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The radial distribution function and static structure factor of liquid sodium at temperatures of 100 and
200'C have been calcuhated by a Monte Carlo method using a realistic ion-ion potential. The calculated
structure factor is in excellent agreement with recent x-ray-dif&action measurements.

I. INTRODUCTION

The properties of the liquid alkali metals, e.g.,
sodium, are of great interest both because of their
engineering applications and because of their fun-
damental importance, since they are simple met-
als. Their simplicity is a conse(luence of the fact
that the Fermi surface of the conduction electrons
in the solid phase is nearly spherical and is com-
pletely contained inside the first Brillouin zone.
Hence, the alkali metals are comparatively trac-
table theoretically, and it appears reasonable
that an effective ion-ion interaction derived from
calculations on the solid phases might be useful
for the liquid phases.

The structure of a liquid metal is crucial in de-
termining its electrical and thermodynamic prop-
erties, and thus is an important test of theox etical
ideas. For sodium and potassium, this structure
is now accurately known from recently reported
x-ray-diffraction measurements. ' The aim of
this paper is to show by a first-principles calcula-
tion that fairly detailed agreement between theory
and experiment can be obtained in the case of so-
dium. In essence, we have calculated a theoreti-
cal liquid-structure factor from the Fourier trans-
fox m of the radia1. distribution function, which we
obtained by a Monte Carlo method using a realistic
ion-ion interaction. Our results are in substan-
tially better agreement with experiment than pre-
vious calculations.

II. FORMULATION

We consider a system of N sodium ions in vol-
ume V at temperature T. We let p =N/V, the
number density, and we introduce the (iuantity
a = (2/p)'~', which is the lattice constant for the
(bcc) solid phase and is a convenient measure of
the density in the liquid. The Fermi momentum
Pr of the N conduction electrons is then given by
S =«k =«(3r'p)"'

The basic theoretical picture of metallic sodium

is that the Ss conduction electrons form a Fermi
gas which screens the Coulomb interactions be-
tween the ions, producing a volume-dependent in-
teraction potential, e,s(r, a), between the ion cores.
Presumably e,~ is repulsive at short distances
and of a damped oscillatory nature (the Friedel
oscillations) at large distances. We assume ihat
the effective ion-ion interaction is a two-body
central interaction; then the radial distribution
function g(r, a) depends only on r, the magnitude
of the interparticle separation (and, of course, on
the volume and temperature). The radial distri-
bution function is defined by

g(r„,a}=N( N} }jpdr, ~ d-fz

}

x &ifl

xexp P 0 ~ fggyg

gag

XeXP P Voff 'Fg~g

g, C J

where &,&= ir, -r&l and p=(kT) '. The li(luid-
structure factor S(k) is

S(k}= }+ p fdr [}((r}-}}e'" ' .

Sehiff' has noted that there is some question as
to whether the use of (l) is justified in the case of
a liquid metal, i.e., whether a liquid metal can
be treated as a fictitious classical fluid, de-
scribed by Boltzmann statistics, interacting via
the pair potential v,~. Vfe feel that in at least
one important way such a treatment may not be
justified, namely, that Ae solidification point of
the fictitious classical fluid may not be at all re-
lated to the solidification point of the real liquid
metal. This is due to the fact that in a rea1 metal
contributions to the free energy of both the liquid
and solid phases from the volume-dependent terms
arising fxom the kinetic, correlation, and band-
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structure energy of the conduction electrons are
much larger than the contribution from the effec-
tive ion-ion interaction. "For example, sodium
undergoes a volume change -3% on melting, which
changes the Fermi energy of the election by -2%
or -0.06 eV, while the maximum depth of the effec-
tive ion-ion interaction is -0.03 eV. The solidi-
fication of the fictitious fluid, on the other hand,
is governed entirely by v,~. It therefore seems
quite possible that there could be a difference in
melting points, and that it could cause some dif-
ficulty in the usual Monte Carlo or molecular-
dynamics calculations done for temperatures be-
tween the two melting points. As discussed in
Sec. IV, however, we feel that the results pre-
sented in this paper are not subject to this diffi-
culty, i.e., that the configuration over which we

averaged g(r) were liquidlike configurations.

III. ION-ION INTERACTION

A very simple but useful model of the effective
ion-ion interaction is due to Ashcroft and Lekner, '
who assume a hard-sphere potential and calculate
S(k) from the analytic solution of the Percus-
Yevick equation for this potential; the hard-sphere
diameter can be chosen to fit either the first peak
in the experimental S(k) or the compressibility
sum rule. The qualitative success of this model
is due to the fact that much of the structure of
liquids is simply an excluded-volume effect. How-
ever, Greenfield et a/. ' have shown that even if an
additional parameter, the packing fraction, is in-
troduced into this model, no choice of hard-sphere
radius and packing fraction will lead to detailed
quantitative agreement with the experimental S(k)
for sodium and potassium.

More realistic forms of the potential were used
in Monte Carlo and molecular-dynamics calcula-
tions by Schiff. ' These forms consisted of a soft-
core repulsion at short distances plus an oscilla-
tory term proportional to r 'cos2k~r asymptoti-
cally. Qne of the forms used by Schiff, the LRQ2
with parameters appropriate to sodium, was
treated by a perturbation method by Wehling
et al. ,' who found good agreement between their
results for S(k) and those of Schiff, but only fair
agreement with experiment, due presumably to
the inaccuracy of the LRQ2 potential.

The ion-ion potential we have selected is essen-
tially that proposed by Duesbery and Taylor and
Basinski et al. This potential, which is volume
dependent, contains no adjustable parameters: It
is obtained by doing a one-orthogonalized-plane-
wave (OPW) calculation of the ion-electron matrix
element and using the electron-gas screening func-
tion of Geldart and Taylor. ' Calculations of the

elastic constants and phonon frequencies" of so-
dium using this form of e,~ have yielded good
agreement with experiment.

It is convenient to write this effective interac-
tion in the form g(r/a), and the choice a=4.37 A
is sufficiently accurate (to -0.5%}for liquid so-
dium in the temperature range (100 —200'C} of
present interest. We took P(r/a) =1.15 eV for
0 & r/a & 0.48; for 0.48& r/a & 3 we used a table
of numbers, a portion of which is listed in Table
I; for 3& r/a, we used the fit

A cos(2k')+ Bsin(2k~)
(r/a}',

with 4 = -0.00722 eV and B=-0.018699 eV, which
is a reasonably accurate fit for I sr/a &6. The
asymptotic form one would expect, a term propor-
tional to r 'cos(2k~), enters with such a small
coefficient' (because the ion-electron matrix ele-
ment is very close to zero at 2kr} that it can be
neglected for the region 0 &r/a & 6 of interest to
us.

IV. COMPUTATIONAL METHODS AND RESULTS

Our method was the usual Monte Carlo (MC)
method of evaluating the radial distribution func-
tion g(r) by using a small system with periodic
boundary conditions and averaging over a large
number of configurations generated with proba-
bility proportional to the Boltzmann factor
exp[ —PP„zp(r, &/a)]. The temperatures were
the same as those in the experiments, ' namely,
100 and 200'C. The results reported here are
based on systems of 128 particles. To determine
whether the system was fluid or solid, we moni-
tored the behavior of the interaction energy of the
fictitious substance, U, = ,'Np f drg(r)P(r-/a), and
the quantities b, ,

—=gz, "cos(Q, rz), where the
r& are the coordinates of the particles and Q, are
the three smallest lattice vectors in the (fcc) lat-
tice reciprocal to the (bcc) direct lattice of solid
sodium. For a bcc solid, the 6, should be about
N; for a fluid they should oscillate with amplitude
-WN about zero '~

For the system at 200 'C, we placed the particles
initially at the sites of a bcc lattice. After ignor-
ing the first 12 800 configurations, we generated
another 128000 configurations during which Uo
drifted upward and then approximately stabilized
and the 4, .decreased and began to oscillate about
zero with amplitude -30. We then concluded that
the system was a fluid and obtained the g„c(r}
listed in Table I by averaging over an additional
256000 configurations, during which Uo was rea-
sonably stable and the A, continued to oscillate.

For the system at 100'C, we again attempted to
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start at the bcc lattice sites, again ignoring the
first 12 800 configurations; after another 128 000
configurations during which Uo was stable, the
b, were between 85 and 100, implying that the
system had remained solid. As might be expected,
the g(r) thus computed had a great deal of struc-
ture and the S(k) calculated from it had a solidlike
appearance. We therefore made a new run of
384000 configurations at 100 'C, beginning from
the fluidlike positions that the system at 200'C
had after 384000 configurations. This time the
system apparently remained a fluid, since Uo was
stable and the 4, again oscillated with amplitude
-30. The resulting g„c(r), which is listed in
Table I, showed much less structure than the
solidlike run. In another run, a system of 54
particles at 100 'C started from the bcc lattice
sites failed to melt even after 540000 configura-
tions. The long equilibration time between phases
had been noted many times previously, e.g., in
recent molecular-dynamics calculations of rubid-
ium near its melting point. "

The nearest-image periodic-boundary conditions
limit the validity of g„c(r) for the 128-particle
system to r/a & 2. However, a liquid metal has
much more long-ranged oscillations in g(r) than
does an insulating fluid, andthese oscillations are
not sufficiently damped at r/a = 2 to permit trunca-
tion of the Fourier transform. In order to take
these oscillations into account at least approxi-
mately, we solved the Percus-Yevick (PY) equation,

using the potential P(r/a), by an iterative method
similar to that of Broyles. '4 We obtained the solu-
tion g» for r/s & 6 at temperatures as low as
30 'C.

As canbe seen from Table I, g» is in moder-
ately good agreement with g„cfor r/a & 2.
Although the oscillations in g

„

for 1 sr/a &2 are
more damped than those in g «, it is reasonable
to compute a theoretical S(k) by Fourier trans-
forming:

The form for the region r/a& 6, which leads to
sine and cosine integrals in S(k), is the asymp-
totic form according to the arguments of Enderby
et al." It appeared to us that gpy was approaching
this theoretical asymptotic form only very slowly,
if at all, and that it would reach it only when g(r )
—1 was too small to test the prediction numerical-
ly. In practice, the contribution to S(k} from the
region r/a& 6 was negligible (-10 ~).

Our calculated S(k) are compared with the re
suits of Greenfield et al. ' in Fig. 1 (for T = 100 'C)
and Fig. 2 ( for T =200'C). The agreement is
quite good and is within the combined experimen-
tal and Monte Carlo statistical error (each -1$)
for much of the range. In addition, the locations
of all the maxima and minima except the first are
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FIG. 1. Comparison of experimental (solid line) and theoretical (dashed line) liquid-structure factors at 100'C.
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TABLE I. Interionic potential and the Monte Carlo and Percus-Yevick radial distribution
functions at the two temperatures; e = 4.37 A.

(eV)

T =100'C

-(-)
T =200'C

0.485
0.525
0.575
0.625
0.675
0.725
0.775
0.825
0.875
0.925
0.975
1.025
1.075
1.125
1.175
1.225
1.275
1.325
1.375
1.425
1.475
1.525
1.575
1.625
1.675
1.725
1.775
1.825
1.875
1.925
l.975
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2..90
3.0

1.057
0.697
0.415
0.227
0.106
3.29 (1O-')

-v.42 (1o-')
-2.58 (10 ')
-3.07 (10 )
-2.V9 (10-2)
—2.15 (10-2)
—1.41 (10 )
-7.32 (10 3)

-1.99 (10 )
1.71 (10 3)

3.82 (10 )
4.59 (10 3)

4.38 (10 )
3.58 (10 )
2.48 (10 3)

1.34 (10 3)

3.54 (10 4)
—3.81 (10 4)

-8.54 (10 4)

—1.ov (1o 3)

-1.ov (1o-')
-8.89 (10 4)

-6.08 (10 4)

-2.98 (10 4)

-1.1 (10 )
1.78 (10 4)

3.04 (10 4)

4.55 (10 4)

3.47 (10 )

1.33 (10 4)

-3.9 (10 )
-1.38 (10 4)

-1.22 (10 4)

-2.8 (10 )
5.4 (10 )
8.4 (10 5)

7.2 (10 5)

0.0
0.0
0.0
0.0220
0.104
0.682
1.819
2.510
2.318
1.765
1.227
0.866
0.675
0.574
0.544
0.576
0.653
0.791
0.938
1.087
1.207
1.266
1.288
1.232
1.163
1.060
0.956
0.873
0.832
0.820
0.838

&1O-'4

2.74 (10 )
1.38 (10 ~)

3.V2 (1O 3)

0.120
0.861
2.136
2.627
2.137
1,453
0.992
0.758
0.661
0.637
0,653
0.798
0.765
0.852
0,954
1.065
1.172
1.248
1.261
1.203
1.100
0.993
0.913
0.870
0.862
0.879
0.911
0.923
1.010
1.074
1.081
1.030
0.968
0.944
0.964
1.001
1.029
1.032

0.0
0.0
1.57 (10 4)

0.0131
0.195
0.873
1.864
2.318
2.144
1.672
1.231
0.906
0.724
0.613
0.582
0.609
0.686
0.795
0.939
1.072
1.180
1.246
1.252
1.223
1.153
1.062
0.964
0.886
0.843
0.829
0.850

&10-~~

2.49 (10 )
1.99 (1O-4)
0.0158
0.235
1.066
2.103
2.396
1.982
1.427
1.024
0.799
0.694
0.662
0.674
0.716
0.782
0.866
0.964
1.069
1.163
1.221
1.223
1.170
1.084
0.997
0.929
0.891
0.882
0.894
0.921
0.933
1.008
1.062
1.066
1.024
0.975
0.956
0.971
1.000
1.022
1.025

essentially exact. We believe that most of the
discrepancy near the first peak is due to the tail
correction from g „,since the first peak in the
S(k) calculated from g „alone is quite a bit too
low and similarly displaced to the right. The
oscillations in the theoretical S(k) for small k
also arise from gp . It appears likely that were
it not for these truncation difficulties, essentially
exact agreement between theory and experiment
could be obtained.

V. DISCUSSION

The results we have presented are zero-param-
eter calculations, both in the construction of the
ion-ion potential and in the Monte Carlo calcula-
tion of g(r) It is most enc.ouraging that they ap-
pear to account essentially quantitatively for the
structure of liquid sodium.

Our results tend to support the conclusion
drawn by Schiff' that it is difficult to see clearly
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FIG. 2. Comparison of experimental (solid line) and theoretical (dashed line) liquid-structure factors at 200 C.

the effect on the structure of the liquid of the
predicted term proportional to r 'cos(2k~r):
The ion-ion interaction we have used does not
contain this term, yet it accounts for the struc-
ture quite well.

It is, of course, possible to predict more or
less the same structure for a liquid from differ-
ent potentials. Because of this fact, it can be
asserted only that our results, taken with other
calculations '" on the solid phase of sodium,
tend to suggest that the effective ion-ion potential
we have used is reasonably accurate. It cannot
be asserted that our results prove that the poten-
tial we have used is correct, and the aim of this
paper has been the considerably more limited one

of showing that some realistic potential would re-
produce the structure correctly. Considerable
additional information could be gained from theo-
retical and experimental studies over a wider
range of temperature and pressure.
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