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Our previous evaluation of the specific heat of an ideal Bose gas confined to a thin-film gomnetry is
extended to second order in g/B), where l is the mean inteq~icle distance. Explicit expressions,
involving a dimensionless parameter y, are obtained both for the specific heat of the system and for
the temperature at which the specific heat is maximum. Occurrence of the parameter y, which is a
measure of the chemical potential of the system in terms of the spacing of the single-particle energy
levels, enables us to cast our expression for the specific heat of the system into a form consistent with
the scaling theory of Fisher and Barber. Our results for the specific-heat maximum, as a function of
(Dji ), are a considerable improvement over the first-order ones reported earlier, and have come
remarkably close to the ones obtained numerically by Goble and Trainor.

I. INTRODUCTION

In a previous paper' (hereafter denoted as I) the
phenomenon of Bose-Einstein condensation in thin
films was investigated analytically so as to deter-
mine the rigorous asymptotic behavior of the spe-
cific heat of the system in the "critical region. "
In that investigation, summations over states
appearing in the various expressions pertaining
to the system were evaluated without having re-
course to the customary procedure (of converting
summations into integrations) which is liable to
serious inaccuracies when applied to a finite sys-
tem. Using analytical techniques, asymptotic
expressions for T (D) and C (D), pertaining
to the specific-heat maximum, were dexived to
first order in (I/O), where I is the mean inter-
particle distance and D is the film thickness.
These results turned out to be in good qualitative
agreement with the corresponding numerical ones
obtained by Goble and Trainor. ' Quantitatively,
however, the agreement was not very satisfactory.
In paxticular, the value D* of the film thickness
at which the specific heat of the system, under
Dirichlet boundary conditions (ps =0), possesses
an absolute maximum was found to be 31.1/, which
is rather large in comparison with the value
(17.5+1.5)T obtained by Goble and Trainor. Simi-
larly, the value of the absolute maximum, in units
of Nk, was found to be 1.9583, which is rather
small in comparison with the corresponding value
of Goble and Trainor, viz. , 1.970+0.002.

We have now extended the analysis of I to
second order in (I /D) and have obtained results
which are in excellent quantitative agreement with
the corresponding ones of Goble and Trainor. For
instance, the new values of D~ and C (D*}turn
out to be 19.4l and 1.9688Nk which are remarkably
close to the values of Goble and Trainor. This

' indicates that the convergence of our asymptotic
expansions is quite rapid.

Recently, Barber and Fisher' have investigated
the same problem using different mathematical
techniques. Theii' first-order results for T (D)
and C (D} are in complete agreement with the
ones reported in I. Their higher-order results,
which are essentially second order, are in good
accord with the ones being reported here; see
footnote to Table I. Barber and Fisher have also
shown that in the "critical region, "viz. , T ~ T (D}
their results are in agreement with the scaling
theory for finite-size effects developed by them
earlier. 4 We find that our formulation is not
only consistent with the scaling theory but also
elucidates the underlying reason for this, i.e.,
the occurrence of a dimensionless parameter
y which appeared naturally in I and which deter-
mines, in the manner of a Isa& of corresPonding
states, the asymptotic behavior of the given system
in the "critical region. " The physical significance
of the parameter y is examined, in the hope that
it may lead to a possible generalization of the
scaling hypothesis to systems with different
geometries and to systems with interparticle
interactions.

H. SUMMARY OF THE ANALYSIS

As shown in I., the specific heat of a Bose-Ein-
stein system of noninteracting particles, with
mean occupation numbers Q,) for the single-
particle energy levels e„ is given by

Cr =k(G, —G', /G, ),
where
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TABLE I. Data corresponding to the absolute specific-
heat maximum of a Bose-Einstein film under Dirichlet
boundary conditions.

which, to second order in (X/D), may be written

First-order Second-order Numerical
results results results
(Ref. 1) (present work) (Ref. 2) where

(8)

D+/l
C (D*)/m

31.1
1.9583

19 4a
1.9688 ~

17.5 + 1.5
1.970+ 0.002

D 2
A y, —=, ln 2 sinhy

Corresponding values obtained by Barber and Fisher
(Ref. 3) are (D*/l ) ~20 and C~~(D*)/Nk =1.9675, re-
spectively.

(I+e')v'/2 D

y A.

To the same order in (X/D), the specific heat of
the system is given by

(9)

(3)

g, = —, , — g+3~, a +2eA D + g+,
2

~ ),e. (&/D)(-~)'r, (&) )),
2

(4)

where I'(x) denotes the I' function of x while

g„(5) are the familiar Bose-Einstein functions'

1 "x" 'dx
g ")=1(s)

In addition, A[=k/(2mMkT}' '] denotes the mean
thermal wavelength of the particles, while e = -1,
+1, or 0 according as the boundary conditions
employed are Dirichlet, Neumann, or periodic.
Finally, the parameter y is defined by

y =(1+e )7f'/ (D/p, )o'/2 .

(5)

(6)

Noting that Z, =-N, we have

N(a, T, D) =—, g, /, (a)+, (X/D)
V 2

"s.(&v)+ l 8(&/D)g. ( ))

p. being the chemical potential of the system.
These formulas hold irrespective of the dimen-
sionality of the system, its size and shape, and

the nature of the boundary conditions imposed on

the wave functions. The characteristic influence
of these factors enters through the functions Z,
whose evaluation constitutes the central problem
of our approach.

Since the publication of I, we have developed
a new method of evaluating the functions Z, for
a system in the form of an infinite slab (of thick-
ness D). This method not only obviates the con-
tour integration technique of Krueger' but also
affords a straightforward, yet rigorous, generali-
zation to systems of other shapes. ' For the in-
finite slab, we obtain

co)hq, e()+e'))-'My= +2

Using (8) and (9), expression (10) for (C„/Nk) can
be expressed in terms of (l/D) rather than (p./D).
In the vicinity of To(~), which denotes the critical
point of the bulk system, we obtain

C „/Nk =~~ [j(-',)/f(-, )]+b, (l/D) + b, (l/D)', (13)

where b, and b, are somewhat complicated func-
tions of y and depend implicitly on (l/D) as well.

The value of y for which the specific heat of the
system is maximum now turns out to be of the
form

y =y, +(1/D)[pin(D/1)+5], (14)

where y, is the value of y obtained in I. It will
be noted that the existence of a unique value of y„
irrespective of the actual value of D, is closely
related to the applicability of the scaling theory
for finite-size effects to the system under study t

III. RESULTS AND DISCUSSION

(i) In the case of periodic boundary conditions
(e =0), we find

y =0.85396+0.45102 (l/D),

whence

C,/Nk = (1 /X)'[~ g (
—') + a, (X/D)+ a, (X/D)'], (10)

where

[K(k)]'

~(~)y', 3~(-')M(y)' v(I+e')' v(1+e')

~(1')+A(),))/&)+, t.othy],~ 1+e' 1+e'

(12)
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FIG. 1. Temperature

T~~ (D) at which the spe-
cific heat of an infinite slab
of thickness D is maximum:
first-order results, dashed
lme second-order results
solid line. Numerical re-
sults of Goble and Tralnor
(for 8=-1)a,re shown by
closed circles.

l.QQ i
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T ( D) /T(~) =1+0.45971(l/D)+0. 45182(l/D)'

c. (D)/xe = 1.925ev —o.19v34(T/D)

—0 07056(.l/D) .

vrhence

T (D)/To( ) = 1+0.35147(l/D)[ln(D/l ) —0.17333]

+0.09265(T/D)'

&&{[in(D/E )]'+~8.94802 in(D/T) —2.04080]

(19)

=E{2.68718+0.69078(TID)

-0.94012(l/D) 1n(D/l )), (18)

These results are plotted in Figs. 1 and 2.
(1l) In the CRSe Of DXF1Chlet bollndR~ Conditions

(e =- 1), we find that'

C.gD)/X~ =1.925eV+1.01522(E/D) [in(D/T)-2. 43V21]

+0.35682 (l/D)'

x {[1n(D/E )]2+0.70878 ln(D/l ) + 5.4099V}.
(2o)

These results are also plotted in Figs. 1 and 2

l.S5

FIG. 2. Height ~- (D)
of the specific-heat maxi-
mum: first-order results,
dashed line; second-order
results, solid line. Nu-
merical results of Goble
and Trainor (for e =-1) are
sholem by closed circles
vrhile the horizontal line
col responds to the bulk
value C (~).

0
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y = 4.40186+43.95623 (l /D)

-19.84056(i/D) In(D/I ),
whence

(21)

T (D)/T (~p)=1 —0.3514V(l/D)[ln(D/l) —4.93831]

+0.09265 (1/D)2

x([in(D/l )]' —101.59910

xin(D/l) +214.01556} (22)

and are in excellent agreement with the numerical
results of Goble and Trainor. '

A better indication of the accuracy of our analy-
sis is obtained by examining the value, (D /l), of
(D/l ) at which the specific heat of the system is
at an absolute maximum; one may also look at the
corresponding value, C (D*)/Nk, of C (D)/~.
Table I contains results for these number s as
obtained in I, the second-order results as obtained
in the present investigation, and the Goble- Trainor
results obtained numerically. Corresponding re-
sults of Barber and Fisher are also given.

(iii) In the case of Neumann boundary conditions
(e =+1), we find that

0

where t represents the shifted temperature devia-
tion as defined by

t =[T- T (D)]/T.(-). (26)

Conditions (24) imply that t is also much less than

unity, Now, it can be shown that

Ds=(DII)t =-:[~(-')] '"
y, „„,-A y. ..„)p I 0%

(2V)

Clearly, the scaling variable s is a function of y
alone; in particular, for y=y0, &=0. In turn, it
follows that y is a function of s alone (though an
explicit relationship to express this dependence
can be written only for e =0). We may, therefore,
expect that the specific heat of the system in the
"critical region" is governed by the parameter y.
This is indeed true, for we can write

C„(T,D) C„(T ~, D) (-j
Nk Nk

x
8 [&(r)] 'C(p)s(y) —

4 „(1+ca)
45. . . ~ [C(p)]"*

C (D)/Ã0 = 1.9256V —1.01522(l /D)

x [1 (Djl ) —1.24145] +0.35682(7/D)'

x ([in(D/l )]*—14.78192

xin(D/I ) + 14.22426} . (23)

[T—T.(")]/T,(")«1. (24)

These conditions lead one to consider only first-
order results in (l/D). We then expect that the
specific heat C„(T), in the "critical region, " is
governed by the variable

s=(D/l)t, (25)

These results are also included in Figs. 1 and 2.
The "spurious" minimum in the value of C (D)/
Nk, first encountered in I, is now shifted to a low-
er value of (Djl), as was indeed expected Of.
course, as remarked in I, the validity of asymp-
totic analysis at such low values of (Djl ) is
rather questionable.

To show that our formulation is consistent with
the scaling theory for finite-size effects, ' we first
of all note that the sealing hypothesis is expected
to apply if, and only if,

(D/l)»1

«t~(«) -M«.)l) .

We also find that our scaling function, i.e., the
coefficient of (l/D) in (28), is eiluivalent to the
corresponding function of Barber and Fisher' for
each of the boundary conditons considered by them,
viz. , 8=0ande= -1.

Further insight into the physical significance of
the parameter y is gained by observing that

y=(1+e')v"(D/&)n'"- v( ti/&)" (29)

where 6[ = ti'/(MD')] is a measure of the discrete-
ness of the (low-lying) energy levels of the system
arising from the finiteness of one of its dimen-
sions. The parameter y, therefore, represents
the chemical potential of the system "reduced in
terms of the energy parameter 4." It thus appears
that, in the system under study, as we approach
temperatures where the conventional parameter
a[= —(ti/kT)] becomes very small, 0(A'/D') in-.
stead of Q(1), the thermodynamics of the system
is governed by the parameter y'. It seems plau-
sible that this result, although derived here for
an idea1 Bose-Einstein fi1m, may be valid for in-
teracting systems as mell. If so, the validity of
the scaling hypothesis for such systems would
also be guaranteed.
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