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Covariant constitutive relations are developed for an arbitrary, anisotropic, dispersive, dissipative

medium, thus allowing for relaxation phenomena, and the covariant wave~persion relation is derived.

The susceptibility tensor of order 4 is given explicitly for a Vlasov plasma with arbitrary velocity
distribution and nonzero dc electric field. It is then shown how to determine the constitutive relation

explicitly from the moment of the single-particle current, without using the Vlasov equation. The
f~~i»ar "dielectric tensor" is obtained as a special case.

I. INTRODUCTION

Since the pioneering work of Clemmow and Wil-
son,"Buneman' and others, the kinetic theory of
relativistic plasmas has acquired an extensive
literature. See, for example, the articles listed
by the authors of Refs. 4-9. Basic to many treat-
ments is the dielectric tensor derived by Trubni-
kov" from the three-dimensional relativistic
Vlasov equation for a stationary, Maxwellian
plasma with zero dc electric field. Since the di-
electric tensor is not covariant, however, one of
the main advantages of a relativistic treatment,
namely, the direct application to drifting plasmas,
is lost by this method. Furthermore, the exten-
sion of Trubnikov's dielectric tensor to cases
where the dc electric field is not zero is far from
obvious. In order to write covariant constitutive
equations, one needs the four-dimensional magne-
tization-polarization tensor, which was introduced
by D'kllenbach" and Pauli. " They showed, on the
basis of intuitive physical arguments, that it can
be expressed formally in terms of the averaged
moment of the single-particle current density.
They did not, however, obtain the relationship
between this tensor and the electromagnetic field
tensor.

In this paper, we develop the theory of the covar-
iant constitutive relations for an arbitrary, aniso-

tropic, dispersive medium, allowing for relaxa-
tion phenomena. To do this we replace the famil-
iar dielectric tensor of order two by a suscepti-
bility tensor of order four, which relates the
electromagnetic field tensor to the magnetization-
polarization tensor already mentioned. Taking the
example of a Vlasov plasma, we find an explicit
expression for the susceptibility tensor, and hence
for the unspecified terms occurring in Dmlen-
bach's expression for the magnetization-polariza-
tion tensor. The susceptibility tensor would be
of particular importance in applications to a mul-
tiple drift plasma where it would be difficult to

obtain the same result by Lorentz transforma-
tions. In deriving the susceptibility tensor, we
regard all particles in the plasma as bound par-
ticles, so that the free current density is zero.
This model is particularly useful for bounded
plasmas, since it re.noves the need to work with
surface charges and currents. The model has
been used by Derfler and Omura, "who worked
nonrelativistically. They divided the total plasma
current into magnetization and polarization cur-
rents, from which they derived separately the
magnetic permeability and dielectric permittivity
tensors, whereas all previous treatments lump
both terms into one equivalent expression, com-
monly called "the dielectric tensor. ""'"

In Sec. II, we define the fourth-order suscepti-
bility and permittivity tensors, and derive the
general wave dispersion relation in covariant
from. In Sec. III, we solve the manifestly covar-
iant Vlasov equation for a drifting plasma with
nonzero dc electric field in terms of a four-di-
mensional gyro-tensor. In Sec. IV, the explicit
form of the magnetization-polarization tensor is
first derived from the first-order solution of the
Vlasov equation. Then, after solving the first-
order equation of motion in terms of Lagrangian
variables, we show how the magnetization-polari-
zation tensor can be obtained, independently of
the Vlasov equation, from the moment of the
single-particle current. In Sec. V we integrate
the magnetization-polarization tensor for a drifting
equilibrium plasma and finally obtain Trubnikov's
dielectric tensor as a special case.

II. COVARIANT CONSTITUTIVE EQUATIONS FOR
AN ANISOTROPIC MEDIUM

Throughout the paper, we adopt the following
conventions: Unless otherwise indicated, Italic
subscripts take the values 1 to 4 and Greek sub-
scripts go from 1 to 3. We use Minkowski coordi-
nates, in which the four-vector f has components
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where E and H are the electric and magnetic field
strengths, respectively, B is the magnetic induc-

tion, and D the electric displacement. B and (H

are related by the equation

H=B/p, —M,

where M = (M, icp) is the magnetization-polariza-
tion tensor, involving the magnetization and polari-
zation vectors, M and P, respectively, which
describes the effect of the current density owing
to bound charges; J, = ~, M, &

.
In the kinetic treatment of a plasma, B is the

average of the microfield existing between the
particles. Regarding all particles as bound parti-
cles, we set J" =0. The electromagnetic proper-
ties of the plasma are then completely described
by the tensor M, which, in general, is a nonlinear
functional of the field tensor B. In the following,
we shall consider small perturbations, B' from
the stationary state B', with

B = B'+ B', etc. ,

and

J=J +J +J'",
where the higher-order contributions of the bound
charges are lumped into an equivalent excitation
current J'". For a homogeneous medium, we can
then represent the functional relating the first-
order perturbations as a linear convolution of the
form

f, , where f„are the components of a spacelike
vector F and f, = if, is the timelike component. For
example, x denotes the world point, with xp ct.
We denote the volume element df, df, df, df, by df

For an arbitrary medium, I~0)(rell's equations
are written covariantly in terms of the electro-
magnetic field tensor B, the excitation tensor H,
and the four-vector free current density J~, as
follows:

s)Bf, =0, s,H(, =Sf' (2.1)

where B* is the dual of B, definedby B~& = &g~q»B»,

g;», being the alternating tensor of order four.
In terms of the familiar three vectors, we write,
following Sommerfeld, "

8=(i, E/~)

f' )«]««cg

M22, (x) X,»] „BB22 =
J

[ d(X,»((x $)BB22(()2

(2.3}
where X represents the first-order susceptibility
kernel and the arguments are invariant functionals
of x. Hence the convol. utions are manifestly covar-
iant with respect to Lorentz transformations;

x] =A)~x),

(2 4)

where ]]. = v y/c and y=(1 —v„vs') '~', v being
the three velocity. The convolutions exist in the
mathematical sense, even in the presence of
instabilities, owing to the finite speed of propaga-
tion, provided the perturbations are applied at
some finite time. For the same reason, the two-
sided Laplace transform

B,'& [k] —=
J

dx e"2*& B,', (x) (2.5)

exists and is covariant with respect to Lorentz
transformations. Also, owing to the finite speed
of propagation, we can always find upper bounds
in each inertial frame, such that

IB;g(x)(&Ce '*& for x, const, (x„(-~,
&Ce"p'p for x const, xp&ct*,

=0 for x const, x, &ct*. (2.6)

It follows from a theorem of Doetsch" that B'[k]
is a regular, analytic function of the complex
variables k& in the strips

(1m'„(= », (2.7)

which include the real wave-number axis, and a
lower-f requency plane

Imk, = Im((u/c) & —x„ (2 8)

where we restrict the Bromwich contours of in-
tegration to the regions where S'[k] is regular
and analytic, i.e., where oB & —xB, ]o„(&((. Since
X($) represents the response of the medium to an
impulse localized in space and time, i.e., S'(x)
«5(x), the susceptibility kernel satisfies condi-
tions similar to Eqs. (2.6} and is therefore an
L(xB) function. Under Laplace analysis E(I. (2.3)
takes the form

where ap is positive in the presence of instabili-
ties. Analytic functions of k, satisfying the condi-
tions of E(ls. (2.7) and (2.8) will henceforth be
referred to as L(x,} functions. These can be in-
verted in the form

B ~( )=(22) kfjjf
'

dk-e "'*iB,[k](2.9)', ,
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(2.10)Mi([k) = X-„n([k] Bn([k]

and M'[k] is thus an L(((,) function. Since, in the

following, we shall be concerned only with the
Laplace transforms of the tensors, we shall delete
the square brackets identifying the transforms
wherever no confusion can arise. The calculations
in Appendixes B and C will be performed for k

real and Imkp (0 it being understood that the re-
sults apply to the region specified in Eqs. (2.7)
and (2.8) and can be extended by analytical con-
tinuation.

By the skew symmetry of M,', and Bj,j, X]jj,j
must be skew symmetric in the index pairs ((,j)
and (k, I}. Taking the transform of Eq. (2.2) and

substituting Eq. (2.10) we obtain

K((pAp+K((p(A((
——gM('(", }(,eM,

K„pAp+K„„Ad=ps J„'", p&R,

(2.17)

(2.18)

where the summation convention is suspended for
capital subscripts. We first solve Eq. (2.17} in

the form

general k when the continuity equation k J =0 is
satisfied. If K were zero, then by Eq. (2.16), all
the factors K „would vanish, so that the system
of equations (2.13) would have rank & 3. In this
case, we would have yet another condition on J for
general k, which would be unphysical.

By deleting in Eqs. (2.13) the Mth row and Rth
column, we get the system of equations

1 1+jj Tg jjtj Bpj

where

T(rn( =X(rn( + ni(mn nn(mn /4&o '

(2.11) p g &Kp~ Jt1 KppK ~gA g

and substitute from Eqs. (2.14) the relations

K(( (( K((pk p/k((( K((p K((p k (( /k((

(2.19)

In terms of this tensor, we can write the Laplace
transforms of Maxwell's Eqs. (2.1) in the form

9mpqy' 'j( qp y mp j( mpqy' p qp m

(2.12)

These equations can be solved most conveniently
by means of the vector potential A, defined in the
usual manner, such that

BRp
= k[RApl —2t Kpp kBJ (2.20)

To write this result covariantly, we first recall
that the 3x3 matrix Kpp can be inverted by
Cramer's rule in the form

into Eqs. (2.18) and (2.19). We thus confirm that
the continuity equation k J =0 must be satisfied,
and obtain the solution of Eqs. (2.13) in the form

B,'„(x)= S,A„(x) —S„A,(x) ~B,', = k, A„—k, A, -=kl, A,
~

satisfies the first of Eqs. (2.12) identically. The
problem thus reduces to the solution of the second
set of Maxwell's equations, which, in terms of
the vector potential, takes the form

(2.13)

Kp(( K((((p( p/K(p((——,

where

and

K~rn =
nmnp, 7m(. Kp(-K,./2 l

Kmr =
nmnpn n.,(.Knn-Kp(Knn /3!

(2.21)

K = K;; /k(k( .
Thus the cotensor can be written in the form

K, = k k~ = k k„K„/k, k( .

(2.15)

(2.16)

From the skew symmetry of T, it follows that the
rows and columns, respectively, of the matrix K

are linearly dependent, i.e.,
K„k„=o, k K„=O. (2.14)

Thus the determinant (i K „[i vanishes identically
for general k. It is therefore obvious that the
equation ii K „ii = 0 cannot be the wave-dispersion
relation, as has been claimed. " By substituting
from Eqs. (2.14) for rows and columns in the 3&3
minors of K „, it is easy to show that the cofactor
K „ofK „equals Kk k„, where K is an invariant.
We can express K in terms of the trace K;&.

are the cotensors to K „of second and fourth
order, respectively. Substituting Eq. (2.21) into
Eq. (2.20) and using Eq. (2.16), we obtain, on
multiplication with k~,

k~8((p = aiKgp((pkg Jp" k(k(/K(( ~ (2.22}

By the skew symmetry of Kzpzp setting p. =M
and p =R would give zero contribution, so we can
lift the restrictions p, wM and p R, replacing p,

by n and p by s. We can then sum over M from 1
to 4, which produces a factor k, k, on the left-hand
side of Eq. (2.22) and cancels the one on the right-
hand side. Then M and R lose their uniqueness
and can be replaced by m and r, respectively.
We can now write the solution of the inhomogeneous
Maxwell's equations for general k in the mani-
festly covariant form

Provided Kc0, it follow's that the system of Eqs.
(2.13) has rank three and hence can be solved for

B„',= niK~rn k Jn*/ K((

= W4'K „„,kl Jn") /k(k(K. (2.23)
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1 1 1+ra 787gtl +7tttl t (2.24)

It can be verified immediately that the excitation
tensor

a' = —f'k[ J„'*,/kfk,

satisfies the second set of Maxwell's equations
(2.12) for general k. Therefore, by substitution
into Eq. (2.23), we obtain the inverse of the per-
mittivity tensor defined in Eq. (2.11), in the form

rest frame. In the present context, this is un-
ambiguously defined as that frame in which the
three-vector fields are related in the form

Da = EoeasEs& Ba l»as Bfl/lf o~

which, following Sommerfeld, "is the natural way
of writing the constitutive relations. Substituting
these relationships into Eqs. (2.11) and (2.24) and
using the fact that, in the rest frame, H is inde-
pendent of E and D of B, we obtain

where

T„,' = —,'E~„,/—K. (2.25}

Using the tensors T and T ', we can now rewrite
the constitutive Eq. (2.2) in either of the alternative
forms

-1 k -1+
~cfgy4 ~4)t2 8 y

O ~ fXQ y4 ~4 g y

l.Tap ys
= gasp Il ~p'ggy /s2lpfl

a»y4= ay/ l"ol

n8yp 2PO 10[87) PgRgy$t

(2.27)

M';, = —(Tff», —5f[» 5, p/2l o}B», ,

Mff ——(Tff'», —5f[» 6f g/2lfo)ff»t
(2.26)

~ -1»k 1
& my4= ~WOWay ~

It should be noted for completeness that the so-
called "plasma dielectric tensor" e 8 defined by

where

1 y)L 1
tttttPq ~ Aqui

We have already argued that K does not vanish for
general k. On the other hand, K must vanish in
regions where the current density in Eq. (2.23}
vanishes in order to allow for finite fields B, e.g.,
to explain the phenomenon of propagating waves.
The covariant wave-dispersion function is there-
fore given by the invariant K defined in Eq. (2.15).
One may be tempted to conclude from Eq. (2.25)
that the inverse tensors T ' and X ' would not
exist in the presence of waves. This apparent
contradiction can be resolved immediately in the
construction of the tensor kernels T '(x) and
X '(x) in the space-time domain by means of the
inverse Laplace transform. In this process, one
encounters the problem of residue calculus at
discrete and/or continuous sets of poles k["f of
T '[k] and X '[k] which are in fact solutions of
the wave-dispersion relation K=O. Provided
MinImko & Ko one can adjust the Bromwich con-
tour so that oo & —ff„ implying that T '[k] is an
L(xo) function. The proof that this condition is
always satisfied can be given only on the basis of
the kinetic theory of T [k], as developed in Secs.
IV and V. Any finding to the contrary would mean
that the problem was ill posed to start with. Since
Maxwell's equations are satisfied for k'"', the
residue calculus leads to an expression for the
propagators or Green's functions T '(x) and X '(x)
in terms of waves as discussed by Derfler" "in
the context of his wave-stability criteria.

For purposes of comparison with the familiar
noncovariant dielectric permittivity and diamag-
netic permeability tensors of order two, we will
now determine the components of T and T

' in the

Mff yy ('E l)BffXf/p, o= —X,B»&f/l»pf
14 1+M', f Xf = (lf —1)H'„*If= Xarfff Xf,

(2.29)

where X, and X are the electric and magnetic
susceptibilities. The analogy between Eqs. (2.26)
and (2.29) was anticipated in designating the tensor
X as the covariant electromagnetic susceptibility
tensor. Whereas, in the previous treatments, the

J' = —sof(e s —5 s)@/4ff,

is actually a combination of the dielectric per-
mittivity and diamagnetic permeability in the form

Zas = was+(k, ) 'gaysky(6s, —lf s,')k~g, ~s . (2.28)

Substitution of Eqs. (2.27) and (2.28} into the
covariant dispersion function of Eq. (2.15) gives
the familiar three-dimensional form of the disper-
sion relation in the rest frame, viz.

If k»o~. ,+k.k, k„k,5.s—ff =O

In the case of an isotropic, nondispersive
medium, where e and p. are scalars, the tensors
T and T ' simplify, such that in the rest frame

T asys = gapa 'g uys/2lf pl» i

T~y» = e5ay/2lf pi

1»(p

Tasys = &ogasf, g»ys/2e,
1 k 1

&fX4y4 = aP 06&ay ~

By Lorentz transformation using Eq. (2.4), we
can obtain expressions for the tensors T and T '
in terms of & and p. , in any inertial frame. Equa-
tion (2.26} then reduce to the constitutive equations
for an isotropic, nondispersive medium given in
three-dimensional form by Sommerfeld and in
four-dimensional form by Pauli' and Synge, ' vim.
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two Eqs. (2.29) were needed to describe the prop-
erties of the medium, either one of our Eqs. (2.26)
contains all the required information, since the
tensor X combines the electric and magnetic sus-
ceptibilities.

III. SOLUTION OF THE COVARIANT VLASOV

EQUATION

In covariant form, the Vlasov equation is

The Lorentz invariance of these expressions is
demonstrated by Akama. ' %e note that the first
integral in Eq. (3.4) involves the product of rela-
tive volume by relative number density in the case
of a drifting plasma and proper volume by proper
number density in the case of a stationary plasma.

We now linearize Eq. (3.1) with the ansatz
f(x, u) =f2(u)+f'(x, u) which gives to zeroth order

(3.5)
Bf e sf

u& ——8& —
u& =0

8X~ PPt C 8Q;
(3.1)

and to first order

f(x, u) = E(x, u) 5(u,u, + 1)

=E(x, u)[5{u,—(u„u„+I)'~2)

+ 5(u, + (u „u„+I)'~2)]/2u2, (3.2)

where —2E(x„,u, f) gives the usual distribution
function over six-dimensional phase space. The
four-vector current density is given by

Z, (x)= —xx f d, f(x), x, (3.3)

where we define

du=- du du dQ dQ

with p = —, p0=1. This integral is covariant
under Lorentz transformation since Q, = y~ 1 in
all inertial frames. The definition of Z&(x) is
compatible with the normalization condition ob-
tained by setting the number of particles in the
system as follows:

N= dx, dx, dx, n x

where e is the electronic charge, nz is the proper
mass of an electron, and u, =dx;/ds is the four-
velocity of an electron, s being defined by dz
= —dx& dx&. The analysis can be generalized to a
multispecies plasma, but, to avoid extra sub-
scripts, we shall confine our attention to electrons
within a background of very heavy ions. For com-
parison with the three-dimensional formulation,
we note that u = v y/c, u, =iy, where v is the
classical three velocity and y = (1 —v'/e') '

The distribution function is restricted by the
relativistic energy-momentum relationship, u&Q&

= —1, to a hypersphere in the eight-dimensional
phase space whose volume element is

dX dQ =- dxo dx~ dx~ dXS dQO du~ dQ2 dQS .

Hence we can use the Dirac 6 function to write

du, (e) 0
d8

= —e(mc) B„u,(s), (3.8)

is formally equivalent to a characteristic equation
of both (3.5) and (3.&). Its solution, in matrix
notation, is u(s) =u(s')e@'», where

4,~(s) = — B'„(s")ds" .
inc s'

A necessary and sufficient condition for the exis-
tence of this solution is that 8'(s) has a set of
eigenvectors independent of s. In particular, the
solution holds if 8 is independent of s. By the
Cayley-Hamilton theorem, the four-tensor 4
satisfies its own characteristic equation, namely,

o= 114-»II= II c II-~~+@'-»'+~', (3.{})

where 0., P, and y are independent of ~. Since 4
is skew symmetric, it follows that ~ = y= 0 and
P=-2'4, ~4 „.If S' is independent of e (i.e., for
constant external fields), then

E02 e2''( ''
x* m'x'

Hence we write P= (s —s')'0'/c' covariantly,
where 0 may be regarded as the relativistically
covariant cyclotron frequency. We also find that
the determinant

II @II= -(s —s')4 B'E')' e'/m'c'

I s 1 s 0

Xf

Taking the two-sided Laplace transform, we have

—i'(ug f —e(mc) B(g + B(g uq = 0,1 sf' 2 sf'

(3 7)
where Eq. (3.7) involves functions of k and u.

We solve Eqs. (3.5) and (3.7) by the method of
characteristics. The zeroth-order equation of
motion,

dt's d&2 F2 du u()f(xx u)

dxg dx2 dxs dug du2 dug 2E xo Qcf (3.4)

vanishes under the usual physical condition that
ED& BO in the laboratory frame. Then, because
B' ~ E'/c2 =-,iB',~B,'P is an invariant, the deter-
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minant vanishes in any inertial frame, and the
Cayley-Hamilton equation reduces to 4 ' = —~
Using this equation to generate a recursion rela-
tion for 4" we obtain the covariant gyrotensor D

in the form

and therefore,

f [k'u( s)[=f'[ su( s)] ssui I k, , (s )S's'
Sp

S S
+ exp i k;u, (s")ds" g[u(s'))ds

Sp S

2

B.l, BI . Cos[(II}]—1

Bpl& sing,
mQ

(3.10)

S S
/I IIf' [k, u(s)] = exp i k, u, (s "}ds"

oo SI

x g[u(s')]ds'. (3.16)

Since Imkp~0, we can let sp- -. Then we have

where p-=P"', for s&s'. Further properties of
D(-(t)) are established in Appendix A. In general,
the solution of Eq. (3.8) is

Changing the variables of integration to
$=(s —s')0/c and P'=(s —s")II/c, we have

u, (s') = D~(g)u, (s), u, (s")= D)(P') u(s).
u, (s) =D, (-ttp) u&(s '). (3.11)

(3.17)
The most general solution of Eq. (3.5) is thus

a function f'(u) such that

f [u(s)]=f [u(s')]. (3.12}

For example, f'(u}=E(u, u, , u, X, ) satisfies Eq.
(3.5) provided

Z, B0„=0. (s.ls)

(3.14)

where n and p. are constants, is a solution of Eq.
(3.5).

We now solve the remaining characteristic
equation of Eq. (3.7), namely,

f'(s}
( }, ,

( }
sf (s

In particular, A.,- can represent the four-vector
plasma drift velocity. , In this case, the drift
velocity observed in the laboratory frame is re-
stricted to a component parallel to B' and a com-
ponent of magnitude Eo/B' in the direction E'x B'.
Under these conditions, the Synge-Juttner distri-
bution, 24

f'(u) =(He" t"(6(u,. u,. +1),

The variable s is now eliminated from Eq. (3.16),
since it appears only in u(s). Introducing the
tensor L((())) = j, D((t)')dp', we obtain

f'[k, u] =— exp ick,
c " . I„,(y}u,.

0

g [Dk[(4')us]d 4.
We now evaluate g [D»(P) u, ] by substitution into
Eq. (3.15). By Eq. (3.12}, it follows that

sf (u) =D sf'(u)
+lf u D u + lkl l

The Laplace-transformed solution of the first-
order Vlasov equation is therefore

oof ' [k, u ] = d (t) exp i ck,.
0

xB'„[k]D (0)k)
"

D, (([[))u .
m

(3.18}

IV. COVARIANT MAGNETIZATION - POLARIZATION

TENSOR
+ ik,. u,.(s)f'(s)

=- g(u}+ ik,. u,.f'.
The homogeneous part has the solution

(3.15)
From Eq. (3.3), the Laplace-transformed

plasma current density owing to the first-order
perturbation is given by

f"(s)=(cuss))s p 'f k, , (s')Ss' S'[k]= -sc IS;f'(k, u]. (4.1)

where u(s') is given by inversion of Eq. (3.11),
using Eq. (Al). The inhomogeneous equation can
now be solved by variation of constant. Substi-
tuting f'(s) =C(s)f"(s), we obtain

C'( s)f"(s) =g [u(s)];
therefore,

k; J';[k]=0.
We now seek to express J'[k ] in terms of the
magnetization-polarization tensor M'[k] such
that

J';[k] = -ik, M(, [k].

(4.2)

It has been shown' that Eq. (4.1) implies that J'
satisfies the continuity equation, which in k space
takes the form
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gf0
J dg.g (4.3)

rg =ck»L-»g jQ.
In Appendix B, we show by partial integration

that

The continuity equation (4.2) confirms that M'[k]
is skew symmetric. From Eqs. (3.18) and (4.1}
we have, for the first-order current density,

00

Z';[K]= — dQB», D» D,„
0

four-dimensional moment of current density. %e
have now derived explicitly the magnetization-
polarization tensor for a drifting Vlasov plasma
and expressed it in the form arrived at by DNlen-
bach on the basis of physical arguments and sym-
metry requirements. %hereas, however, Dmllen-
bach wrote the Eq. (4.7) in real space, interpret-
ing the average as a volume integral and restrict-
ing the application to nondispersive, lossless
media, we have extended its application to dis-
persive, dissipative media„where the equation
now holds in Laplace transform space and in-
volves an ensemble average.

8,' [»] = -ll;, »,', r du V. MAGNETIZATION - POLARIZATION TENSOR

FOR AN EQUILIBRIUM PLASMA

&& deaf'e""'L»~, „u„u 5,
&

5,„. (4.4)~ ~

%e can therefore write

M,'.,[k]=-ecf deaf'(u)dx~;u;~. , (4 5)

where

1
M;~ —-M;q+M]~ ——(» pocx[, ug] },„, (4.7)

where p, is the microscopic charge distribution
in the plasma and x is the position of the particle
under the influence of the perturbing electromag-
netic field. %riting

1 g 1
MU = » [}ii»!(»poc»]m»xmun)av ~

we see that M~q is the dual of the averaged

0

Comparing Eq. (4.5) with Eq. (2.10), one sees
that we have now obtained an explicit expression
for the covariant susceptibility tensor,

2 2 oo
8 C O sr&~, —

&&~»r =
2 &» du

I

deaf

e u[»L, &«u, &,2mQ 0

(4.5)

where we define N, -=D,„u„. In Appendix C, we

show that 4x is the Laplace-transformed pertur-
bation to the zero-order orbit of an electron, ex-
pressed in terms of the Lagrangian variables u;.
It is thus clear that we can obtain the expression
(4.5) for hh' directly from the equation of motion,
without using the Vlasov equation. The same re-
sult could be obtained by means of the Hamilton-
Sacobi theory given by Pfirsch. "

If we now recall the positive ions needed to
maintain charge neutrality in the plasma, it is
clear that the zero-order contribution to the plas-
ma current density is zero, and we can write

In Eqs. (4.5) we have given the magnetization-
polarization tensor +' for an arbitrary velocity
distribution f (u). For a given zero-order dis-
tribution in the rest frame, the covariant form
of M' could be obtained by Lorentz transforma-
tion. For an equilibrium plasma, however, we
can substitute for f0(u) the covariant Synge-Jutt-
ner distribution of Eq. (3.14), which, in the rest
frame, reduces to the relativistic Maxwell-Boltz-
mann distribution. The constant e occuring in Eq.
(3.14) is the normalizing factor and p, =tnc'/kT,
kT being the kinetic temperature in the rest frame
of the plasma, . Performing the velocity integra-
tion for a Synge- Juttner distribution in Appendix
D, we obtain

s,s„3:,—O~

(5.1)

where no is the proper number density of the plas-
ma and

X„(P)= (s;s, ) ""K„((s;s;)"'),

K„being the modified Hankel function of order n

and

s](4) =r~(4) —»] &~

%e recall that the drift velocity A. is restricted
by Eq. (3.13) in the laboratory frame to compo-
nents parallel to 8 and in the K'x 8' direction.

For a stationary plasma with no dc electric
field, we have X„=0 =D, =J, and the current
density, derived in Appendix D, is

P„[k]= u, M'„, -
E[] dp(X»D8 (y X»r ~r D [] )
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In this case, we thus obtain the well-known "di-
electric tensor" of Trubnikov,

l(d pQ
a8 = 5ns+ fiff I i dA(PBa &P'n+y&8y) I

where (d(, = (e'n, /me, )' ' is the plasma frequency. "'

VI. DISCUSSION

We have developed a covariant description of an
arbitrary, anisotropic, dispersive medium, allow-
ing for relaxation phenomena, such as Landau
damping. The covariant formulation is especially
useful in cases where each of several species of
particle has a different drift velocity, for example,
in a two-stream plasma. In such cases, it would
be difficult to obtain the correct constitutive rela-
tions by means of Lorentz transformations from
the respective rest frames. In Eq. (2.23) we ob-
tained the complete solution of inhomogeneous
Maxwell's equations in covariant form. Using the
permittivity tensor of order four, T, we wrote in
Eq. (2.15}the general wave-dispersion function.
The inverse permittivity tensor I ' of Eq. (2.25)
represents the Green's function which is a prereq-
uisite for the covariant solution of the nonlinear
problem of wave-wave interaction. Qf particular
practical interest here is the phenomenon of stimu-
lated synchrotron emission which may well be
responsible for the sharp resonance observed by

Cano and co-workers~" in experiments intended
to determine the self-magnetic field of the toroidal
current in Tokamak devices.

In Eq. (4.5} the magnetization-polarization tensor
M and hence the susceptibility tensor X and the per-
mittivity tensor T are given explicitly for a drift-
ing Vlasov plasma with arbitrary velocity distribu-
tion and nonzero dc electric field. We allow for
drift velocities parallel to the magnetic field as
well as in the ExB direction. The tensor M is ex-
pressed in terms of the averaged moment of the
single-particle current density in Laplace trans-
form space. This result applies even in the case
of a dissipative plasma and allows for the ocur-
rence of resonance phenomena. It is thus of more
general validity than the formally similar result
obtained by Dhllenbach. Finally, we showed that
in the special case of a stationary Maxwellian
plasma with zero dc electric field, our result re-
duces to the relativistic dielectric tensor of Trub-
nikov.

The theory developed here now makes it possible
to formulate Derfler's stability criteria" "in a
covariant fashion. Furthermore, the M tensor,
derived in Secs. IV and V, represents the rela-
tivistic extension of Derfler's and Qmura's sepa-
ration of the plasma current into magnetization
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APPENDIX A: PROPERTIES OF THE GYROTENSOR
AND ITS INTEGRhL

The solution of the first-order equation of mo-
tion for electrons in a Vlasov plasma given in Eqs.
(3.10) and (3.11) holds for a varying field ao which
commutes with 4, provided Q is some scalar. In
Sec. III, we showed that Q has special significance
when B' is independent of s. Since 4 is skew sym-
metric, D is orthogonal and therefore

&(a(4}D(a(4)= 5((. (A 1)

Denoting differentiation with respect to P by a dot,
and using the commutativity of 4 and 8', we obtain

o=4 D =D.C, (A2 )

and polarization currents in the nonrelativistic
case. Using this nonrelativistic treatment, Puri
and Tutter have shown numerically~ that the mag-
netic contribution to classical wave dispersion is
negligible away from the immediate neighborhood
of the cyclotron harmonic frequencies. It can now
be established whether this classical magnetic con-
tribution is meaningful at the cyclotron harmonics
or whether it is dominated by relativistic effects.
These, according to Shkarovsky" are important at
the harmonics for perpendicular wave propagation,
even at moderate plasma temperatures.

In Secs. III and IV, we excluded gradients in plas-
ma density and in the unperturbed electromagnetic
field. This enabled the tensor M to be written as
a simple product in transform space. In the future,
we will extend the present treatment to include den-
sity gradients. The expressions obtained will then
be convolutions in the transform space, like those
obtained by Derfler and Leuterer" in the nonrela-
tivistic treatment of Bernstein waves. Also, the
possibility of a covariant formulation involving
anisotropic temperature must be investigated be-
cause of its importance in plasma physics.

Finally, our treatment of the Valsov plasma pro-
vides a concrete example in which the mechanical
response of the medium to an electromagnetic per-
turbation is given explicitly in covariant form.
Qne is therefore in a position to scrutinize the dis-
crepancies arising out of the differing definitions
of the energy-momentum tensor given by Minkow-
ski and Abraham. " Thus it is hoped that the re-
sults obtained in this paper may contribute to a
solution of what may be considered the last open
question in classical electrodynamics.
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which becomes

D~.(4)D.,(~) =D,(~ ~),

D„(y)=D„(-y) L„(e)= -L„(-y),
(A4)

(A5)

&(4) = o(4') d4'.
0

%'e also obtain two useful relationships involving
0 and I. . By Eq. (A2)

e eD„(y)-- „B'„D„-- „D„B,'„
when 8P is independent of s. In this ease, we also
have

cle displacement. On writing v=1m(cd) &0, the
modulus of the exponential factor becomes
exp{-vP(s') —t(s)]) which is bounded by 0 and 1
over the range of Q integration, since -~ & s' «s
and therefore -~ & t(s') «t(s). The integrated
parts thus vanish under the usual physical re-
quirement that [u, u„f']„o =0.

The third term in Eq. (Bl) vanishes since
B'»D,~,„5„„=B„5»=0by Eq. (Al) and the skew
symmetry of B». We integrate the second term
by parts with respect to (][), .obtaining

z['~[k]=- oB,Jduj u„

0 —l = 0 dQ'= 0 ~ C) d4)'.
p p

4 ~

Integrating by parts then gives, since 4 =0,

D —I =5 4=4 L

By Eqs. (A4) and (A5),

((')&n(() f&g(=4-0')&4"'

D„(C)dC = L„(e)
p

(A6)

(A I)

x ) dp L»(D, „+fr~u~D, „)e"&"&. (82)

The integrated part depends on

[D,„I.ge ""&]j

D&„I~,exp ——k~L, 4N, —vt'+ vt

where f'=f(s') and f=f(s). The lower limit van-
ishes since L~, =O for t'=t and the upper limit
'vanishes owing to the presence of e "' . By Eg.
(AS), the first term of Z, ' becomes

APPENDIX B: INTEGRATION BY PARTS OF Jf[kj ( ')[k]=e~c(tnQ) Bx B ) duf ou

In order to derive Eq. (4.4) from Eq. (4.S) we
first integrate by parts, with respect to u, each
term in the sum represented by the repeated in-
dex m. Then

d4 Ba)A Di.
p

duf e ~ ~(fv'mu&u))+5&~un+5~u&) ~

The integrated parts depend on

40
Lag&s p &'"'"'&~p

=e c(mQ) B»B „dP Lg(D[
Jp

e&&pu u &x d
4 ~+m

since B„„u„&fo/Su„=0by Eq. (S.5) and B' 5„„=0
by the skew symmetry of 8'„. We now integrate
by parts with respect to u, the integrated parts
vanishing by the argument already used, to obtain

~ oo

JP &[k]=- 'e(cm&)-' B*„B'„„PdL„D„

where dN,
' represents the volume element of the

subspaee obtained by holding I constant. Now we
have

&"&eufuo)

=
~
exp{-zk [«',(s') —«', (s)]] ~ fu'uI,

where

«,'(s') =-cg 'L„(y)u, (s)+«o(s)

is the timelike component of the zero-order parti-

x du e"&"ifou„u~ick, L,„)O .
4

Eliminating B'„by the use of Eq. (A6), we find

ZI»[kj=- '„,'B'„~ duf'

x dp I.~,e'"&"&0„+„&gp&p ~

Jp

cJubstituting into Eq. (Bl) and simplifying the
product D o„by use of Eq. (AV), we obtain Eq.
(4.4).
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APPENDIX C: PERTURBED PARTICLE ORBIT

To zero order, the equation of motion is given
by Eq. (3.8). The velocity perturbation u'(s), due

to the perturbing field 8', must be determined
from the first-order equation

du', (s}
cfs

= -e(mc) B»u, (s)

+(2s) 4
Jt dkB', [k]e '4d("B[dlu', (s)

(Cl)

where we have used the inverse Fourier-Laplace
transform for B'(x) and denoted the unperturbed
velocity and displacement of the particle by u'(s)
and x'(s). We seek a solution for u'(s) by varia-
tion of constant, using the ansatz

u', (s) = D,& [ -Qc '(s —s') j wz(s, s') .
We then have from Eq. (Cl), using Eq. (A1),

dw, (s, s') -1 1
ds

= -e(mc) D»[-Qc (s - s')]

x(2s} Jt dkBB,e ' B*o&'&u,(s) s

therefore,

u', (s)=-e(mc) '(2s)~ dkB' [k]

x ds'D~, [-Qc '(s' -s)]e '~BB~"]uk(s'),
4 $0

where s, is the initial proper time and we have
used Eqs. (A4) and (A5). Integrating and applying
Eq. (A4) again, we obtain

8

ks, (s)= ds's](s')=-e(sD) '(ks) 'I k dJBds'D;„[ De '(s' —s)]-
Sp Sp

8

x ds"D„-Oc 's" —s e '&"q' u, s" .
80

Using Eq. (3.11}and its integral to represent u'(s") and x'(s"}in terms of the Lagrangian variables u'(s)
and x'(s) and changing the variables of integration to 4) = Qc '(s —s'} and (([)' = Qc '(s —s"), we can eliminate
s, since it occurs only in the arguments of the displacements and velocity. Then we have

00 Oo

hx, =—,, dkBkk, [k]e "B"B dpD& (p) df'D, ((tk')D, „(Q')u„'exp
2w mQ 0

Integrating by parts with respect to ((t), and using Eq. (A7), we obtain

(2s)'m Q' (C2)

We have deleted the superscript 0 since all velocities and displacements occuring on the right-hand side
of (C2} are those of the unperturbed motion. The integrated part vanishes by the argument used already
in Appendix B. The Laplace transform of &x is obtained immediately by comparing Eq. (C2} with Eq. (2.9).

APPENDIX D: VELOCITY INTEGRATION OF N, J.FOR A SYNGE- JUTTNER DISTRIBUTION

Substituting the Synge-Juttner distribution of Eq. (3.14) for f (u) in Eq. (4.5), we obtain

8C(XMs[k]= B d BLDll& il sf des
s" k(s, l)mn'

where s~=r~(P) —fpX~. We will now evaluate

g 21
I„,= du e"B"d)5(u„u„+ 1)u„u, =—

4 n q

where

I= due"~"~5 u„u„+1 = —,
' duydu2lu3exp is~u~- s4 u~~+1 ' ' 8~~+1 -«2

Introducing spherical polar coordinates se, 8, P in the three-velocity space, with the polar axis parallel to
s„, we obtain
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dew'sin8exp[iswcos8- s,(w'+1)'"](w'+1) "'r=-.)l" ((j'(e '

=w dwsoexp -s Ml'+1 ' ' e" —e " so'+1 "' is
0

= 2(( dw w sin(sw) exp[-s, (w'+ I)«"](w'+ 1) '"/s = 2wX«

by Eq. (2.4.36) of Erdelyi, "where

X -=K [(s,s, )"']/(s, s,)'" s=(s s )

K„being the modified Hankel function of order n.
Hence we have

I„,=-2 (((s„s, X—5„,X,) .

The normalizing factor n which occurs in Eq.
(Dl) is determined by the condition, n = Jd((((g'(u},
where n is the relative number density of the plas-
ma. Integration along similar lines to that per-
formed above gives a =ng/2«(X+, (p) =n, p/2((K, (i(),
where n, is the proper number density. Substitu-
tion of this result together with Eq. (D3) into Eq.
(Dl) gives Eq. (5.1).

The expression given for M(([k] in Eq. (5.1) is
arbitrary in terms which make zero contribution
to J, = -ik&M, &. We proceed to eliminate such
terms to obtain a slightly simpler expression for
M(& [k]. From Eq. (5.1), using Eq. (A7) we have

M(( [k] =AB«,«d(t«[( L«,(s(+-L«, ,s()
0

x ( ckqj«p/Q+ iD-«q pkq)X3

—(D«(j(( —D, (L«,()X,],
where

A = e' ' cpn/ m-KQ, (y. ) .

The product of the terms L»s; and k~L» contrib-
utes zero to J; and so is dropped. By partial in-
tegration of the term D L«(„„Xwe obtain

M(( [k]=AB~«dp
0

x([( L«(s(+ L«(s-()('D«„yk„+ j«(s(ck(j«(/Q]Xq

+ L«(L««(X2+ (L«(D~(+ D«(L««()Xj
since 3:,—0 as Q- ~. The last term of the inte-
grand is symmetric in (k, I) and so can be dropped.
Since 3', = -s„s„al„we have

M«'([k]=AB,', dQ[( L„s,+L„s,)iD-«„pA„
0

+ ck(,L«,((L»s, D(,„s„j«,)/Q]X, . —

A =AB,', dQ ec(mQ') 'k, k~j„j»
0

x (i px„+r„)L„BO„X,=0,

since B,'„X„=O by Eq. (3.13) and k(L(,B,„r,=0 by
the skew symmetry of 8,'„. Hence we have

ie'c'n, p,
«([ ]= Q2K ( }B««[k]6(L~5,1(

dPD, „((t()pX„L ((t«)s, ((t()X . (D2)
0

Trubnikov's dielectric tensor applies to the case
of zero drift velocity (X =0) and zero dc electric
field (D, =L,=0}. Under these conditions, Eq.
(D2) gives

M~[k] = -iABt«4[k] d(t«pX4(j«((s„—L((„s()X3,
0

J~«[k] = -ik(M~

because

iAB'(«, p -d(t((k&L((zr —Qc 'L«( s&s&)+,
0

k)s~ = k)cQ k~ Lm) —ik~b ~ pX~

= k„(cQ k(L,„D

i[D,+ec(mQ) -'L „B'„,]i«X,'I

by Eqs. (A7) and (A6), and therefore k(s( =s(s~Q/c
by Eq. (3.13). Integrating the second term of Eq.
(D3) by parts and using Eq. (A7) again, we have

Z'„[k] = iA pQc 'B's, -dP (D((zrzr X, D(«~) . -
0

We thus obtain Trubnikov's dielectric tensor 2 8,
defined by the relationship

Z'„= -i~(Z
«(

—5„(()E'((/4((

The second term can be dropped since its contribu-
tion to J( is A =AB,', f, d(t«cQ 'k(k~j„j«~s„
x(5(„-D,„)X„where we have interchanged the
indices j and P in the second term. By Eq. (A6)
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