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A Green’s-function formalism is presented to study in a unified manner the propagation of
mass-spin-fluctuation waves in solid helium with isotopic impurities. Based on this, consistent physical
mechanisms are put forward for certain relaxation phenomena in impure solid helium.

INTRODUCTION

The motion of isotopic impurities in solid heli-
um is a topic of current interest to which several
theoretical'~® and experimental papers have been
devoted. The large zero-point motion of atoms in
a quantum crystal such as solid helium causes
them to tunnel from site to site in the lattice.®
When a *He [“He] impurity atom hops from site to
site exchanging positions with the atoms in a crys-
tal of solid *He [°He], it creates at each of these
sites a mass fluctuation with |Am|=m =~m, A
new type of many-body excitation (called® a mass-
fluctuation wave) then arises,!3 and its effects
have to be taken into account, for instance, in the
explanation of NMR data in impure solid helium.

Such a tunneling motion of an isotopic impurity
atom also creates spin fluctuations with Al =+ 3
at the sites involved. In this sense, the excitation
is a mass-spin-fluctuation wave, rather than just
a mass-fluctuation wave: while the mass fluctua-
tion affects the phonon spectrum in the crystal,
the accompanying spin fluctuation will be coupled
to spin-spin interactions such as the Heisenberg
exchange term between two 3He atoms. As we
shall see, the inclusion of this aspect alters cru-
cially the role of these excitations in the explana-
tion of the effects of “He impurities on relaxation
times in solid *He (or in solid *He with a large
concentration of *He impurities).

The purpose of this paper is twofold. We first
describe a Green-function formalism to study the
motion of isotopic impurities in both solids, that
treats the mass and spin fluctuations simultaneous-
ly, and enables us to judge when the latter are im-
portant. In particular, the procedure yields in-
formation, in various physical situations, on the
lifetime® of the so-called mass-fluctuation excita-
tions when spin fluctuations are also included, and
on the essential differences between the tunneling
of *He impurities in solid *He and that of ‘He im-
purities in solid *He. Using the method developed
here, in the second half of the paper we discuss
the role of mass-spin fluctuation waves in the
understanding of low-temperature NMR data in

impure solid helium of both types. We shall com-
ment on the drawbacks of previous discussions of
this aspect and then proceed to suggest alternative
explanations of the underlying mechanism in var-
ious cases. The Green-function approach intro-
duces the correlation between the motion of im-
purity atoms and that of the atoms of the medium
in which they propagate in a very natural fashion.
This enables us to base our discussion on simple
physical arguments and interpretations through-
out.

EFFECTIVE HAMILTONIAN

To describe the hopping of atoms from site to
site in a solid *He-*He mixture (total number of
atoms =N), we extend the Hubbard model used in
earlier work,2? to derive the following effective
Hamiltonian that describes the various tunneling
processes in a *He-*He mixture, to second order
in the hopping energies of the atoms between
neighboring sites ¢ and j:
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Equation (1) is applicable when there is exactly
one atom per site in the lattice. J, K, L, and M
are quadratic in the hopping energies with 7o lin-
ear terms. Also D{,=cl,a;, Diy=alc,qy, I}
=clycyy, etc., where cf, and af are *He and *He
creation operators. The individual terms in H
have simple physical interpretations (see Ref. 3).
It is the term H,, (which refers to the exchange of
positions of a *He atom and a *He atom) that gives
rise to mass-~fluctuation waves, but only under
certain conditions, as we shall find. The D opera-
tors can be thought of, in crude way, as creation
and destruction operators for a “particle” of mass
Am and spin 1. However, the anticommutation re-
lations between the D operators read
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{D:w Dj-a} = (”40 +P‘)5” ’ {D:‘h Dj-l}
=I:6‘J’{D:O’D;0'}=0' (2)

If the right-hand side of the first of these rela-
tions had been a ¢ number, and that of the second,
zero, then D* and D~ would have been free-fer-
mion operators. Note that even a redefinition of
the D’ s will not cause the second anticommutator
to vanish, because of the boson parts of these
operators.

GREEN FUNCTION

Let us now introduce the Zubarev double-time
Green function’
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G{y(t=t")={D4(2); D, ("))
==i6(t - t'X{D%,(t), D;,(t)} ), (3)
where the expectation value for any operator A is
given by
(A)=Tr[ Ae-BH-nsi-ud] /Tr[e-BH-usi-usd)]
(4)

Here #, ¥ are respectively He and *He number
operators (2 ;omio and X5 ;p;), and ug u, are
the respective chemical potentials.® The com-
plete equation of motion for the above Green’s
function reads, witho=#%,

i (d/dt)Gly(t=1")=06(t = )6, (myy+py) + Z [2(My; = K;,))Gly+ 5 Ly Ghy = £04,(QY ;- @1s))
1

-2 Z (My; = K1 )Q5,+3 Lyy@Yu= 371, Tyy = Ly Tuyy (5)
(o]

where
Qf; = D7y (I, (8); DFy(2)D,
Ty =€ DL OI(8); D)) (6)

For a single °He[ “He] impurity atom, or for very
low impurity concentrations, we may drop the
terms involving J[ M] in Eq. (5).

A. Impure Solid “He

When there is a single *He impurity atom pres-
ent, the higher-order Green’s functions @ and I'
vanish identically. The Fourier transform of ¢!
is then found to be

81 [®), w)=[w-2M(0)=2K(0)-3LB)] ", ()

where (specializing to_nearest-neighbor interac-
tions) L(K)=L3 e ‘F", 2 running over the near-
est-neighbor vectors from a lattice site. We thus
have a single undamped® mass-fluctuation wave.
No decoupling approximations have been made in
this case.

In the presence of more than one impurity atom,
@ and I do not vanish identically, and this will in
general introduce a width (in w) for the excitations.
However, since @ and I in Eq. (5) are multiplied
by J, K, L, or M, such terms contribute only
when 3He atoms become nearest-neighbors at the
same instant of time; for sparsely distributed
impurities at low concentrations these contribu-
tions are negligible, and long-lived mass-fluctua-
tion waves can thus occur once again.

This may happen even for somewhat higher con-
centrations of *He, under special circumstances.

—

Adopting a decoupling scheme for higher-order
Green functions® one stage beyond the level of G,
we may decouple the @s, but we must retain the
I'’s and write equations of motion for them.'® If
a magnetic field is now applied (along either the

4 or the ¥ direction), then, at sufficiently low
temperatures, the *He spins are aligned parallel
to the field and the I'’s vanish since there will be
no 3He pairs with opposite spins. We can then ex-
pect the excitations to be essentially undamped.

B. Impure Solid *He

We may consider bee solid *He and divide the
lattice into two sublattices A and B, and write
down from Egq. (5) the coupled equations of motion
for G3, (e, a’c A) and G§,. (B € B). It should be
noted that @ and I" do not vanish even if there is
only one (*He) impurity atom present in this case.
A consistent decoupling procedure can be used to
obtain a closed set of equations for the Green’s
functions.!® The zeroth approximation in which
all “higher-order” Green’s functions such as @,
I', etc. are decoupled yields, for low *He concen-
trations, the dispersion relation

[w=(1-2p)K(0)]?
=[4sJ(0)P-[ (1 + pP - 48?1 [1L(&)]* (8)

for the excitations, with p=(p;) and s=(I%)
==(I§). Decoupling at a later stage (after writing
down the equations of motion for I'’s) introduces
imaginary parts in the solutions for w and leads

to a finite lifetime for the excitations, even if
there is only one impurity atom present. We do
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not give here the rather lengthy expressions in-
volved, as the details may be found in Ref. 10.

Comparing impurity -motion in solid *He and
“He, it is in the exchange term H x present in the
former case that restricts the motion of a ‘He
impurity atom. The site to which the atom can
hop at any instant depends on the spin pattern
around it at that instant, and the path chosen by
it is such that the least number of antiferromag-
netic bonds are broken in its journey. (If all the
He spins had been parallel, then of course the
“He atom would have been equally frec to take any
path.!! For a *He impurity atom in a *He lattice,
however, one path is just as favorable as another,
and the atom is free to hop to any neighboring
site, the mass-spin fluctuation thus occurring
with perfect periodicity. It should thus be easier
to observe (for instance in neutron scattering ex-
periments) the excitations of interest in impure
solid “He as opposed to solid *He.

EXCHANGE - LATTICE RELAXATION
IN IMPURE SOLID °He

We recall that the standard phenomenology used
in the explanation of very-low-temperature NMR
data in (pure) solid 3He is the three-bath model,*?
in which the Hamiltonian in the presence of a con-
stant external magnetic field is the sum of four
terms: three of these are mutually commuting
terms corresponding to the Zeeman (Z), exchange
(X), and lattice (L) baths, coupled by the fourth
term, the weak dipole-dipole interaction H,. For
application to impure solid *He, the model has
been extended by Guyer and Zane? to a “four-bath”
model, an extra, independent bath corresponding
to the mass-fluctuation waves being introduced
between X and L. In sucha procedure, the origi-
nal (three-bath model) calculations of relaxation
times, etc., can be very easily modified to ex-
hibit the *He concentration x, dependence of these
quantities, as x, enters simply through the specif-
ic heat of the new bath.

While we agree with the over-all physical pic-
ture of Ref. 2 for the role played by the hopping
of impurities in relaxation phenomena in impure
solid *He, we feel that the four-bath model is not
the natural way of incorporating this into the
theory.'**'* For one thing, the term H,, in H that
is responsible for mass-fluctuation waves does not
commute with Hy (although it commutes with H,
and H;). It is therefore inappropriate to associate
an independent bath with this term. Doing so also
separates, rather artificially, the motion of the
impurities from that of the spin patterns in the
host crystal. This brings us to a second point:
Using the Green-function approach, which auto-

matically treats the two motions together, we have
seen that, in solid 3He, mass-fluctuation waves
are in fact generally not long-lived excitations.
[The damping is essentially due to the last two
terms on the right in Eq. (5). While the J term
comes from Hy, as expected, the extra L term
comes from H,, itself, and occurs because D,
and D; do nof anticommute, as would free-fer-
mion operators.] These comments clearly apply
also to the “five~bath” model proposed by Guyer?
for higher “He concentrations.

We are thus left with the following consistent
methods of handling the H,, term: (i) We can sim-~
ply add it to Hy to form a common bath (H,, does
commute with H; and H;), or (ii) we can treat it
as a term that couples the exchange-bath to the
phonon-bath, just as H, couples Z to X. If we
adopt (i), we are then left with no mechanism for
the relaxation of this common bath to the lattice.
Further, it turns out that we must then accept the
(rather unphysical) estimate'® of | L|~18J in
order to fit the observed x, dependence (at low
concentrations) of the specific heat of this bath.!s
The more physical mechanism is thus that of (ii):
H,, describes the hopping of *He atoms through
the lattice by exchange of positions with *He atoms;
even a single hop of an impurity atom can alter
considerably the spin pattern, and hence the *He-
He exchange bonds, in its neighborhood. While
the spin-fluctuation present in Hy, couples to the
exchange-bath, the mass-fluctuation inherent in
this term couples to the phonons. Using the stan-
dard density-matrix formalism, !® the exchange-
lattice relaxation time is then given by

[ry.2(x)] 2~ f " dr Tr[ A(=1)A0)] /Tr(H,Y,

9)

where A(0)=[H,,, Hy] and A(-T)=e"*#x"A(0)e?#x 7,

Parenthetically, we remark that our formalism
also enables us to pinpoint a similar mechanism
for X - L relaxation in pure solid 3He. If there
are vacancies in the lattice, it is found® that there
occurs in the effective Hamiltonian H an extra
term describing vacancy-hopping that is of first
order in the hopping energy. This (spin-dependent)
term can play the role of H,, in the preceding dis-
cussion, and couple X to L, leading to a relaxa-
tion time that depends on the vacancy concentra-
tion. This supports the qualitative conjecture of
Guyer and Zane'” in this connection.

RELAXATION IN IMPURE SOLID “He

Let us now consider the relaxation of (*He) im-
purity spins in solid “‘He. For low values of the
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*He concentration x,, the term Hy in H may be
dropped, and the terms E,, and E,, do not change
appreciably with the hopping of the atoms., We
have also seen that mass-fluctuation waves are
long-lived excitations in this case. In the pres-
ence of a constant external magnetic field, there-
fore, we are justified in describing the system in
terms of three independent baths: Z, L, and an
intermediate bath F for H,,. The relaxation “to-
pology” is then Z -~ F -~ L. Now it is found experi-
mentally? that there is a range of intermediate
temperatures in which the relaxation time becomes
temperature-independent. We explain this as fol-
lows: At the temperatures concerned, £ and L
are well-coupled, and Z - F relaxation occurs via
the modulation of H, by Hy,, a quantum-mechani-
cal exchange effect independent of temperature.
We find that the relevant relaxation time 7 ris
given by

[rs, st)] =~ “ar (1%, H, 1 [Hy(=7), 1 1)/Tr (¥,

(10)

where H,(~T)=e™"Hz*Hs0) [ AT Hz" H3g) |

Let us remark briefly on the situation for higher
impurity concentrations in both solids. The terms
E,, and E,, have also to be taken into account now,
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and the “topology” for relaxation will be more
complicated. For instance, H,, can connect the
E,, and E,, baths, and these in turn may couple to
the lattice. It is conceivable that the high specific
heat of the intermediate bath that is found experi-
mentally,'® at somewhat higher impurity concen-
trations in solid *He, is due to the contributions
of these two additional baths. In the case of very
impure solid *He, a further complication is the
fact that H, plays a significant role, and we will
no longer be justified in assigning a separate bath
to H,,.

In conclusion, the Green’s-function formalism
we have used has shown us precisely how the free
propagation of a mass-fluctuation wave in impure
solid helium is affected by the accompanying spin
fluctuation when there are spin-spin interactions
present. It has also enabled us to suggest consis-
tent physical mechanisms, whose effects can be
expressed quantitatively, for relaxation in NMR
experiments in both solid 3He and solid *He with
low impurity concentrations.
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