = dt e "" ' ~'= . . ={[(y(e~'cos(ru -Q)f, —I) +(w-Q)(e+& sn(co —Q)t,)]
y +i(o —iO

0

+i[y(e&'~sin(u& —Q)t ) —(~ Q)(—e""cos(~ —Q) t, —1)]][y'+(&o —Q)']

and

(2.38)

(2.39)

A = J' dt e ' """={[-y(e "'icos(~+Q)t, —1) +(a&+Q)(e "'&sin(&u+Q)f, )]

+i[y(e "'& sin(&o+Q)t, ) +(&o+ Q)(e "'& cos(~ +Q)t, —1)]) [y'+(&u +Q)']

The power spectrum [Eq. (2.30)] is thus

G(v) =—[Re{Ij+Re {SA,(A, +A~)j] .4p

(2.40)

(2.41)

Here the various terms are given by Eqs. (2.34), (2.36), (2.38), (2.39), and (2.40). After some algebraic
manipulations, a reduced form for G'(v) may be obtained:

G'(v) 4y 8 [y~ —(ra —Q)']Q —2y(&o -Q)R (uP -Q' —y')Q+2ya&R

P y'+ ((u —Q)' t,[y'+ ((u —Q)'] P y'+ ((u —Q)' - y'+ ((o +Q)'

where

P = cosh(2yt, ) —cos(2&et, ),

(2.42a)

(2.42b)

Q = —0.5 sinh2yti+sinhyti cose ti cosQ t

B = coshyt, sin~ ty cos Ot~ 0.5 sin2+ t, .
(2.42c)

(2.42d)

As necessary, all terms but the first in Eg.
(2.42a) disappear if either t,- ~ or Q-0.

III. EXPERIMENTAL PROCEDURE AND DATA

ANALYSIS

Rectangular platinized platinum electrodes of
about 250-p. m gap separation mere used to apply
an electric field to suspensions of 0.82-pm poly-
styrene spheres (Dow Chemical Co.) as shown in
Fig. 2. The distilled water in which the spheres
were suspended mas buffered to a pH of 8.5 by
p.ppi, M NsHCO, . A 15-mW HeNe laser (Spectra
Physics 124A) served as a light source. For
heterodyne detection, light scattered from the
cuvette walls mas used as the reference beam.
Light scattered from the moving particles as well
as from the cuvette windoms was collected at the
selected angle with a photomultiplier and the photo-
current was amplified and sent to a real-time

spectrum analyzer (SAICOR SAI-52A). Spectral
information is accumulated in this arrangement
with nearly perfect efficiency in real time. Typi-
cal spectra are shomn in Figs. 3-6 for a scatter-
ing angle of 16.4' and a 35-V/cm electric field.
Integration times for these spectra were 1-2 min.
The applied electric field in the solution was de-
duced to be rectangular to within a fern percent
since the measured current through the cell was
rectangular to that precision. The specific meth-
ods of obtaining high electric fields and other
performance characteristics of the narrow-elec-
trode-gap arrangement will be described in a sep-
arate paper. ' Here we wish to describe the effects
of the alternating field and the attainable resolu-
tion for such a system.

In principle, any tmo points on an experimental
curve could be used with Eqs. (2.42) to determine
y and Q. There is, of course, an over-all ampli-
tude factor which adds one additional parameter
to be determined.

Direct evaluation of Eqs. (2.42) for various y
and 0 shows a series of peaks at the harmonic
angular frequencies sv/t, whose full width at half-
maximum is &co,~, =2y. The experimental curves
show peaks of fairly uniform width at those fre-



2667

ELECTROOES

nn V

~SCATTERIRR CELL

'2
12-

Hc- Nc LASER

v RIIHz10-

9
428
I
Z
lal

Pu 6-
S-eLSAICOR

REAL- TIME

SPECTRUM

ANALVZER

FIG. 2. Schematic diagram of the experimental ar-
rangement. The dimensions of the cuvette are 2 X10
mm2, and 45 mm deep. Electrodes were immersed in
the cuvette as shown. At small scattering angles the
electric field was therefore nearly along the scattering
vector. The high-resolution measurements were made
with an electrode gap of about 250 p.. The Saicor 52A
spectrum analyzer (400 channels) has a resolution of
0.5 Hz for the 200-Hz full scale range used in these ex-
periments. The laser used was a 15-mW He-Ne laser
(Spectra Physics 124A).
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FIG. 4. Solid curve: experiment trace. Points as cal-
culated in Sec. III.

spectra were taken for various modulation fre-
quencies.

For each spectrum, an average peak width
b.v,~2 =410,~2/20 =y/0 was determined. As may be
seen from the figures and Table I, the variation
about the average width was relatively small,
i.e., + 15@. Moreover, the numerical determina-
tion of the Doppler frequency & = 0/20 was quite
insensitive to the precise value of y taken within
these limits.

For each spectrum, I" was calculated from two
ratios of peak heights. The first ratio R„ the
height of the peak labeled 1 in Figs. 3-6 divided

by the height of that labeled 2, yieMed &,. The
second ratio R„ the height of the peak labeled
3 to that labeled 2 in each figure, yielded +,. As
may be seen from Table I, R, yielded a generally
more consistent set of frequencies. In general,
good agreement between +, and &, was obtained
for v„&I' where v„, the modulation frequency, is
given by 1/(2t, ). As v„ increases, some inconsis-
tencies begin to appear. These may be under-

quencies. If that width is identified with 2y, then
the ratio of any two peak heights is sufficient to
determine Q.

At any ~=nv/t, we have, from Eqs. (2.42),

8P[- 0.5 sinh2yt, + (- 1)"sinhyt, cosA t,]
t,[y'+ (Id„-0)'][cosh2yt, —1]

(
y' —(cO —0)' 102 —0' —y' 4yP
y'+ (10„—Q)2 y'+ (&0„+0)2 y'+ (Id„—Q)' '

Then G'(n)/G'(n') can be varied as a function of
0 and fit to the experimental ratio.

This procedure was applied to a large number
of experimental determinations of the electropho-
retic mobility of polystyrene spheres. Here we
present an analysis of the typical set of experi-
mental results shown in Figs. 3-6. In these runs,
the electric field was held constant and power
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experimental trace. Points as FIG. 5. Solid curve: experimental trace. Points as
calculated in Sec. III.

FIG. 3. Solid curve:
calculated in Sec. III.
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stood by looking at the representative power spec-
tra in the Ggures. The dots are calculated points.
These points are normalized so as to match the
experimentally obtained height at peak 2, and I is
chosen so that the height at peak 3 is also matched.
In general, the lower the frequency of a peak, the
poorer the agreement between calculated and ex-
perimental peak height. There seems to be an
extraneous source of peak strength in the low

frequency regime which will be discussed in Sec.
IV.

When large modulation frequencies are used, the
experimental curves bear little resemblance to
spectra characteristic of a single Doppler frequen-
cy. It is not possible to discern even an envelope
of the harmonic peaks around the particle Doppler
frequency. Thus, although the accuracy of the
mobility determination is reduced in such cases,
our fitting procedure then becomes particularly
useful.

The spectrum features of Table I were repro-
duced for a variety of angles and electric field
strengths, and for different electrodes. The
Doppler frequencies deduced from the spectra
were consistent with a single mobility value for
the polystyrene spheres (3.8+ 0.1 p, /sec)/(V/cm)
for the 0.82-p, m spheres from Dow Chemical Co.
in 0.001 M NaHCO, . Furthermore, for some
conditions, the electrode polarization was not
large and we could apply a quasistationary field
(v„=1 Hz or less) with some success. The mo-
bility values deduced from the unstructured spec-
tra which resulted from such a Geld compared
well with the mobility values deduced from the
structured spectra and verified the constant Geld
limit of Eg. (2.42a).

from a suspension of polystyrene spheres is quite
good. It is possible, furthermore, to pick out a
central Doppler frequency even when the harmonic
structure of the power spectrum shows no clear
central peak. The typical xesults, shown in Table
I, indicate that for a range of switching frequen-
cies the precision of determination of the central
Doppler frequency & from a three-point fit is
better than a few percent, typically about 1HZ
out of 77 Hz. The observed Lorentzian width due
to random motion is about 3 Hz. For an ideal
system we may expect to split such a line to the
resolution limit of the analyzer, which is 0.5 Hz
in the frequency range used here. Thus the cen-
tral frequency from the modulated data is deter-
mined to nearly the precision limit of the instru-
ment. At this stage the indicated results and the-
oretical calculations are regarded as in excellent
agreement because other precision limiting factors
can cause the observed small variations from run
to run. For exaxnple, either small temperature
gradients or microphonics may easily cause small
time varying frequency changes in the observed
spectrum. Such effects exist even without the
application of an electric field as is indicated by
the fact that at times the Lorentzian width in zero
field is slightly larger than calculated for pure
diffusion for these size spheres (hv, y, -2.5 Hz for
16' scattering angle and 0.82-gm spheres).
Finally, broadening effects due to some finite mo-

TABLE I. Typical experimental data and the results of
their analysis,

vz (Hz) v, (Hz) Lh, v (Hz) b, vsy (Hz) G(v) (rel) F 1 (Hz) F2 (Hz)

IV. DISCUSSION

The agreement between the theoretical predic-
tion and experimental observation of the spectrum
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FIG. 6. Solidcurve: experimental trace. Points as
calculated in Sec. III.

31
62
93

39
78

11V

2.9
2,3
2.0

3.1
2.6
3.2

2.40
4.72
9.76
6.8S

7.80
10.65
2.21

63.64 74.8V

72.09 70.07



LASER DOPPLER SPECTROSCOPY IN AN OSCILLATING. . . 2669

bility distribution for the polystyrene spheres as
well as from the fringing fields of the electrodes
must inevitably limit the precision of the mobility
measurement in these experiments. It should be
noted that for the experimental conditions used,
modulation frequencies much lower than indicated
in Table I produce a broadening of the spectra due
to electrode polarization effects and electrode sur-
face reaction effects.

There is however a clear systematic shift of the
deduced Doppler frequency as the modulation fre-
quency was increased to 17 Hz and beyond. Sev-
eral effects may be responsible for the errors.
A small tail in the spectrum due to field inhomo-
geneity, a mobility distribution, or residual homo-
dyne term can cause the harmonic peaks on the
low-frequency side to be higher than for an ideal
system. A "crosstalk" type of error can result
and become more severe as the modulation fre-
quency is increased. Indeed an increase of the
frequency error at large modulation frequency was
observed as the spectrum tail was artificially in-
creased by geometrical manipulation, i.e., by
collecting more fringing field and inhomogeneity
contributions to the light scattering signal. Never-
theless, from Table I we see that a central fre-
quency can be discerned to within about So of the
true Doppler frequency even at the higher modula-
tion frequencies.

The errors in determining the central Doppler
frequency at high modulation frequencies repre-
sent a practical limit to the upper value of the
switching frequency that may be profitably applied
to the system under study. Possibly, with appro-

priate experimental modifications these errors
may become less severe. The response time 7&

of the particle is not limiting since"

r„=m/3wqd-=10 'sec«V„'.

Here m is the particle's mass, d is its diameter,
and q is the viscosity. A fundamental upper limit
does exist, however. If particle motion is re-
versed before a significant phase shift develops
in the scattered light field then the photocurrent
spectrum will not reveal any information on the
particle velocity. In terms of the equations above,
the harmonic peaks will become vanishingly
small —one requires at least two peak amplitudes
to determine particle velocity.

Another important consideration is the resolution
of multicomponent systems. If a number of sharp
mobility components are present, then the power
spectrum must be fit to a finite sum of terms of
the type given in Eqs. (2.42) each with a different
z and Q. If the mobility distributions are broad
compared to the modulation frequencies then of
course the envelope of the harmonic spectra peaks
would approximate the true velocity distributions
in the electric field.

We have demonstrated that the light-scattering
spectra from particles in a square-wave electric
field are clearly interpretable and can lead to
high-resolution measurements of electrophoretic
mobilities. This result should increase the use-
fulness, accuracy, and range of applicability of
electrophoretic mobility measurements by the
technique of laser doppler spectroscopy.
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