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Hydrodynamics of Superfluid Heliu~ below 0.6'K.
II. Velocity and Attenuation of Ultrasonic wavese
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The attenuation and velocity of an ultrasonic wave in super6uid helium% have been calculated for
temperatures below 0.6'K. The calculation is based on the kinetic equations given by Khalatnikov. The
phonon Bol~~nn equation is solved numerically without making simplifying approxi~~tions about the
form of the collision integral. The theory predicts that the velocity of sound increases with frequency
for very low frequencies, passes through a maximum, decreases to a rrti»~um, and fimally increases
towards a constant value at high frequencies. A simple explanation for this peculiar behavior is given.
The theory is in good agreement with the experimental results of AbrA~~s et aL, and %aters et al.

I. INTRODUCTION

This paper presents a calculation of the at-
tenuation and velocity of an ultrasonic wave in
liquid helium-4 at temperatures below about 0.6'K.
Despite much effort in recent years, ' "a theoret-
ical understanding of the attenuation and velocity
in this temperature range has been lacking. At
first sight this is very surprising. The only
thermal excitations mith which the sound wave can
interact are long-wavelength phonons. The cou-
pling between a sound wave and the phonons is
determined by the Gr6neisen constant, and this is
known accurately. " Additional simplifying fea-
tures of the helium problem are isotropy and the
absence of defects or impurities. One important
factor in these calculations is the form of the pho-
non-dispersion relation. Landau and Khalatnikov"
approximated the dispersion relation for excita-
tions in superfluid helium by

&2=A P'+A P4+A Pe+A P'

where & is the energy of an excitation of momen-
tum P and A„A„A3, and A4 are constants.
These constants were chosen so that Eq. (1}was
a reasonable approximation to the dispersion re-
lation in both the phonon and the roton regions.
For phonons with small momentum, Eq. (1) re-
duces to

e =coP(l —y~gP'. . .),
mhere yL ~ = 2.8 x I0" cgs units and co= 2 383"10
cm sec '. With this form of the dispersion rela-
tion, it is easy to use the conditions of conserva-
tion of energy and momentum to show that three-
phonon collisions are unallowed. Recently, how-
ever, evidence has been accumu1, ating" "that
suggests that the quantity y~z appearing in Etl. (2)
must be negative. If this is true, the three-phonon

II. CALCULATION OF ATTENUATION AND

VELOCITY

Khalatnikov2s has given the following kinetic
equations for a superfluid containing excitations:

=pvs+ psI dip y

+div] = 0&p
(4)

process is allowed, and the theory of the attenua-
tion and velocity must be substantially revised.

The results of a calculation of the attenuation
and velocity have been brieQy reported in a pre-
vious note, "assuming y~~ is negative. This cal-
culation used the kinetic equations for a super-
Quid as given by Khalatnikov. '8 The phonon Boltz-
mann equation included a realistic form for the
collision term, and was solved numerically. While
the results of this calculation mere in good agree-
ment with experiment, they did shorn some sur-
prising features. For example, the velocity of
sound had a more complicated frequency depen-
dence than previously assumed. At very low fre-
quencies the velocity increased with frequency,
passed through a maximum, decreased to a mini-
mum, and finally tended towards a constant value
at high frequency. In this paper me present more
complete quantitative calculations of the velocity
and attenuation (Sec. II). The results of these
calculations are in good agreement mith experi-
ment. In Sec. III me show that the peculiar fea-
tures of the results mentioned above arise from a
resonant interaction of the sound wave with second
sound in the phonon gas. Finally, in Sec. IV me
discuss some further experiments that might be
performed to verify the theory.
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86
G = Go+ —n& d7'&,

8p

' + V(G+ sv,') = 0,

(5)

(6)

position because c depends on the local density.
For a small-amplitude wave we may expand n~ as
a power series in &p and v, . To first order we
find

p p +

+pe&�(2&kg

A~)

v =kv e"' " ""
S S

(8)

(8)

where k is a unit vector in the z direction. In the
absence of excitations it is easy to solve Eqs.
(3)-(7). We find

where j is the momentum density, v, is the super-
fluid velocity, n~ is the number of excitations of
momentum p, G, is the Gibb's free energy per
unit mass at zero temperature, and G is the cor-
responding quantity when excitations are present.
The distribution function satisfies the Boltzmann
equation

8np 8np 8' 8Hp 8np BHp

8t 8t „8p 8r 8r'8p '

where H~= &+p v, . The first term on the right-
hand side represents the rate of change of n~ due
to collisions between excitations.

Consider first the velocity of sound at zero
temperature and in the absence of any applied
pressure. Let the mean density be po s If we con-
sider a small-amplitude wave propagating in the
z direction, we may write

Ppo ~E' Pco cos 8

Co 8P Po

po+ ~ 2 2npd7p s
2co 8p

(18)

The velocity of sound at zero applied pressgre
can be found by adding to the right-hand side of
Eq. (18) a term to allow for thermal expansion.
This term is just

~E'
nl, =n~s —)8n~s(n~s+I} —r p+Pcosev, e ~" '

(16)

where 8 is the angle between p and the z axis. We
now substitute this result and Eq. (14) into Eqs.
(3)-(6). If the terms involving the excitations are
small, one can use perturbation theory to calcu-
late the corrected velocity and the attenuation.
The result is

c= — ', I(—+ '
))7o( )dv, (17)

4c p, 86 pc cos8 4n~

(10) T po (19)
8G,co= po 8p

vs=cp&p/po (12)

where p& is the density at temperature T. It is
straightforward to show that

n(}=(ebs 1) (13)

where P=1/k&T. When there is a wave propagating
through the liquid, we can write

A phonon with very small momentum will travel
at the sound velocity. Hence the c, appearing in
Eqs. (10}-(12)must be the same as the c, occuring
in Eq. (2).

Consider now what happens when the tempera-
ture is raised, but the mean density is held con-
stant at p, by applying a suitable pressure. In the
absence of a sound wave, the distribution function
for the excitations is the Bose-Einstein function

(20}

The temperature and frequency dependence of the
velocity correction Lc have been measured by
Whitney a,nd Cha. se,"Abraham et al. , ' and most
recently by Roach et al." The most-accurate
measurements appear to be those of Roach et al."
These data were taken at constant density. This
paper will therefore concentrate on calculating
4c/c, at constant density, as given by Eq. (18).

The problem now reduces to solving the Boltz-
mann equation to find 4n~. In a linearized theory
we may write the collision term as

ef(pygmy- Qt)
P

where n~ is defined as

(14}
C(p, p')a ns dms, . (21)

ns=(exp[)3(e+p v, )] —I) '. (15)

In this definition of N~ it is intended that local val-
ues should be used for c and v, . When a wave is
present, the energy of an excitation varies with

We then find

Csv()}—2 Sv cosp) —' fC(pp')O ds',
=sl) —cp+Pcoscv) '( ' ~ 1}, (22}
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where

~E'
Vp=

ap
(23)

the system of thermal phonons will always be
in local equilibrium and will be characterized by
a local temperature T+~T, and a local drift ve-
locity v„. Thus,

v~ is the group velocity of an excitation with mo-
mentum p. If the correction to the velocity of
sound is small, we may still use Eq. (12}to re-
late v, to &p. Similarly, we may set" Hence

t+p'(v —v )~ k (T'+aT') )
(27)

2wk =Q/co .
Then,

(24) p' vnn, n~ = Pen~0(n~o+ I) + P (28}

&p cos8
Esp 1 — —— C py p +Op~ dTp~0

= Pb p —+ ' nlo(n~o+1}. (25)Pc, cosa

Energy is conserved in collisions between pho-
nons. Therefore, if we multiply the Boltzmann
equation by & and integrate over all p, the colli-
sion term vanishes. We are left with

2 I - (p/Pg)'
0| 1+yp (2&)

We now have to make some assumptions about
the form of the phonon-dispersion relation and the
kernel of the collision integral. At the tempera-
tures of interest the only thermal excitations pres-
ent in the liquid are long-wavelength thermal
phonons. In a recent paper on the normal-fluid
viscosity" (hereafter referred to as I), the follow-
ing approximation to the phonon-dispersion rela-
tion has been used:

v„AP uo=oT 3C0 po

We have used the approximations

p

P4t g
~P P

where uo is the small-momentum limit of the
Griineisen constant, given by

(29)

(30)

(31)

where y is positive. Two sets of values of the
constants y, P„, and P& are listed in Table I.
These sets of constants give dispersion curves
which we call C and D. Both dispersion curves
are consistent with the neutron-scattering results
of Woods and Cowley, "the specific-heat data of
Phillips et al. ,

"and the viscosity measurements
of Whitworth. " In Fig. 1 it is shown how the pho-
non phase velocity c( =—e/P) and the group velocity
vary with wave number q(-=P/5). In Paper I, an
expression was also given for the kernel of the
collision integral. Only three-phonon processes
were considered. The kernel has the property
that all the collisions are small angle (less than
25'}. There are a number of approximations in
the derivation of the collision kernel; these are
discussed in detail in I.

Consider first the solution of the Boltzmann
equation for very low frequencies. In this limit

p 8c0
Q c, ap

(32)

A similar calculation may be made using the con-
servation of momentum. One obtains

LT g„hp
T Co Po

(33)

2.5
group .

0

Here we have assumed v~=c, . Using (29) and (33),
we find

n. n, = ,'(b, p/p, ) pen~-(n~o+1}[u, + ,'+(u, +1)-cosej.

(34)

TABLE I. Parameters defining the dispersion curves
C and D.

I

& 2.4
O

0 03 0.2 0.3 0.4
7

(1037 g 2 cm 2 sec2)
pg/S
(A-') WAVE NUINBER (A )

C
D

8
10

0.5384
0.5418

0.3727
0.3322

FIG. 1. Phonon group velocity v& and phase velocity
c as a function of wave number. Dispersion curve C,
solid line; dispersion curve D, dotted line.
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We can now calculate the cox rection to the veloc-
ity of sound. If we use approximation (80) again,
the result may be expressed in terms of the
normal-Quid density p„, given by"

—= (8p„/4p, }[(I,+ 1)'I- 2u', —4u, —a, +-,'w, ],
Co

(41)
where

=1.22x10~ T .
po 45K Ie~ po

(35) &= 16, Jl ln I x'sinh '(x/2) dx. (42)
15 f'"

Then"

(so+ 2SO+ v+ gtfla)~
Spn

co 4po

where we have set

p2 Qmq P41 82g
=~'o.

E ep Qo 8p

Abraham et a/. "have measured uo and zoo. At
zero pressuxe they find

u =2.84, so =0.19.

Thus, in the low-frequency limit,

nc/c, = 1.30X 10 ' T'.

The attenuation is zero in this limit.
Consider now the high-frequency limit. The

collision term may be neglected. Then

(86}

(86)

(39)

e(x) is the group velocity of an excitation of ener-
gy xk~T, expressed in units of co. The derivation
of this result uses the approximations (30), (31),
and (SV}. The attenuation calculation is simpler.
For the dispersion curves corresponding to the
parameters listed in Table I, the group velocity
is greater than co for all phonons of energy up to
about 7'K (see Fig. 1). Thus, at temperatures
below 0.6 'K, nearly all the thermal phonons will
have v~ &co . It is then straightforward to show
that the high-frequency limit of the attenuation is

Sw(s, + I}'IIp„
4&opo

In the intermediate-frequency regime it is nec-
essary to solve the Boltzmann equation numeri-
cally. We have used a simple iterative method.
First, we separate the kernel C(p, p') into diago-
nal and nondiagonal parts:

C(p, p) =C (p, p)-10)5(p-p) (44)

&s = Pea'(s'+ I)—
p, 1 —u~cose/c,

The correction to the velocity of sound is

(40) I'(P) is the reciprocal of the lifetime of a phonon
with momentum p. We now write the Boltzmann
equation as

P~(dp/p, )n,'(s,'+1)(u, +cose)+(i/Q)[j C (p, p') as d7 ~ - (I -f)1'(ij)dn ]
1 —v, cose/c, + (if/0) I'(P)

This is true for all values of the constant f. We
now iterate the equation to find a solution fox 4m~.
For f= 1, the iteration sequence converges, but
slowly. Iff is decreased, the rate of convergence
increases, but for too small values of f (-0.6 or
less), oscillations occur and the sequence even-
tually diverges. There is a simple way to test fox
convergence. The right-hand side E~ of Eq. (25)
plays the role of "driving force" in the Boltzmann
equation. Suppose that after i iterations the ap-
proximation to the distribution function is 4m~,
whereas the exact solution is Lln~. We now cal-
culate the left-hand side of the Boltzmann equation
using 4n~ and call the result F~. We may regard
&N~ as the ex~ solution to a Boltzmann equation
having the same left-hand side as Eq. (25) but
with a driving force E~. Now if E~ and E~ differ
only slightly for all p, we expect that 4m~ will be
a good approximation to 4m~. Iteration was
usually continued until E& and F~ were equal to an

accuracy of 1% for all p. The number of itera-
tions required varied considerably, being only
two at the highest frequencies and lowest temper-
atures but several hundred at the lowest fre-
quencies and highest temperatures. To perform
the integration over p' in Eq. (45), momentum
space was first divided into shells such that the
energy on shell j was joe where j= 1, . . . , j
Most of the calculations were perfoxmed using
j =8 and && =2k~X. Since we consider only a
1ongitudinal sound wave, &N~ only depends on P
and 8, and is independent of ft}. The range of 8
was divided into 36 cells. These were &' wide
near 8=0 but increased to 15' wide near 8= m.

This arrangement of the cells was chosen because
the distribution function varies rapidly with angle
near 8=0, particularly when the sound-wave fre-
quency is high. We have looked very carefully
into the effects of the finite mesh of points on the
results of the calculation. Two essentially dif-
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ferent sorts of errors are introduced. The first
of these is the problem at high frequencies already
mentioned. This is not very serious, however,
since the mesh appears to be adequate up to a fre-
quency where the attenuation and the velocity
correction have values that are within 10% of the
high-frequency limits derived analytically. The
second error is more subtle and occurs at low

frequencies. It was possible to choose the mesh
approximation to the collision integral so that en-
ergy was conserved exactly. " It was not possible,
however, to ensure that momentum was also
exactly conserved. Consider, for example, what
happens in the decay of a particle whose momen-
tum vector is in the z direction. Suppose that the
momentum of one of the product phonons is at an

5xKP

T~0.15
300 X 10

4c
c

h, c
C

~ ~ ~a ~ '

0 I

100

FREQUENCY (MHL)

1000
0

10 100
FREQUENCY (M»)

30X~6'—

5c
c

~ ~ ~ ~ ~ ~ 0

TR0.25

1000X10—

4c
c

0
10 100

FREQUENCY (MHz)

1000
0

10 100
FREQUENCY (MHz)

1000

120X10

Ac
c ~ W

0
1 10

FREQUENCY (MHz)

1000

FIG. 2. Frequency dependence of the velocity of sound at five temperatures. Results obtained by the iteration method
using dispersion curves C and D are denoted by the solid and dotted lines, respectively. Results obtained by the mode-
coupling theory are indicated by the dot-dash line. The high- and lorn-frequency limiting values of the velocity are de-
noted by the dashed lines. Experimental points are the measurements of Roach et &l. (Ref. 31), ~'; and Whitney and
Chase (Ref. 29), $.
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angle 8„and that the nearest two 8 cells to 8, are
i and j, with centers at 8, and 8, (8, - 8, ) 8,). This
decay has been divided into a fraction

(8, —8,)/(8; —8,)

into cell i and

(8, —8;)/(8, —8,)

into cell j. The effect of this approximation was
tested by setting the distribution function propor-
tional to cosa and calculating the rate of change of
the s component of momentum P,. We may then
define a "relaxation time" && by

For the mesh used in these calculations, this time
is about —9 p. sec at 0.35 K. Theminus signimplies
that the mesh approximation artificially amplifies
momentum in the system. This error becomes
more important at low sound-wave frequencies.
It is clear that completely spurious results would
be obtained if r~ were comparable to the period
of the sound wave. In the present context it is not
a serious problem above about 2 MHz at 0.25 K
and 10 MHz at 0.4 5 'K. Above these frequencies
we estimate that uncertainties in a and M/c, re-
sulting from the use of a finite mesh of points in
momentum space are always less than 15%, and
usually only (5-10)%. These figures were arrived
at by checking some of the calculations with a
finer mesh.

Calculations of the velocity shift and the attenua-
tion were made for temperatures of 0.15, 0.25,
0.35, 0.45, and 0.6'K. Except in cases where

there were convergence or mesh problems, re-
sults were obtained for 30 frequencies between 1
and 1000 MHz. The calculations were carried out
using the dispersion curves C and D, whose
parameters are listed in Table I. The results are
shown by the solid and the dotted lines in Figs. 2 and 3.
The experimental points shown in Fig. 2 are the veloc-
ity measurements of Roach et al."and of Whitney
and Chase. " The measurements of Whitney and
Chase were made at the vapor pressure and we
have corrected them to allow for thermal expan-
sion. The attenuation measurements are those of
Roach et al. ,

"Abraham et al. ,
"and Waters eI' al.~

In some cases we have calculated the points shown
by making a T' extrapolation from the nearest
temperature at which a measurement is available.
Unfortunately, a detailed error analysis is avail-
able only for the data of Whitney and Chase. This
error is indicated by the height of the vertical bar
on their data points. Figures 2 and 3 also include
some theoretical results obtained by a "mode-
coupling" theory to be described in the next sec-
tion.

III. A PHYSICAL PICTURE

The theoretical results for hc/c, have a sur-
prisingly complicated dependence on frequency.
Instead of passing monotonically between its limit-
ing values at low and high frequencies, the veloc-
ity passes through a large maximum and then a
minimum. We propose here a simple explanation
of this effect.

The plots of velocity versus. frequency have a
shape which suggests that some sort of resonance
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FIG. 3. Frequency de-
pendence of the ultrasonic
attenuation at five tempera-
tures. Results obtained by
the iteration method using
dispersion curves C and D
are denoted by the solid
and dotted lines, respec-
tively. Results obtained by
the mode-coupling theory
are indicated by the dot-
dash line. The hiLgh-fre-
quency limit of the attenu-
ation is indicated by the
dashed line. The experi-
mental points are the mea-
surements of Abraham
et ui. (Ref. 30), X; %'aters
et al, . (Ref. 38), 8; and
Roach et ai. Puef. 37), O.
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c = (B„/po)' '[1+-,'(r —I)c',/(co —c,')], (47)

is occurring, and that the resonant frequency in-
creases with increasing temperature. This idea
is confirmed by looking at the attenuation results.
At each temperature these show a bump at the
frequency where the velocity results suggest a
resonance is occurring. If we explore this idea
further, we find a surprising result. Suppose that
the phonon system has a resonant mode at fre-
quency O&with a damping constant ~I. If this
mode is meakly coupled to the sound wave, one
would expect that the dispersion relation for the
sound wave should be as shown in Fig. 4a. As the
frequency ~ of the sound approaches ~&, level
repulsion occurs and the velocity of sound de-
creases. When 0 is greater than 0&, the velocity
is raised. This is the wrong way round to explain
the results we have obtained. One must postulate
that there exists some mode of the phonon system
whose frequency depends on wave number as
shown in Fig. 4b. Level-repulsion arguments then
give a correction to the velocity of sound in agree-
ment with the computer results. We will now show
that the mode responsible for this effect is second
sound.

In the Sec. II conservation laws mere used to ob-
tain the low frequency limiting value for M/c,
[Eq. (36)]. It is possible to derive an equivalent
result from the two-fluid equations of motion. One
finds"

of second sound. It is straightforward to show

that to first order in p„/p,

r =1+(3p„/p,}(u,+ —,')',

B„=p, c', [1+(p„/Sp, )(8u, +, +3',)].
(48)

(49)

c, =c,/W3. (5o)

Using these results, it is easy to verify that the
two-fluid result for the velocity of sound [Eq. (46)]
is equivalent to the result derived earlier [Eq.
(35)]. Consider now the term in Eq. (46):

—,'(r —1)c',/(co —c',) . (51)

This is clearly the contribution to M/c, from the
interaction between first and second sound.

It remains to be shown that the velocity of sec-
ond sound depends on wave number in the way
indicated in Fig. 4b. The derivation of the result
(50) assumes that the frequency of the second
sound is sufficiently small that the phonon distri-
bution is always in local equilibrium. In this re-
gard it is essential to distinguish between the
small-angle collision time 7

~~
and the large-angle

time &~. Equilibrium between phonons traveling
at large angles to each other is established only
as a result of a large number of small-angle
collisions. " Thus,

When the thermal excitations are phonons with
velocity c„ the second-sound velocity is given by"

where r is the ratio of the specific heats, 8„ is
the adiabatic bulk modulus, and c, is the velocity

Ti »7)I ~

The low-frequency limit (50) applies when

Qr~ «1.

(52)

(53}

V
Z
Da

WAVE NUMBER K

Recently, it has been shown" that when

07, ~ 1, (54)

the velocity of second sound does indeed increase
mith increasing frequency. Results of a calcula-
tion of this type at 0.35 'K are shown in Fig. 5.
The theory as developed so far is only valid if

U
Z
Da
LL

07 () &1. (55)

WAVE NUMRE R K

FIG. 4. r requency 0 vs wave number E for a sound
wave interacting with (a) a resonant mode of constant
frequency 0&+ iQI and (b) a mode of the phonon system
whose frequency increases with wave number E as in-
dicated by the dashed line. The sound-wave dispersion
relation 0=2~coX in the absence of interaction is shown

by the solid line. The effect of a weak-level repulsion
is indicated by the dotted line.

At 0.35 'K the lifetime of a 4k~T energy phonon is
3.5x10 ' sec. Thus, the theory is valid for fre-
quencies of a few MHz or less. Unfortunately, it
appears from Fig. 2 that at 0.35 K the real part
of c, must become equal to c, at a frequency
around 30 MHz, and this is therefore beyond the
range of the theory. Nevertheless, the results
shown in Fig. 5 provide strong evidence that the
physical picture we propose is correct. Since
second sound is a collective oscillation of the pho-
non gas, it is clear that it will be heavily damped
when T(] becomes equal to, or somewhat greater
than 1. This is consistent with the fact that the



2636 HYDRODYNAMICS OF SUPERFLUID HELIUM. . .II. . .
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FIG. 5. Velocity of second sound as a function of wave
number at 0.35'K. The calculations were performed
using dispersion curves C (solid line) and D (dotted line).
The frequencies indicated on the upper horizontal axis
correspond to 27tco times the wave number. The low-
frequency limit of c2 is denoted by the dashed line.

minimum in the first sound velocity is not very
pronounced. For Gott » 1, collective oscillations
cannot exist, and it makes more sense to think of
the sound wave as interacting with individual ther-
mal phonons.

This picture is confirmed by inspecting the de-
tails of the phonon distribution function for dif-
ferent sound-wave frequencies. In Fig. 6 we

show the angular dependence of the real and imag-
inary parts of M~ at 0.35'K for frequencies of
1, 10, 100, and 1000 MHz. These results are for
phonons of energy 4k&T. We have set &p/p, = 1

in Eq. (25) and have used curve C for the phonon

dispersion. The results at 10, 100, and 1000 MHz

were obtained by the iteration method described
in the last section. The 1-MHz results were cal-
culated using an alternative approach described
below. Between 1 and 10 MHz the amplitude of
the real part of the distribution function increases
because of the approach to resonance. At 100
MHz resonance has been passed and the sign of the
real part of the distribution has changed. Finally,
at 1000 MHz the distribution approaches the high-
frequency limiting form [Eq. (40)] in which the
sound wave interacts with individual phonons.

It is not legitimate to use Eq. (47) to make quan
titative calculations of nc/c, , except in the low-
frequency limit AT & 1. This is because the deri-
vation of this result implicitly assumes that the
angular dependence of the distribution function for
a second-sound wave is

cos8+ I/~3 .
This is only true for Avj & 1, and becomes a very
bad approximation as G~ [] approaches unity. An-
other difficulty is that for 07~ &1, extra propagat-
ing collective excitations of the phonon gas ap-

pear." These are also coupled to first sound and
contribute to the velocity correction. We consider
these problems in the Appendix and derive an
expression analagous to the two-fluid result [Eq.
(47)], but valid throughout the Ar

~~
&1 regime.

This "mode-coupling" result provides a convenient
method for calculating the attenuation and velocity
in the low-frequency regime, since it avoids the
iteration and momentum-conservation problems of
the straightforward iteration method. Results
obtained this way are included in Figs. 2 and 3. It
can be seen that the two methods are in agreement
to within (10-15)%. Note that in the low-frequency
regime the attenuation and velocity are nearly
independent of which dispersion relation (C or D)
is assumed. The results obtained by the mode-
coupling theory have therefore been represented
by a single curve.

IV. DISCUSSION

The theory is in good agreement with the avail-
able experimental measurements of the velocity
correction bc/c, . Although the experimental re-
sults are far from complete, most of the features
predicted by the theory have been observed. The
velocity measurements at 0.15 'K confirm the in-
crease in M/c, with frequency in the high-fre-
quency range. The data at 0.25 and 0.35 'K fall in
the range near the resonance, and confirm the
rapid decrease of bc/c, in this region. The evi-
dence for the increase of velocity with frequency
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FIG. 6. Angular dependence of the phonon distribution
function for 4k~T energy phonons at 0.35'K. The curves
are labeled by the frequency in MHz. Results obtained
by the iteration method are denoted by solid line; results
obtained by the mode-coupling theory by dot-dash line.
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at low frequencies is not so strong. Unfortunately,
at temperatures above 0.4'K Roach et aL have
made velocity measurements at 15 MHz only. At
this frequency their 0.45 and 0.6'K results are in
good agreement with our theory. The only other
results are those of Whitney and Chase, who have
made measurements at 1, 3.9, and 11.9 MHz.
Their results fall considerably below the theory
and show almost no frequency dependence between
1 and 3.9 MHz. Further experiments in this fre-
quency range are clearly desirable.

In general, the attenuation results are also in
good agreement with experiment. The only dis-
crepancies occur in the frequency range around
the resonance and just above. Here the experi-
mental results are as much as 40% below the the-
ory. It seems likely that the resonance between
first and second sound actually occurs at a some-
what lower frequency than the theory predicts.
This would move the bump on the attenuation
curves to lower frequencies and give better agree-
ment with experiment. The same conclusion is
suggested by the velocity results, especially at
O.S5 'K (Fig. 2). It is very difficult to determine
why the theory overestimates the resonant fre-
quency. The results for dispersion curve D give
better agreement with experiment in this regard.
At first sight this suggests that we should in-
crease the dispersion parameter y somewhat (see
Table I). However, this would worsen the agree-
ment with theory at high frequencies and low tem-
peratures (see Fig. 2 for 0.15'K).

The attenuation and velocity under pressure have
been measured by Roach et al.""We have not
attempted to perform quantitative calculations to
compare with their results. The difficulty is that
there are considerable uncertainties in the phonon-
dispersion relation for helium under pressure.
The dispersion relations |-' and D used in this
paper are consistent with specific-heat, neutron-
scattering, and viscosity measurements. Unfor-
tunately, there are no viscosity results under
pressure available, and the only neutron data are
at 24 atm. " Thus, any assumption about the pre-
cise form of the phonon-dispersion relation must
be regarded as speculative at the moment.

Finally, we mention that we have not considered
boundary scattering of the thermal phonons in this
calculation. This problem has been discussed by
Dransfeld, ' who assumed that the dispersion curve
had the form proposed by Landau and Khalatnikov
[see Eq. (2)]. With this form of the dispersion
curve the three-phonon process is unallowed, and
the phonon mean-free-path is long. It is therefore
reasonable to expect that boundary scattering may
be important. For the dispersion curve that we
have assumed, the three-phonon process is al-

lowed and the thermal-phonon mean free path A is
generally much smaller than the dimensions of a
typical ultrasonic cell. At 0.2 K, for example, A

is only 10 ' cm for 4A~T phonons. However, since
A varies as T ', boundary scattering should be-
come important below 0.1 'K. Roach ef; al. have
made only a few measurements of be/c, in this
temperature range, "and have obtained no results
for the attenuation. It would be very interesting
to make a detailed experimental study below 0.1'K
to see if the attenuation and velocity depend on the
sample size.

ACKNOWLEDGMENT

Most of the numerical calculations reported
here were performed at the University of Cam-
bridge Computing Centre. I should like to thank
the staff of the Centre, particularly Janet Linning-
ton, for their assistance.

APPENDIX

Consider the Boltzman equation [Eq. (7)] when
there is no sound wave present. We look for wave
solutions of the form":

n =n'+(n')'~(n'+I)' ')t)(p)e' """'

Then

(AI}

(AS)

C is symmetric in p and p'. Let the values of
for which nontrivial solutions of Eq. (A2} exist
be Q, and let Q (p) be the corresponding solu-
tions. These functions will be orthogonal, and
we can choose them to be normalized so that

y„*(p)d~, =1.

We look for a solution of the full Boltzmann equa-
tion (25) in the form of a linear combination of
these modes. Let

En =(n )'@(n'+I)' ' gB y (p). (A4)

Therefore,

Q B„P (p)(Q —Q„)= PQe(n )'~ (n +1)' '

x (no+ cos8)bp/po (A5)

&)5))" 2')t"'"'8) 'lcm' )4$ )&, ''
(A2)

where
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x (u, + cos e) tc)„(p)d~~. (A6)

It follows that the most important modes to con-
sider are those with frequencies close to Q. For
modes whose frequencies Q satisfy the condition
0 T)) & 1, we may write" Q (p) as a linear combi-
nation of the nodeless eigenfunctions gp) of the
operator C. These eigenfunctions can be labeled
by an "angular momentum" l and a "helicity" m.
Thus,

(A7}

previously. " Using these results, we can find B
from Eqs. (A6} and (A7). Equation (A4) can then
be used to give &n~. The result for 4n~ can be
substituted into Eqs. (17) and (18) to give the
attenuation and the velocity. It is also possible to
derive explicit expressions for o. and &c/c, in
terms of the frequencies Q and the A, coeffi-
cients. The derivation is straightforward and the
result is

2pgo Q-Q
(A8)

g Re (u A„+A,",/v3 )')c, 2p, ~ Q —Q~

We have calculated the frequencies Q and the ex-
pansion coefficients A, by the method described

2 1-u ——+~ ~
0 3 4

(A9)
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